713 research outputs found
A next-generation inverse-geometry spallation-driven ultracold neutron source
The physics model of a next-generation spallation-driven high-current
ultracold neutron (UCN) source capable of delivering an extracted UCN rate of
around an-order-of-magnitude higher than the strongest proposed sources, and
around three-orders-of-magnitude higher than existing sources, is presented.
This UCN-current-optimized source would dramatically improve cutting-edge UCN
measurements that are currently statistically limited. A novel "Inverse
Geometry" design is used with 40 L of superfluid He (He-II), which acts as
a converter of cold neutrons (CNs) to UCNs, cooled with state-of-the-art
sub-cooled cryogenic technology to 1.6 K. Our design is optimized for a
100 W maximum heat load constraint on the He-II and its vessel. In our
geometry, the spallation target is wrapped symmetrically around the UCN
converter to permit raster scanning the proton beam over a relatively large
volume of tungsten spallation target to reduce the demand on the cooling
requirements, which makes it reasonable to assume that water edge-cooling only
is sufficient. Our design is refined in several steps to reach
s under our other restriction of 1 MW maximum
available proton beam power. We then study effects of the He-II scattering
kernel as well as reductions in due to pressurization to reach
s. Finally, we provide a design for the UCN
extraction system that takes into account the required He-II heat transport
properties and implementation of a He-II containment foil that allows UCN
transmission. We estimate a total useful UCN current from our source of
s from a 18 cm diameter guide 5 m from the source.
Under a conservative "no return" approximation, this rate can produce an
extracted density of cm in 1000~L external experimental
volumes with a Ni (335 neV) cut-off potential.Comment: Submitted to Journal of Applied Physic
Overcoming High Energy Backgrounds at Pulsed Spallation Sources
Instrument backgrounds at neutron scattering facilities directly affect the
quality and the efficiency of the scientific measurements that users perform.
Part of the background at pulsed spallation neutron sources is caused by, and
time-correlated with, the emission of high energy particles when the proton
beam strikes the spallation target. This prompt pulse ultimately produces a
signal, which can be highly problematic for a subset of instruments and
measurements due to the time-correlated properties, and different to that from
reactor sources. Measurements of this background have been made at both SNS
(ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The
background levels were generally found to be low compared to natural
background. However, very low intensities of high-energy particles have been
found to be detrimental to instrument performance in some conditions. Given
that instrument performance is typically characterised by S/N, improvements in
backgrounds can both improve instrument performance whilst at the same time
delivering significant cost savings. A systematic holistic approach is
suggested in this contribution to increase the effectiveness of this.
Instrument performance should subsequently benefit.Comment: 12 pages, 8 figures. Proceedings of ICANS XXI (International
Collaboration on Advanced Neutron Sources), Mito, Japan. 201
Non-equilibrium emission of complex fragments from p+Au collisions at 2.5 GeV proton beam energy
Energy and angular dependence of double differential cross sections
d/ddE was measured for reactions induced by 2.5 GeV protons
on Au target with isotopic identification of light products (H, He, Li, Be, and
B) and with elemental identification of heavier intermediate mass fragments (C,
N, O, F, Ne, Na, Mg, and Al). It was found that two different reaction
mechanisms give comparable contributions to the cross sections. The
intranuclear cascade of nucleon-nucleon collisions followed by evaporation from
an equilibrated residuum describes low energy part of the energy distributions
whereas another reaction mechanism is responsible for high energy part of the
spectra of composite particles. Phenomenological model description of the
differential cross sections by isotropic emission from two moving sources led
to a very good description of all measured data. Values of the extracted
parameters of the emitting sources are compatible with the hypothesis claiming
that the high energy particles emerge from pre-equilibrium processes consisting
in a breakup of the target into three groups of nucleons; small, fast and hot
fireball of 8 nucleons, and two larger, excited prefragments, which
emits the light charged particles and intermediate mass fragments. The smaller
of them contains 20 nucleons and moves with velocity larger than the CM
velocity of the proton projectile and the target. The heavier prefragment
behaves similarly as the heavy residuum of the intranuclear cascade of
nucleon-nucleon collisions. %The mass and charge dependence of the total
production cross %sections was extracted from the above analysis for all
observed %reaction products. This dependence follows the power low behavior
%(A or Z)
Within study comparisons and risk of bias in international development: Systematic review and critical appraisal
Background Many systematic reviews incorporate nonrandomised studies of effects, sometimes called quasiâexperiments or natural experiments. However, the extent to which nonrandomised studies produce unbiased effect estimates is unclear in expectation or in practice. The usual way that systematic reviews quantify bias is through ârisk of bias assessmentâ and indirect comparison of findings across studies using metaâanalysis. A more direct, practical way to quantify the bias in nonrandomised studies is through âinternal replication researchâ, which compares the findings from nonrandomised studies with estimates from a benchmark randomised controlled trial conducted in the same population. Despite the existence of many risks of bias tools, none are conceptualised to assess comprehensively nonrandomised approaches with selection on unobservables, such as regression discontinuity designs (RDDs). The few that are conceptualised with these studies in mind do not draw on the extensive literature on internal replications (withinâstudy comparisons) of randomised trials. Objectives Our research objectives were as follows: Objective 1: to undertake a systematic review of nonrandomised internal study replications of international development interventions. Objective 2: to develop a risk of bias tool for RDDs, an increasingly common method used in social and economic programme evaluation. Methods We used the following methods to achieve our objectives. Objective 1: we searched systematically for nonrandomised internal study replications of benchmark randomised experiments of social and economic interventions in lowâ and middleâincome countries (L&MICs). We assessed the risk of bias in benchmark randomised experiments and synthesised evidence on the relative bias effect sizes produced by benchmark and nonrandomised comparison arms. Objective 2: We used document review and expert consultation to develop further a risk of bias tool for quasiâexperimental studies of interventions (ROBINSâI) for RDDs. Results Objective 1: we located 10 nonrandomised internal study replications of randomised trials in L&MICs, six of which are of RDDs and the remaining use a combination of statistical matching and regression techniques. We found that benchmark experiments used in internal replications in international development are in the main wellâconducted but have âsome concernsâ about threats to validity, usually arising due to the methods of outcomes data collection. Most internal replication studies report on a range of different specifications for both the benchmark estimate and the nonrandomised replication estimate. We extracted and standardised 604 bias coefficient effect sizes from these studies, and present average results narratively. Objective 2: RDDs are characterised by prospective assignment of participants based on a threshold variable. Our review of the literature indicated there are two main types of RDD. The most common type of RDD is designed retrospectively in which the researcher identifies postâhoc the relationship between outcomes and a threshold variable which determines assignment to intervention at pretest. These designs usually draw on routine data collection such as administrative records or household surveys. The other, less common, type is a prospective design where the researcher is also involved in allocating participants to treatment groups from the outset. We developed a risk of bias tool for RDDs. Conclusions Internal study replications provide the grounds on which bias assessment tools can be evidenced. We conclude that existing risk of bias tools needs to be further developed for use by Campbell collaboration authors, and there is a wide range of risk of bias tools and internal study replications to draw on in better designing these tools. We have suggested the development of a promising approach for RDD. Further work is needed on common methodologies in programme evaluation, for example on statistical matching approaches. We also highlight that broader efforts to identify all existing internal replication studies should consider more specialised systematic search strategies within particular literatures; so as to overcome a lack of systematic indexing of this evidence
Spallation Neutron Production by 0.8, 1.2 and 1.6 GeV Protons on various Targets
Spallation neutron production in proton induced reactions on Al, Fe, Zr, W,
Pb and Th targets at 1.2 GeV and on Fe and Pb at 0.8, and 1.6 GeV measured at
the SATURNE accelerator in Saclay is reported. The experimental
double-differential cross-sections are compared with calculations performed
with different intra-nuclear cascade models implemented in high energy
transport codes. The broad angular coverage also allowed the determination of
average neutron multiplicities above 2 MeV. Deficiencies in some of the models
commonly used for applications are pointed out.Comment: 20 pages, 32 figures, revised version, accepted fpr publication in
Phys. Rev.
Measurement of the Eta Production in Proton Proton Collisions with the COSY Time of Flight Spectrometer
The reaction pp -> pp eta was measured at excess energies of 15 and 41 MeV at
an external target of the Juelich Cooler Synchrotron COSY with the Time of
Flight Spectrometer. About 25000 events were measured for the excess energy of
15 MeV and about 8000 for 41 MeV. Both protons of the process pp eta were
detected with an acceptance of nearly 100% and the eta was reconstructed by the
missing mass technique. For both excess energies the angular distributions are
found to be nearly isotropic. In the invariant mass distributions strong
deviations from the pure phase space distributions are seen.Comment: 15 pages, 14 figures, 4 table
CENP-F stabilizes kinetochore-microtubule attachments and limits dynein stripping of corona cargoes
Accurate chromosome segregation demands efficient capture of microtubules by kinetochores and their conversion to stable bioriented attachments that can congress and then segregate chromosomes. An early event is the shedding of the outermost fibrous corona layer of the kinetochore following microtubule attachment. Centromere protein F (CENP-F) is part of the corona, contains two microtubule-binding domains, and physically associates with dynein motor regulators. Here, we have combined CRISPR gene editing and engineered separation-of-function mutants to define how CENP-F contributes to kinetochore function. We show that the two microtubule-binding domains make distinct contributions to attachment stability and force transduction but are dispensable for chromosome congression. We further identify a specialized domain that functions to limit the dynein-mediated stripping of corona cargoes through a direct interaction with Nde1. This antagonistic activity is crucial for maintaining the required corona composition and ensuring efficient kinetochore biorientation
- âŠ