52 research outputs found

    Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features

    Get PDF
    Because of its involvement in the progression of several malignant tumors, the histone lysine-specific demethylase 1 (LSD1) has become a prominent drug target in modern medicinal chemistry research. We report on the discovery of two classes of noncovalent inhibitors displaying unique structural features. The antibiotics polymyxins bind at the entrance of the substrate cleft, where their highly charged cyclic moiety interacts with a cluster of positively charged amino acids. The same site is occupied by quinazoline-based compounds, which were found to inhibit the enzyme through a most peculiar mode because they form a pile of five to seven molecules that obstruct access to the active center. These data significantly indicate unpredictable strategies for the development of epigenetic inhibitors

    Expanding the druggable space of the LSD1/CoREST epigenetic target: new potential binding regions for drug-like molecules, peptides, protein partners, and chromatin.

    Get PDF
    Lysine specific demethylase-1 (LSD1/KDM1A) in complex with its corepressor protein CoREST is a promising target for epigenetic drugs. No therapeutic that targets LSD1/CoREST, however, has been reported to date. Recently, extended molecular dynamics (MD) simulations indicated that LSD1/CoREST nanoscale clamp dynamics is regulated by substrate binding and highlighted key hinge points of this large-scale motion as well as the relevance of local residue dynamics. Prompted by the urgent need for new molecular probes and inhibitors to understand LSD1/CoREST interactions with small-molecules, peptides, protein partners, and chromatin, we undertake here a configurational ensemble approach to expand LSD1/CoREST druggability. The independent algorithms FTMap and SiteMap and our newly developed Druggable Site Visualizer (DSV) software tool were used to predict and inspect favorable binding sites. We find that the hinge points revealed by MD simulations at the SANT2/Tower interface, at the SWIRM/AOD interface, and at the AOD/Tower interface are new targets for the discovery of molecular probes to block association of LSD1/CoREST with chromatin or protein partners. A fourth region was also predicted from simulated configurational ensembles and was experimentally validated to have strong binding propensity. The observation that this prediction would be prevented when using only the X-ray structures available (including the X-ray structure bound to the same peptide) underscores the relevance of protein dynamics in protein interactions. A fifth region was highlighted corresponding to a small pocket on the AOD domain. This study sets the basis for future virtual screening campaigns targeting the five novel regions reported herein and for the design of LSD1/CoREST mutants to probe LSD1/CoREST binding with chromatin and various protein partners

    A Tail-Based Mechanism Drives Nucleosome Demethylation by the LSD2/NPAC Multimeric Complex

    Get PDF
    Summary: LSD1 and LSD2 are homologous histone demethylases with opposite biological outcomes related to chromatin silencing and transcription elongation, respectively. Unlike LSD1, LSD2 nucleosome-demethylase activity relies on a specific linker peptide from the multidomain protein NPAC. We used single-particle cryoelectron microscopy (cryo-EM), in combination with kinetic and mutational analysis, to analyze the mechanisms underlying the function of the human LSD2/NPAC-linker/nucleosome complex. Weak interactions between LSD2 and DNA enable multiple binding modes for the association of the demethylase to the nucleosome. The demethylase thereby captures mono- and dimethyl Lys4 of the H3 tail to afford histone demethylation. Our studies also establish that the dehydrogenase domain of NPAC serves as a catalytically inert oligomerization module. While LSD1/CoREST forms a nucleosome docking platform at silenced gene promoters, LSD2/NPAC is a multifunctional enzyme complex with flexible linkers, tailored for rapid chromatin modification, in conjunction with the advance of the RNA polymerase on actively transcribed genes. : Through biophysical, biochemical, and structural studies, including cryo-EM, Marabelli et al. describe how NPAC promotes LSD2 productive interaction with the nucleosome in a rapid and flexible manner. Their findings provide a molecular mechanism for LSD2 activity in the context of H3K4me2 demethylation during Pol II transcriptional elongation. Keywords: histone demethylation, cryoelectron microscopy, chromatin reader, flavoenzyme, epigenetics, evolution of protein function, molecular recognitio

    Protein Recognition by Short Peptide Reversible Inhibitors of the Chromatin-Modifying LSD1/CoREST Lysine Demethylase.

    Get PDF
    The combinatorial assembly of protein complexes is at the heart of chromatin biology. Lysine demethylase LSD1(KDM1A)/CoREST beautifully exemplifies this concept. The active site of the enzyme tightly associates to the N-terminal domain of transcription factors of the SNAIL1 family, which therefore can competitively inhibit the binding of the N-terminal tail of the histone substrate. Our enzymatic, crystallographic, spectroscopic, and computational studies reveal that LSD1/CoREST can bind to a hexapeptide derived from the SNAIL sequence through recognition of a positively charged α-helical turn that forms upon binding to the enzyme. Variations in sequence and length of this six amino acid ligand modulate affinities enabling the same binding site to differentially interact with proteins that exert distinct biological functions. The discovered short peptide inhibitors exhibit antiproliferative activities and lay the foundation for the development of peptidomimetic small molecule inhibitors of LSD1

    CENP-F stabilizes kinetochore-microtubule attachments and limits dynein stripping of corona cargoes

    Get PDF
    Accurate chromosome segregation demands efficient capture of microtubules by kinetochores and their conversion to stable bioriented attachments that can congress and then segregate chromosomes. An early event is the shedding of the outermost fibrous corona layer of the kinetochore following microtubule attachment. Centromere protein F (CENP-F) is part of the corona, contains two microtubule-binding domains, and physically associates with dynein motor regulators. Here, we have combined CRISPR gene editing and engineered separation-of-function mutants to define how CENP-F contributes to kinetochore function. We show that the two microtubule-binding domains make distinct contributions to attachment stability and force transduction but are dispensable for chromosome congression. We further identify a specialized domain that functions to limit the dynein-mediated stripping of corona cargoes through a direct interaction with Nde1. This antagonistic activity is crucial for maintaining the required corona composition and ensuring efficient kinetochore biorientation

    Differential properties of transcriptional complexes formed by the CoREST family

    Get PDF
    Mammalian genomes harbor three CoREST genes. rcor1 encodes CoREST (CoREST1) and the paralogues rcor2 and rcor3 encode CoREST2 and CoREST3, respectively. Here, we describe specific properties of transcriptional complexes formed by CoREST proteins with the histone demethylase LSD1/KDM1A and histone deacetylases HDAC1/2 and the finding that all three CoRESTs express in the adult rat brain. CoRESTs interact equally strong with LSD1/KDM1A. Structural analysis shows that the overall conformation of CoREST3 is similar to that of CoREST1 complexed with LSD1/KDM1A. Nonetheless, transcriptional repressive capacity of CoREST3 is lower than that of CoREST1, which correlates with the observation that CoREST3 leads to a reduced LSD1/KDM1A catalytic efficiency. Also, CoREST2 shows a lower transcriptional repression than CoREST1, which is resistant to HDAC inhibitors. CoREST2 displays lower interaction with HDAC1/2 which is barely present in LSD1/KDM1A-CoREST2 complexes. A non-conserved Leucine in the first SANT domain of CoREST2 severely weakens its association to HDAC1/2. Furthermore, CoREST2 mutants with either increased or lacking HDAC1/2 interaction feature equivalent transcriptional repression capacities, indicating that CoREST2 represses in a HDAC-independent manner. In conclusion, differences among CoREST proteins are instrumental to the modulation of protein-protein interactions and catalytic activities of LSD1/KDM1A-CoREST-HDAC complexes, fine tuning gene expression regulation

    The C-terminal helix of BubR1 is essential for CENP-E-dependent chromosome alignment

    Get PDF
    During cell division, misaligned chromosomes are captured and aligned by motors before their segregation. The CENP-E motor is recruited to polar unattached kinetochores, to facilitate chromosome alignment. The spindle checkpoint protein BubR1 has been reported as a CENP-E interacting partner, but to what extent BubR1 contributes to CENP-E localization at kinetochores, has remained controversial. Here we define the molecular determinants that specify the interaction between BubR1 and CENP-E. The basic C-terminal helix of BubR1 is necessary but not sufficient for CENP-E interaction, while a minimal key acidic patch on the kinetochore-targeting domain of CENP-E, is also essential. We then demonstrate that BubR1 is required for the recruitment of CENP-E to kinetochores to facilitate chromosome alignment. This BubR1-CENP-E axis is critical to align chromosomes that have failed to congress through other pathways and recapitulates the major known function of CENP-E. Overall, our studies define the molecular basis and the function for CENP-E recruitment to BubR1 at kinetochores during mammalian mitosis

    Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features

    Get PDF
    Because of its involvement in the progression of several malignant tumors, the histone lysine-specific demethylase 1 (LSD1) has become a prominent drug target in modern medicinal chemistry research. We report on the discovery of two classes of noncovalent inhibitors displaying unique structural features. The antibiotics polymyxins bind at the entrance of the substrate cleft, where their highly charged cyclic moiety interacts with a cluster of positively charged amino acids. The same site is occupied by quinazoline-based compounds, which were found to inhibit the enzyme through a most peculiar mode because they form a pile of five to seven molecules that obstruct access to the active center. These data significantly indicate unpredictable strategies for the development of epigenetic inhibitors

    A tetracationic porphyrin with dual anti-prion activity

    Get PDF
    Prions are deadly infectious agents made of PrPSc, a misfolded variant of the cellular prion protein (PrPC) which self-propagates by inducing misfolding of native PrPC. PrPSc can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, hampering the development of effective therapies. We identified Zn(II)-BnPyP, a tetracationic porphyrin that binds to distinct domains of native PrPC, eliciting a dual anti-prion effect. Zn(II)-BnPyP binding to a C-terminal pocket destabilizes the native PrPC fold, hindering conversion to PrPSc; Zn(II)-BnPyP binding to the flexible N-terminal tail disrupts N- to C-terminal interactions, triggering PrPC endocytosis and lysosomal degradation, thus reducing the substrate for PrPSc generation. Zn(II)-BnPyP inhibits propagation of different prion strains in vitro, in neuronal cells and organotypic brain cultures. These results identify a PrPC-targeting compound with an unprecedented dual mechanism of action which might be exploited to achieve anti-prion effects without engendering drug resistance
    • …
    corecore