1,184 research outputs found

    You Know, You Grow

    Get PDF
    As we have studied the nature of wicked problems and connected with local case studies, our team has come to the conclusion that in order for communities to grow and develop deeper connections, healthier neighborhoods, and happier residents, there must be inclusive dialogue and participatory action. Addressing a neighborhood’s nutritional needs is messy, involving complex social dynamics and disparate stakeholders. Through community connections and dialogic inquiry we have begun to recognize needs related to the local food system. We strive to empower residents to pursue self-directed, neighborhood oriented change. Our team first worked to develop a model of community engagement that can be adapted, copied, and spread to any community setting. The model explained how to conduct inclusive, participatory dialogue that aims to encourage story-telling and camaraderie rather than debate or opposition. Secondly, our team has engaged with several community members over the course of the semester to practice having these dialogic conversations in order to learn, change, and grow as individuals better equipped to understand and progress the dialogue on local food systems. This article synthesizes our findings, describes what we have learned, and offers a model for healthy community conversations that drive locally directed growth

    Mapping Emotional Attachment as a Measure of Sense of Place to Identify Coastal Restoration Priority Areas

    Get PDF
    Our applied case study demonstrates how knowledge from community stakeholders about emotional attachment (as a key component of sense of place) can inform and influence future coastal restoration priorities at various scales in the Indian River Lagoon, Florida (USA). We map aggregate measures of emotional attachment from community stakeholders using Geographic Information Systems. We then analyze this human systems level data with kernel density estimation measures at the broader lagoon scale and with inverse distance weighted measures at more localized scales. By connecting these mapped results back to the primary reasons that participants provided for having high or low emotional attachment in a location, we show how varying spatial patterns of emotional attachment as a primary component of sense of place within and across broader geographic regions can be represented, mapped, and visualized to enhance future restoration priorities. We demonstrate how aggregate results gained from community stakeholders can help restoration teams prioritize their science communication and education strategies to align human systems level data with natural systems level data

    How well does neonatal neuroimaging correlate with neurodevelopmental outcomes in infants with hypoxic-ischemic encephalopathy?

    Get PDF
    BACKGROUND: In newborns with hypoxic-ischemic encephalopathy (HIE), the correlation between neonatal neuroimaging and the degree of neurodevelopmental impairment (NDI) is unclear. METHODS: Infants with HIE enrolled in a randomized controlled trial underwent neonatal MRI/MR spectroscopy (MRS) using a harmonized protocol at 4-6 days of age. The severity of brain injury was measured with a validated scoring system. Using proportional odds regression, we calculated adjusted odds ratios (aOR) for the associations between MRI/MRS measures of injury and primary ordinal outcome (i.e., normal, mild NDI, moderate NDI, severe NDI, or death) at age 2 years. RESULTS: Of 451 infants with MRI/MRS at a median age of 5 days (IQR 4.5-5.8), outcomes were normal (51%); mild (12%), moderate (14%), severe NDI (13%); or death (9%). MRI injury score (aOR 1.06, 95% CI 1.05, 1.07), severe brain injury (aOR 39.6, 95% CI 16.4, 95.6), and MRS lactate/n-acetylaspartate (NAA) ratio (aOR 1.6, 95% CI 1.4,1.8) were associated with worse primary outcomes. Infants with mild/moderate MRI brain injury had similar BSID-III cognitive, language, and motor scores as infants with no injury. CONCLUSION: In the absence of severe injury, brain MRI/MRS does not accurately discriminate the degree of NDI. Given diagnostic uncertainty, families need to be counseled regarding a range of possible neurodevelopmental outcomes. IMPACT: Half of all infants with hypoxic-ischemic encephalopathy (HIE) enrolled in a large clinical trial either died or had neurodevelopmental impairment at age 2 years despite receiving therapeutic hypothermia. Severe brain injury and a global pattern of brain injury on MRI were both strongly associated with death or neurodevelopmental impairment. Infants with mild or moderate brain injury had similar mean BSID-III cognitive, language, and motor scores as infants with no brain injury on MRI. Given the prognostic uncertainty of brain MRI among infants with less severe degrees of brain injury, families should be counseled regarding a range of possible neurodevelopmental outcomes

    An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability.

    Get PDF
    Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes.Research in the authors’ laboratories was supported by Bloodwise, The Wellcome Trust, Cancer Research UK, the Biotechnology and Biological Sciences Research Council, the National Institute of Health Research, the Medical Research Council, the MRC Molecular Haematology Unit (Oxford) core award, a Weizmann-UK “Making Connections” grant (Oxford) and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research (100140) and Wellcome Trust–MRC Cambridge Stem Cell Institute (097922).This is the final version of the article. It first appeared from eLife via http://dx.doi.org/10.7554/eLife.1146

    The Student Movement Volume 107 Issue 11: Have a Merry Christmas! XOXO, The Student Movement

    Get PDF
    HUMANS Coping with Finals, Solana Campbell Meet Jea Erazo, AUSA Public Relations Officer. Interviewed by: Caryn Cruz Remembering Sharon Dudgeon, Grace No Women in STEM: Olivia Joyce, Interviewed by: Gloria Oh ARTS & ENTERTAINMENT Football Sunday, Nathaniel Reid, Skylor Stark Student Picks: Christmas Classics, Ysabelle Fernando NEWS AFIA x MLS Christmas Party, Ceiry Flores Boycotts and Bans at the Qatar World Cup, Hannah Cruse In Loving Memory of Seth Williams, Gloria Oh IDEAS How Do We Address Queer Violence?, Alexander J. Hess Is Reality Really Real When You Aren\u27t Really Looking?, Alexander Navarro Reflecting on Christmas Traditions, Rachel Ingram-Clay The New Era of Book Bans, Elizabeth Getahun Why is Everyone so Happy During Christmastime?, Kayla-Hope Bruno PULSE Bon Appétit and the Threat to Cultural Autonomy, Wambui Karanja It\u27s OrnaMEANT to be a Wonderful Christmastime, Lexie Dunham It\u27s the Most Stressful Time of the Year, Reagan McCain Qatar Controversy: The Shadow Behind the World Cup, Melissa Moore Reflections on the Semester and Plans for Break, Elizabeth Dovich LAST WORD A Student Movement Christmas, The Student Movement Staffhttps://digitalcommons.andrews.edu/sm-107/1010/thumbnail.jp

    Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e65235, doi:10.1371/journal.pone.0065235.Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.Support was provided by 2007/2008 Marine Biological Laboratory summer fellowships and NIH (NS066942A) grants to GM; Howard Hughes Medical Institute-USE Grant #52006287 to Hunter College of CUNY (LM); Muscular Dystrophy Association (MDA) and NIH (R01NS44170) grants to LJH; MDA and NIH (NS23868, NS23320, NS41170) grants to STB; NIH grant MH066179 to GB; NIH grants R01AG031311 and R01NS055951 to DMW; NIH (U01NS05225, R01NS050557, 1RC1NS068391, 1RC2NS070342) grants to RHB; R01NS067206 to DAB; ALS Association grants to GM, AT, RHB, and STB; and ALS/CVS Therapy Alliance grants to RHB, GM, AT, LJH, and DAB. RHB and AT received support from the Angel Fund. RHB also received support from the DeBourgknecht Fund for ALS Research, P2ALS and Project ALS

    Citizens AND HYdrology (CANDHY): conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges

    Get PDF
    Widely available digital technologies are empowering citizens who are increasingly well informed and involved in numerous water, climate, and environmental challenges. Citizen science can serve many different purposes, from the "pleasure of doing science" to complementing observations, increasing scientific literacy, and supporting collaborative behaviour to solve specific water management problems. Still, procedures on how to incorporate citizens' knowledge effectively to inform policy and decision-making are lagging behind. Moreover, general conceptual frameworks are unavailable, preventing the widespread uptake of citizen science approaches for more participatory cross-sectorial water governance. In this work, we identify the shared constituents, interfaces, and interlinkages between hydrological sciences and other academic and non-academic disciplines in addressing water issues. Our goal is to conceptualize a transdisciplinary framework for valuing citizen science and advancing the hydrological sciences. Joint efforts between hydrological, computer, and social sciences are envisaged for integrating human sensing and behavioural mechanisms into the framework. Expanding opportunities of online communities complement the fundamental value of on-site surveying and indigenous knowledge. This work is promoted by the Citizens AND HYdrology (CANDHY) Working Group established by the International Association of Hydrological Sciences (IAHS)

    Ketamine effects on memory reconsolidation favor a learning model of delusions.

    Get PDF
    Delusions are the persistent and often bizarre beliefs that characterise psychosis. Previous studies have suggested that their emergence may be explained by disturbances in prediction error-dependent learning. Here we set up complementary studies in order to examine whether such a disturbance also modulates memory reconsolidation and hence explains their remarkable persistence. First, we quantified individual brain responses to prediction error in a causal learning task in 18 human subjects (8 female). Next, a placebo-controlled within-subjects study of the impact of ketamine was set up on the same individuals. We determined the influence of this NMDA receptor antagonist (previously shown to induce aberrant prediction error signal and lead to transient alterations in perception and belief) on the evolution of a fear memory over a 72 hour period: they initially underwent Pavlovian fear conditioning; 24 hours later, during ketamine or placebo administration, the conditioned stimulus (CS) was presented once, without reinforcement; memory strength was then tested again 24 hours later. Re-presentation of the CS under ketamine led to a stronger subsequent memory than under placebo. Moreover, the degree of strengthening correlated with individual vulnerability to ketamine's psychotogenic effects and with prediction error brain signal. This finding was partially replicated in an independent sample with an appetitive learning procedure (in 8 human subjects, 4 female). These results suggest a link between altered prediction error, memory strength and psychosis. They point to a core disruption that may explain not only the emergence of delusional beliefs but also their persistence

    Raman analysis of a shocked planetary surface analogue: Implications for habitability on Mars

    Get PDF
    The scientific aims of the ExoMars Raman laser spectrometer (RLS) include identifying biological signatures and evidence of mineralogical processes associated with life. The RLS instrument was optimised to identify carbonaceous material, including reduced carbon. Previous studies suggest that reduced carbon on the Martian surface (perhaps originating from past meteoric bombardment) could provide a feedstock for microbial life. Therefore, its origin, form, and thermal history could greatly inform our understanding of Mars' past habitability. Here, we report on the Raman analysis of a Nakhla meteorite analogue (containing carbonaceous material) that was subjected to shock through projectile impact to simulate the effect of meteorite impact. The characterisation was performed using the RLS Simulator, in an equivalent manner to that planned for ExoMars operations. The spectra obtained verify that the flight-representative system can detect reduced carbon in the basaltic sample, discerning between materials that have experienced different levels of thermal processing due to impact shock levels. Furthermore, carbon signatures acquired from the cratered material show an increase in molecular disorder (and we note that this effect will be more evident at higher levels of thermal maturity). This is likely to result from intense shearing forces, suggesting that shock forces within basaltic material may produce more reactive carbon. This result has implications for potential (past) Martian habitability because impacted, reduced carbon may become more biologically accessible. The data presented suggest the RLS instrument will be able to characterise the contribution of impact shock within the landing site region, enhancing our ability to assess habitability

    Engineering the Photoresponse of InAs Nanowires.

    Get PDF
    We report on individual-InAs nanowire optoelectronic devices which can be tailored to exhibit either negative or positive photoconductivity (NPC or PPC). The NPC photoresponse time and magnitude is found to be highly tunable by varying the nanowire diameter under controlled growth conditions. Using hysteresis characterization, we decouple the observed photoexcitation-induced hot electron trapping from conventional electric field-induced trapping to gain a fundamental insight into the interface trap states responsible for NPC. Furthermore, we demonstrate surface passivation without chemical etching which both enhances the field-effect mobility of the nanowires by approximately an order of magnitude and effectively eliminates the hot carrier trapping found to be responsible for NPC, thus restoring an "intrinsic" positive photoresponse. This opens pathways toward engineering semiconductor nanowires for novel optical-memory and photodetector applications
    • 

    corecore