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How well does neonatal neuroimaging correlate with
neurodevelopmental outcomes in infants with
hypoxic-ischemic encephalopathy?
Yvonne W. Wu1,2✉, Sarah E. Monsell3, Hannah C. Glass1,2,4, Jessica L. Wisnowski5,6, Amit M. Mathur7, Robert C. McKinstry8,
Stefan Bluml5,9, Fernando F. Gonzalez2, Bryan A. Comstock3, Patrick J. Heagerty3 and Sandra E. Juul10

© The Author(s) 2023

BACKGROUND: In newborns with hypoxic-ischemic encephalopathy (HIE), the correlation between neonatal neuroimaging and the
degree of neurodevelopmental impairment (NDI) is unclear.
METHODS: Infants with HIE enrolled in a randomized controlled trial underwent neonatal MRI/MR spectroscopy (MRS) using a
harmonized protocol at 4–6 days of age. The severity of brain injury was measured with a validated scoring system. Using
proportional odds regression, we calculated adjusted odds ratios (aOR) for the associations between MRI/MRS measures of injury
and primary ordinal outcome (i.e., normal, mild NDI, moderate NDI, severe NDI, or death) at age 2 years.
RESULTS: Of 451 infants with MRI/MRS at a median age of 5 days (IQR 4.5–5.8), outcomes were normal (51%); mild (12%), moderate
(14%), severe NDI (13%); or death (9%). MRI injury score (aOR 1.06, 95% CI 1.05, 1.07), severe brain injury (aOR 39.6, 95% CI 16.4,
95.6), and MRS lactate/n-acetylaspartate (NAA) ratio (aOR 1.6, 95% CI 1.4,1.8) were associated with worse primary outcomes. Infants
with mild/moderate MRI brain injury had similar BSID-III cognitive, language, and motor scores as infants with no injury.
CONCLUSION: In the absence of severe injury, brain MRI/MRS does not accurately discriminate the degree of NDI. Given diagnostic
uncertainty, families need to be counseled regarding a range of possible neurodevelopmental outcomes.

Pediatric Research (2023) 94:1018–1025; https://doi.org/10.1038/s41390-023-02510-8

IMPACT:

● Half of all infants with hypoxic-ischemic encephalopathy (HIE) enrolled in a large clinical trial either died or had
neurodevelopmental impairment at age 2 years despite receiving therapeutic hypothermia.

● Severe brain injury and a global pattern of brain injury on MRI were both strongly associated with death or
neurodevelopmental impairment.

● Infants with mild or moderate brain injury had similar mean BSID-III cognitive, language, and motor scores as infants with no
brain injury on MRI.

● Given the prognostic uncertainty of brain MRI among infants with less severe degrees of brain injury, families should be
counseled regarding a range of possible neurodevelopmental outcomes.

INTRODUCTION
Hypoxic-ischemic encephalopathy (HIE), an important cause of
neonatal encephalopathy, results from reduced oxygen and blood
flow to a baby’s brain near the time of birth and is an important
cause of long-term neurologic dysfunction.1,2 Survivors may
demonstrate lifelong motor and cognitive deficits even after
receiving hypothermia treatment.3–8 The extent of brain injury
seen on neonatal brain MRI,9–11 and MR spectroscopy12 (MRS) has
been shown to predict neurodevelopmental outcomes in infants

who received therapeutic hypothermia for HIE with quantitative
MRS measures providing better prognostic information than
qualitative MRI scores of injury severity.12,13

Despite numerous studies of neuroimaging biomarkers of HIE,
many questions remain. Although some studies found that a
normal neonatal brain MRI is highly predictive of a normal
outcome after HIE,14,15 other studies report a high (43%) rate of
adverse neurodevelopmental outcomes despite a normal brain
MRI.16 Furthermore, whether the acuity of brain lesions provides
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additional predictive value after HIE is unknown. Brain MRIs
performed beyond 1 week of age may not distinguish acute from
subacute lesions since the diffusion abnormalities that indicate
acute injury “pseudonormalize” after 7 days.17,18

It is important to determine the best neuroimaging biomarkers of
neurodevelopmental outcomes in infants with HIE, both to improve
our ability to counsel families and to improve the design of future
neuroprotection trials. Prior neuroimaging studies of HIE have been
limited by the wide time window during which neuroimaging was
performed,11,14,16 by small study size (<175 subjects),9–11,14,16 and
by lack of harmonization of imaging protocols across sites.14,16 The
HEAL Trial (NCT02811263) was a multi-center randomized con-
trolled trial that tested erythropoietin in 500 infants who received
therapeutic hypothermia for HIE. In this large cohort of infants who
underwent a harmonized neuroimaging protocol within a narrow
time window, we set out to determine the strength of association
between MRI and MRS measures of brain injury and neurodevelop-
ment at 2 years of age.

METHODS
Overview
The HEAL study protocol19 and primary results20 have been previously
published. Infants were eligible if they met all of the following criteria for
presumed HIE: (1) born at ≥36 weeks’ gestation; (2) signs of perinatal
depression (i.e., Apgar score < 5 at 10min, cardiorespiratory resuscitation
received beyond 10min of age, or pH < 7.00 or base deficit ≥ 15mmol/L in
the cord or infant gas within 60min of birth); (3) moderate or severe
neonatal encephalopathy present at 1–6 h of age based on a modified
Sarnat examination; and (4) underwent therapeutic hypothermia. The
modified intention-to-treat analysis included 500 infants who were
randomized and received five doses of Epogen 1000 U per kilogram or
saline placebo intravenously during the first week of age. This study was
approved by the Institutional Review Boards at all participating sites and
neonates were studied after informed consent.

Brain MRI
When possible, a clinical brain MRI was performed at 5 days (96–144 h) of
age using a standardized protocol that was harmonized across nine
different 3T MR scanners at 17 sites.21 The HEAL MRI protocol included
conventional T1, T2, and diffusion-weighted sequences. Three indepen-
dent readers reviewed the MRI images to determine the severity, pattern,
and acuity of brain injury, with discrepancies resolved via consensus.
Using a validated scoring system,22,23 we calculated global brain injury

scores by summing the extent of injury (i.e., none= 0; <25%= 1;
25–50%= 2; >50%= 3) seen on T1, T2, and apparent diffusion coefficient
(ADC) images in eight regions of the brain: caudate, putamen/globus
pallidus, thalamus, posterior limb of the internal capsule (PLIC), cortex,
white matter, brainstem, and cerebellum. The severity of brain injury was
determined from the global injury score as follows: none (global injury
score= 0), mild (1–11), moderate (12–32), or severe (33–138) brain injury.
We defined three patterns of injury that were not mutually exclusive:

central gray, i.e., injury to the caudate, putamen, globus pallidus, or
thalamus; peripheral watershed, i.e., injury to the parasagittal white matter
or cortex; and global, i.e., injury to >75% of the cerebrum, consisting of
central gray, white matter, and cortex. We further identified infants with
only punctate white matter lesions, i.e., discrete 1–10mm foci of injury in
the periventricular white matter or centrum semiovale; and only atypical
lesions, e.g., chronic volume loss, hemorrhage, or mass lesions.

Pseudonormalization of the ADC signal is expected to begin by 8 days
after injury,17 and may not begin until 10–14 days in the setting of
therapeutic hypothermia.18 Thus, we conservatively restricted the analysis
of brain injury acuity to the 408 (91%) infants who received a brain MRI
before 8 days (<193 h) of age. We defined acute lesions as foci of restricted
diffusion; subacute lesions as signal abnormalities on T1 and/or
T2 sequences but without corresponding diffusion restriction; and chronic
lesions as parenchymal volume loss.16,19

Proton MRS
Short-echo, single-voxel MRS data were acquired from the left thalamus
and left parietal white matter. N-acetylaspartate (NAA) is a marker of
neuronal/axonal integrity23 and lactate is a byproduct of anaerobic
metabolism that increases in the setting of acute hypoxic-ischemic brain
injury. We measured ratios of lactate/NAA and NAA/creatine as biomarkers
of brain injury. Raw MRS data were processed centrally using a customized
LCModel (V6.3-1L, Stephen Provencher Inc., Oakville, Ontario, Canada)
pipeline as previously described.16 All spectra with major deviations in
regions of interest (ROI) placement were excluded from subsequent
analyses, as were any spectra with major artifacts (e.g., skull lipids, motion),
poor linewidth (i.e., FWHM> 0.08) or signal-to-noise ratio <6.

Neurodevelopmental impairment (NDI)
The primary outcome at 2 years (i.e., 22–36 months) of age was a five-level
ordinal variable: no NDI, mild NDI, moderate NDI, severe NDI, or death. The
severity of NDI was determined by the worst severity observed in either
the cognitive or motor outcome. Cognitive outcome was defined by Bayley
Scales of Infant Toddler Development, third edition (BSID-III) score as
follows: normal (cognitive score ≥ 90); mild (85–89); moderate (70–84);
severe (<70). Motor outcome (Table 1) was defined by the presence of
cerebral palsy (CP) and by a modified Gross Motor Function Classification
System24 (GMFCS) score (e-Fig. 1). Cerebral palsy was determined by a
validated, standardized neurologic examination.25 Secondary outcomes
included BSID-III cognitive, language, and motor scores among infants who
survived to 2 years of age, and a binary outcome of ‘alive and no
neurodevelopmental impairment’ vs. ‘died or some neurodevelopmental
impairment.’

Statistics
The primary analysis compared the five-level ordinal outcome described
above across MRI features by calculating adjusted odds ratios (aOR) using
proportional odds regression.26 Two aORs are shown for each feature: one
adjusting for treatment assignment (Epo vs. placebo) and site, and another
adjusting for treatment assignment, site, and HIE severity. In analyses of
the primary outcome, MRS ratios were standardized to rank order prior to
modeling due to a high proportion of zero values among the lactate/NAA
measurements. The secondary outcomes of BSID-III cognitive, language,
and motor scores were compared using generalized linear models also
adjusting for treatment, site, and HIE severity. Adjusted mean differences
and corresponding 95% confidence intervals (CIs) are presented for each
level of MRI injury compared to no injury. Those missing secondary
outcomes due to death or attrition were excluded from secondary
analyses, and the extent of missing data is reported in the text and tables.
There were no missing data on treatment, site, HIE severity, or MRI severity,
pattern, or acuity. To assess the predictive performance of MRI features, we
estimated the sensitivity, specificity, negative predictive value, and positive
predictive value of key MRI features in predicting the binary, secondary
outcome of ‘alive and no neurodevelopmental impairment’ vs. ‘died or
some neurodevelopmental impairment.’ Similarly, raw MRS ratios were
evaluated for prediction using receiver operating characteristic (ROC)

Table 1. Definition of motor outcome severity (i.e., normal, mild, moderate, severe) at age 2 years.

Modified GMFCS scorea

Cerebral palsy (CP) 0 0.5 1 2 3 4 5

None Normal Normal Mild Moderate Severe Severe Severe

Hemi- or Diparetic CP Normal Mild Moderate Moderate Severe Severe Severe

Quadriparetic CP Moderate Moderate Severe Severe Severe Severe Severe
aSee Supplement for details of the Modified Gross Motor Function Classification scoring system.
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curves and associated area under the curve (AUC) analysis. All analyses
evaluating predictive discrimination were unadjusted. Analyses were
performed between August and October 2022 using R Statistical Software
version 4.0.3 (R Foundation for Statistical Computing).

RESULTS
Study cohort
Among 500 infants with presumed HIE who were participants in
HEAL, the severity of encephalopathy was moderate in 77% and
severe in 23%. A total of 474 (95%) infants received a brain MRI
prior to discharge. The characteristics of infants with and without
brain MRI were similar, except that infants without neuroimaging
were more likely to have severe HIE (12/26, 46% vs. 101/474, 21%,
p= 0.003) and to have died within 1 week of birth (20/26, 77% vs.
14/474, 3%, p < 0.001). We excluded four infants with uninterpre-
table scans due to excessive motion or administrative error, and
19 who had no primary outcome data available.
The final study cohort consisted of 451 infants who had an

interpretable MRI study and a primary outcome at 2 years of age.
The median age at neuroimaging was 5.0 days (IQR 4.5–5.8).
Among infants in the study cohort, we assessed the acuity of brain
injury in 408 (91%) infants who received an MRI prior to 8 days of
age. We calculated MRS ratios in infants who had spectra of
sufficient quality for analysis within the thalamus (n= 342, 76%)
and white matter (n= 325, 72%).
About half (51%) of the study cohort had a normal neurode-

velopmental outcome at age 2 years, while the remaining infants
had mild (12%), moderate (14%), or severe (13%) NDI or died (9%).
The median MRI brain injury score was 8 (IQR 2–22). The severity
of the brain injury seen on MRI ranged from none (21%) to mild
(37%), moderate (21%), and severe (21%) injury.

Primary outcome
The MRI injury score (aOR 1.06, 95% CI 1.05, 1.07) and presence of
severe brain injury compared to no injury (aOR 39.6, 95% CI 16.4,
95.6) were associated with worse outcomes as assessed by the
primary outcome measure, both with and without adjusting for
severity of encephalopathy (Table 2); in contrast, infants with mild
or moderate brain injury had similar outcomes to those with no
brain injury. The observed rate of death or any degree of NDI was
32/93 (34%) among infants with no MRI brain injury; 60/169 (36%)
among infants with mild injury; 39/93 (42%) among infants with
moderate injury; and 89/96 (93%) among infants with severe brain
injury. Of the 42 infants who died, all had severe brain injury
except for one child with moderate injury. Of 58 infants with
severe NDI, 49 (85%) had either moderate or severe brain injury.
Of 93 infants with no brain injury on MRI, none died and 61

(66%) had a normal outcome; the remaining infants included 15
(16%) with mild, 13 (14%) with moderate, and 4 (4%) with severe
NDI. Four of the infants with no MRI evidence of brain injury but
who nevertheless developed severe (n= 2) or moderate (n= 2)
NDI were later diagnosed with an underlying genetic condition
that accounted for their abnormal neurodevelopment.
Of 34 infants who had a global injury pattern, 23 (68%) died and

the remaining 11 (32%) had severe NDI. Compared to infants with
no brain injury, those with central gray (aOR 4.3, 95% CI 2.5–7.3) or
peripheral watershed (aOR 4.1, 95% CI 2.3–7.0) also had a higher
rate of adverse outcomes (Table 2). In contrast, the 38 (8%) infants
with only punctate white matter lesions or 29 (6%) with only
atypical lesions did not demonstrate a significantly increased risk
of adverse outcomes when compared to infants with no brain
injury.
Among 408 infants who received an MRI before 8 days of age,

283 (69%) had signs of brain injury; of these 283 infants, the injury
was acute in 93 (33%), subacute in 91 (32%), and both acute and
subacute in 90 (32%). Only nine (3%) infants had evidence of
chronic injuries including volume loss in the white matter (6),

deep gray nuclei (1), or cerebellum (1), and a remote germinal
matrix hemorrhage (1). Compared to infants with no injury, those
with acute injury alone (aOR 6.7, 95% CI 3.5–12.7), subacute injury
alone (aOR 1.9, 95% CI 1.0–3.6), or both acute and subacute injury
(aOR 4.0, 95% CI 2.1–7.7), were all more likely to have adverse
outcomes (Table 2). Finally, both higher lactate/NAA ratios and
lower NAA/creatine ratios were associated with worse outcomes,
in both the thalamus and the parietal white matter (Table 2).

Secondary outcomes
A total of 391 (87%) infants survived to the final endpoint and
received a BSID-III evaluation at a median age of 24.7 months (IQR
23.9–25.9). Cognitive scores were available for 390 infants, while
language and motor scores were available for 385 infants each.
Compared to survivors with no injury on MRI, those with severe
injury had significantly lower BSID-III cognitive (adjusted mean
difference −8.1, 95% CI −10.2, −6.0), language (adjusted mean
difference −7.7, 95% CI −10.3, −5.1), and motor (adjusted mean
difference −9.4, 95% CI −11.7, −7.1) scores. In contrast, infants
with mild or moderate injury did not exhibit significantly different
BSID-III scores than infants with no injury (Fig. 1). Of note, even
infants with no MRI injury had lower mean BSID-III scores than the
general population (mean ± standard deviation: cognitive
93.5 ± 15.0; language 90.7 ± 19.4; motor 97.0 ± 11.9).
Central gray, peripheral watershed, and global injury patterns

were each associated with worse BSID-III cognitive, language, and
motor scores when compared to infants with no injury, while
infants with only punctate white matter lesions or atypical lesions
did not differ significantly in BSID-III scores when compared to
infants with no injury (e-Fig. 2). Mean BSID-III scores did not vary
significantly by the acuity of injury seen on MRI (e-Fig. 3).
Thalamic MRS data were available in 297 of 390 (76%) survivors

who underwent a BSID-III evaluation. The thalamic lactate/NAA
ratio was associated with all three BSID-III scores; i.e., for every 0.10
increase in this ratio, there was an adjusted mean difference of
BSID-III scores as follows: cognitive −0.7, 95% CI −1.1, −0.4;
language −0.8, 95% CI −1.3, −0.3; and motor −1.0, 95% CI −1.4,
−0.5. The lower thalamic NAA/creatine ratio was similarly
associated with lower BSID-III scores (Fig. 2), as were higher
lactate/NAA and lower NAA/creatine ratios measured in the
peripheral white matter (e-Fig. 4). The lactate/NAA ratio in both
the thalamus and peripheral white matter was also associated
with a higher risk of cerebral palsy (e-Table 1). The AUC for all MRS
ratios for predicting the outcome of death or NDI ranged from
0.56 to 0.68 (e-Table 2).
A global pattern of brain injury was the neuroimaging finding

with the highest positive predictive value and highest specificity
for predicting adverse 2-year outcomes, with all 34 affected
infants either dying or developing severe NDI. The presence of any
injury on MRI (i.e., global injury score > 0) had the highest
sensitivity (0.83) for predicting the dichotomous outcome of
death or NDI, while a lactate/NAA ratio in the top quartile in the
thalamus (0.14 to 7.59) or peripheral white matter (0.27 to 5.13)
demonstrated the highest specificity (0.87 and 0.81, respectively)
for death or NDI (Fig. 3). The positive predictive values of all MRI
and MRS features shown in Fig. 3 ranged from 0.48 to 1.00, while
their negative predictive values ranged from 0.57 to 0.66. The
presence of severe HIE on clinical examination had a positive
predictive value of 0.63 and a negative predictive value of 0.59 for
death or NDI.

DISCUSSION
In this large, prospective cohort of infants with HIE who
underwent harmonized neuroimaging in the first week of age,
we found several imaging biomarkers that were associated with
2-year neurodevelopmental outcomes including MRI severity of
the injury, presence of central gray, peripheral white matter or
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Fig. 1 MRI severity of brain injury and Bayley Scales of Infant Development-III (BSID-III) outcomes. BSID-III a cognitive, b language, and
c motor scores at 2 years of age in relation to the severity of MRI brain injury, among survivors of moderate to severe HIE. Blue dots represent
mean value. *Indicates that the 95% CI for the mean difference does not contain 0. Mean difference (95% confidence interval), adjusted for
site, treatment, and HIE severity as follows: cognitive: mild vs. none: -1.7 (-5.0,1.7); moderate vs. none: -1.4 (-3.6,0.9); and severe vs. none: -8.1
(-10.2, -6.0). Language: mild vs. none: -1.2 (-5.7,3.4); moderate vs. none: -1.6 (-4.5,1.3); and severe vs. none: -7.7 (-10.3, -5.1). motor: mild vs.
none: -2.3 (-5.5,0.8); moderate vs. none: -1.9 (-4.1,0.3); and severe vs. none: -9.4 (-11.7,-7.1).
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global patterns of injury, and elevated lactate/NAA and lower
NAA/creatine ratios on MRS. Although severe injury was strongly
correlated with adverse outcomes, infants with mild or moderate
brain injury exhibited rates of NDI and Bayley-III scores that were
similar to infants with no apparent brain injury on MRI.
Clinicians frequently rely on brain MRI findings to counsel

families on their infant’s future prognosis following HIE.
Neonatal neuroimaging retains its predictive value even after
infants have undergone therapeutic hypothermia, and MRS
measurement of lactate/NAA in the thalamus has been shown to
outperform MRI findings in predicting adverse outcomes after
HIE.12,13 We found similarly that thalamic lactate/NAA ratio had a
higher specificity and positive predictive value for an adverse
outcome than any other neuroimaging feature, with the
exception of the global injury pattern. However, the differences
between MRI and MRS predictive values were small, and even
the best MRS predictor (i.e., thalamic lactate/NAA) outperformed
the clinical assessment of the severity of encephalopathy by
only a small margin.
Like others,16,27 we found that neurodevelopmental impairment

may occur in newborns with HIE who have no evidence of brain
injury on neonatal MRI. There are several potential reasons for
adverse neurodevelopmental outcomes in children with normal
neuroimaging. First, HIE does not always occur in isolation, and
the lack of HIE-related injury does not preclude a genetic
abnormality that could predispose the infant to having both HIE
and abnormal neurodevelopment. In our cohort, four subjects
were later diagnosed with genetic abnormalities that could
explain their abnormal neurodevelopmental outcomes despite
an MRI that revealed no injury, and given the lack of systematic
genetic testing, there may be additional genetic abnormalities
that remain unrecognized in our subjects. Second, it is possible
that some subjects will have abnormal NDI for reasons unrelated
to HIE, such as traumatic or other brain injuries during infancy.
Third, neurodevelopment is difficult to measure accurately at the
age of 2 years, and mild delays seen on BSID-III and on neurologic
examination can resolve as children continue to grow.3,28 Finally,
although advanced neuroimaging techniques continue to
improve our detection of HIE-related brain injury, subtle areas of

injury may not always be detected due to insufficient resolution or
residual movement artifacts.
Punctate white matter lesions were seen in 12% of infants

enrolled in a large MRI study of healthy term newborns who had a
normal exam and normal neurodevelopmental outcome.29 The
same pattern of lesions have also been described in newborns
with HIE30,31 but the prognostic implication of this finding had not
been previously evaluated in a modern cohort of infants with HIE.
In our study, the 38 infants with only punctate white matter
lesions on brain MRI had neurodevelopmental outcomes that
were no different from infants with no brain injury on MRI.
The ideal timing of brain MRI for predicting future neurode-

velopment is unknown. Although some studies suggest an MRI
performed in the first week of age may be most predictive,32

others found no difference between early and late neuroima-
ging in predicting outcomes.33 We report the first large-scale
study of HIE that can distinguish acute from subacute injury
because the majority (91%) of subjects received a brain MRI
within the first week of age. We found that both acute and
subacute injuries were associated with adverse outcomes in our
cohort, with acute injury exhibiting the strongest association
compared to no injury.
The fact that a static image of the brain obtained during the first

week of age fails to accurately discriminate between milder forms
of impairment is not surprising, as it does not measure the long
trajectory of development that will continue to occur within the
highly plastic newborn brain. It is well-known that maternal
education is positively associated with better outcomes and that a
disadvantaged socioeconomic status is associated with worse
neurodevelopment after injury in both the term3,7,34 and
preterm35 developing brain. Furthermore, early life exposures in
the home environment are critical to childhood brain growth and
cognitive development.36,37 How much the predictive value of
neuroimaging findings would improve if combined with informa-
tion regarding socioeconomic status and other HIE biomarkers
such as clinical examination, EEG background, presence of
seizures, and blood-based biomarkers of brain injury is beyond
the scope of this study. Given the lack of certainty regarding the
future neurodevelopmental trajectory of many infants with HIE, it
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Fig. 3 Diagnostic AQ11 accuracy of MRI, MRS, and clinical severity of HIE as predictors of death or NDI at 2 years of age, among infants
with moderate to severe HIE. a Any injury is defined as MRI injury score >1; moderate/severe injury is defined as MRI injury score >11. b MRS
measures are defined as top quartile of ratio vs. lower 3 quartiles of ratio values.
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is often important to describe a range of potential outcomes when
counseling families. Because this prognostic uncertainty can be
stressful, recent studies that incorporate feedback from family
members are critically important in guiding clinicians on how best
to approach these difficult discussions.38–40

Strengths of our study include the large sample size,
prospective study design, harmonized neuroimaging protocol,
short time window within which neuroimaging was performed,
and the use of a validated MRI scoring system that could detect
lesions in most regions of the brain.41 Similar to other detailed MRI
scoring systems,9 our scoring system was able to detect a
correlation between brain injury severity and all BSID-III sub-scores
including language scores.11 Limitations of our study include the
lack of long-term neurodevelopmental outcomes especially given
the difficulty in accurately diagnosing mild NDI in a 2-year-old
who may exhibit poor cooperation as opposed to true develop-
mental delay; our inability to examine the predictive accuracy of
early compared to late neuroimaging; and our lack of data
regarding white matter microstructure42 or functional connectiv-
ity.43 Finally, although we assumed that infants in the subacute
injury category experienced pseudonormalization of diffusion
abnormalities prior to the acquisition of MRI, implying that injury
occurred days prior to the time of birth, it is also possible that the
diffusion was never abnormal and that some of the T1- and T2-
weighted signal abnormalities in these infants represent edema as
opposed to true injury.
In conclusion, several features on neonatal brain MRI and MRS

were associated with worse neurodevelopmental outcomes after
HIE. Although the finding of severe or global injury strongly
predicts death or severe NDI, for infants with milder forms of brain
injury, a range of outcomes are possible. Additional studies may
improve prognostication by incorporating multiple modalities of
biomarkers of brain injury.
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second half of 2023), a final study data set will be accessible via a supervised private
data enclave managed by the National Institute of Neurological Disorder and Stroke
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