221 research outputs found
Detection of Spectral Variations of Anomalous Microwave Emission with QUIJOTE and C-BASS
Anomalous Microwave Emission (AME) is a significant component of Galactic
diffuse emission in the frequency range -GHz and a new window into
the properties of sub-nanometre-sized grains in the interstellar medium. We
investigate the morphology of AME in the diameter
Orionis ring by combining intensity data from the QUIJOTE experiment at ,
, and GHz and the C-Band All Sky Survey (C-BASS) at GHz,
together with 19 ancillary datasets between and GHz. Maps of
physical parameters at resolution are produced through Markov Chain
Monte Carlo (MCMC) fits of spectral energy distributions (SEDs), approximating
the AME component with a log-normal distribution. AME is detected in excess of
at degree-scales around the entirety of the ring along
photodissociation regions (PDRs), with three primary bright regions containing
dark clouds. A radial decrease is observed in the AME peak frequency from
GHz near the free-free region to GHz in the outer
regions of the ring, which is the first detection of AME spectral variations
across a single region. A strong correlation between AME peak frequency,
emission measure and dust temperature is an indication for the dependence of
the AME peak frequency on the local radiation field. The AME amplitude
normalised by the optical depth is also strongly correlated with the radiation
field, giving an overall picture consistent with spinning dust where the local
radiation field plays a key role.Comment: 19 pages, 7 figures, accepted for publication by MNRA
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
The QUIJOTE experiment: project status and first scientific results
We present the current status of the QUIJOTE (Q-U-I JOint TEnerife) experiment, a new polarimeter with the aim of characterizing the polarization of the Cosmic Microwave Background, and other galactic or extra-galactic physical processes that emit in microwaves in the frequency range 10–42 GHz, and at large angular scales (around 1 degree resolution). The experiment has been designed to reach the required sensitivity to detect a primordial gravitational wave component in the CMB, provided its tensor-to-scalar ratio is larger than r ∼ 0.05. The project consists of two telescopes and three instruments which will survey a large sky area from the Teide Observatory to provide I, Q and U maps of high sensitivity. The first QUIJOTE instrument, known as Multi-Frequency Instrument (MFI), has been surveying the northern sky in four individual frequencies between 10 and 20 GHz since November 2012, providing data with an average sensitivity of 80 µK beam−1 in Q and U in a region of 20, 000 square-degrees. The second instrument, or Thirty-GHz Instrument (TGI), is currently undergoing the commissioning phase, and the third instrument, or Forty-GHz Instrument (FGI), is in the final fabrication phase. Finally, we describe the first scientific results obtained with the MFI. Some specific regions, mainly along the Galactic plane, have been surveyed to a deeper depth, reaching sensitivities of around 40 µK beam−1. We present new upper limits on the polarization of the anomalous dust emission, resulting from these data, in the Perseus molecular complex and in the W43 molecular complex
The status of the Quijote multi-frequency instrument
The QUIJOTE-CMB project has been described in previous publications. Here we present the current status of the QUIJOTE multi-frequency instrument (MFI) with five separate polarimeters (providing 5 independent sky pixels): two which operate at 10-14 GHz, two which operate at 16-20 GHz, and a central polarimeter at 30 GHz. The optical arrangement includes 5 conical corrugated feedhorns staring into a dual reflector crossed-draconian system, which provides optimal cross-polarization properties (designed to be < -35 dB) and symmetric beams. Each horn feeds a novel cryogenic on-axis rotating polar modulator which can rotate at a speed of up to 1 Hz. The science driver for this first instrument is the characterization of the galactic emission. The polarimeters use the polar modulator to derive linear polar parameters Q, U and I and switch out various systematics. The detection system provides optimum sensitivity through 2 correlated and 2 total power channels. The system is calibrated using bright polarized celestial sources and through a secondary calibration source and antenna. The acquisition system, telescope control and housekeeping are all linked through a real-time gigabit Ethernet network. All communication, power and helium gas are passed through a central rotary joint. The time stamp is synchronized to a GPS time signal. The acquisition software is based on PLCs written in Beckhoffs TwinCat and ethercat. The user interface is written in LABVIEW. The status of the QUIJOTE MFI will be presented including pre-commissioning results and laboratory testing
Protocolo de tratamiento del edema macular quístico asociado a retinosis pigmentaria y otras distrofias hereditarias de la retina
Producción CientíficaInherited retinal dystrophies (IRD) are the leading cause of legal blindness in the wor-king population. Cystic macular edema (CME) is one of the treatable causes of visual loss,affecting up to 50% of the patients.A bibliographic review has been carried out combining “inherited retinal dystrophy”, “reti-nitis pigmentosa”, “macular edema” and a diagnostic-therapeutic protocol according to thelevels of evidence and recommendations of the “US Agency for Healthcare Research andQuality”.This protocol has been discussed in the monthly meetings of the XAREA DHR group withthe participation of more than 25 experts, creating a consensus document.The etiology of CME is multifactorial: dysfunction of the blood-retinal barrier, retinal pig-ment epithelium, and Müller cells, inflammation, and vitreous traction.OCT is the test of choice for the diagnosis and follow-up of CME associated with IRD.The drugs with the highest degree of scientific evidence are carbonic anhydrase inhibitors(IAC). Intravitreal corticosteroids, anti-VEGF, and vitrectomy with peeling of the internallimiting membrane do not have sufficient evidence.A treatment scheme is proposed for the CME in IRD in adults, another for pediatric patientsand an another for IRD and cataract surgery.Oral and topical IACs are effective in the treatment of CME secondary to IRD. Treatment withcorticosteroids, anti-VEGF, and vitrectomy are second-line options. Randomized clinicaltrials are required to establish the therapeutic scale in these patients
WW Domains of the Yes-Kinase-Associated-Protein (YAP) Transcriptional Regulator Behave as Independent Units with Different Binding Preferences for PPxY Motif-Containing Ligands
YAP is a WW domain-containing effector of the Hippo tumor suppressor pathway, and the object of heightened interest as a potent oncogene and stemness factor. YAP has two major isoforms that differ in the number of WW domains they harbor. Elucidating the degree of co-operation between these WW domains is important for a full understanding of the molecular function of YAP. We present here a detailed biophysical study of the structural stability and binding properties of the two YAP WW domains aimed at investigating the relationship between both domains in terms of structural stability and partner recognition. We have carried out a calorimetric study of the structural stability of the two YAP WW domains, both isolated and in a tandem configuration, and their interaction with a set of functionally relevant ligands derived from PTCH1 and LATS kinases. We find that the two YAP WW domains behave as independent units with different binding preferences, suggesting that the presence of the second WW domain might contribute to modulate target recognition between the two YAP isoforms. Analysis of structural models and phage-display studies indicate that electrostatic interactions play a critical role in binding specificity. Together, these results are relevant to understand of YAP function and open the door to the design of highly specific ligands of interest to delineate the functional role of each WW domain in YAP signaling.This work was supported by the Spanish Ministry of Education and Science [grant BIO2009-13261-CO2], the Spanish Ministry of Economy and Competitivity [grant BIO2012-39922-CO2] including FEDER (European Funds for Regional Development) funds and the Governement of Andalusia [grant CVI-5915]. Marius Sudol was supported by PA Breast Cancer Coalition Grants (#60707 and #920093) plus the Geisinger Clinic
Exploring cosmic origins with CORE : Inflation
We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60-600 GHz. CORE will have an aggregate noise sensitivity of 1.7 mu K.arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series "Exploring Cosmic Origins with CORE." We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10(-3) level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10(-3) level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the f(NL)(local) <1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.Peer reviewe
- …