6 research outputs found

    Estimation of evapotranspiration at different scales using traditional and remote sensing techniques

    Full text link
    Water and its use or loss is critically important in the Southwestern United States where population growth is rapidly approaching the limit of available drinking water. It is therefore important to gain an understanding of water use by native and non-native species to ensure that sufficient water remains to maintain native ecosystems. This study examines water loss by the non-native tree species Tamarix ramosissima (saltcedar) at the leaf, branch and whole stand level using traditional methodologies as well as remote sensing. Transpiration measurements were estimated for open and closed stands of Tamarix ramosissima (saltcedar) at two sites within a desert riparian corridor on the lower Virgin River floodplain, southern Nevada. One site (open and closed stands) was within 10 meters of the river channel (River site), and the other site (open and closed stands) was more than 50 meters from the river channel near a Bowen ratio tower (Bowen site). At the leaf level, mid-morning stomatal conductances in trees from the River site were nearly three times higher than the Bowen site for all dates during the summer growing seaSon At the branch level, the results from sap flow measurements were not as clear-cut. While mean daily, accumulated sap flows were higher for the River site in comparison to the Bowen site, these differences were only significant for one date for each stand density. A comparison of the April 1994 and April 1996 remotely sensed data demonstrate the marked negative impact of a flood-induced channel diversion on downstream transpiration. Additionally, it was quite evident from the ET maps that even within apparently homogeneous closed stands there is a high degree of variability in transpiration

    Swimming in the NevCAN Data Stream

    Full text link
    Join us for a presentation on the Nevada Climate Eco-hydrological Assessment Network (NevCAN) which is currently acquiring a suite of atmospheric, soil and plat measurements to assess the impact of climate variability on hydrological and ecosystem processes and function

    Monitoring Vegetation Phenological Cycles in Two Different Semi-Arid Environmental Settings Using a Ground-Based NDVI System: A Potential Approach to Improve Satellite Data Interpretation

    No full text
    In semi-arid environmental settings with sparse canopy covers, obtaining remotely sensed information on soil and vegetative growth characteristics at finer spatial and temporal scales than most satellite platforms is crucial for validating and interpreting satellite data sets. In this study, we used a ground-based NDVI system to provide continuous time series analysis of individual shrub species and soil surface characteristics in two different semi-arid environmental settings located in the Great Basin (NV, USA). The NDVI system was a dual channel SKR-1800 radiometer that simultaneously measured incident solar radiation and upward reflectance in two broadband red and near-infrared channels comparable to Landsat-5 TM band 3 and band 4, respectively. The two study sites identified as Spring Valley 1 site (SV1) and Snake Valley 1 site (SNK1) were chosen for having different species composition, soil texture and percent canopy cover. NDVI time-series of greasewood (Sarcobatus vermiculatus) from the SV1 site allowed for clear distinction between the main phenological stages of the entire growing season during the period from January to November, 2007. NDVI time series values were significantly different between sagebrush (Artemisia tridentata) and rabbitbrush (Chrysothamnus viscidiflorus) at SV1 as well as between the two bare soil types at the two sites. Greasewood NDVI from the SNK1 site produced significant correlations with chlorophyll index (r = 0.97), leaf area index (r = 0.98) and leaf xylem water potential (r = 0.93). Whereas greasewood NDVI from the SV1 site produced lower correlations (r = 0.89, r = 0.73), or non significant correlations (r = 0.32) with the same parameters, respectively. Total percent cover was estimated at 17.5% for SV1 and at 63% for SNK1. Results from this study indicated the potential capabilities of using this ground-based NDVI system to extract spatial and temporal details of soil and vegetation optical properties not possible with satellite derived NDVI

    Elevated CO2 increases productivity and invasive species success in an arid ecosystem

    Full text link
    Arid ecosystems, which occupy about 20% of the earth\u27s terrestrial surface area, have been predicted to be one of the most responsive ecosystem types to elevated atmospheric CO2 and associated global climate change. Here we show, using free-air CO2 enrichment (FACE) technology in an intact Mojave Desert ecosystem4, that new shoot production of a dominant perennial shrub is doubled by a 50% increase in atmospheric CO2 concentration in a high rainfall year. However, elevated CO 2 does not enhance production in a drought year. We also found that above-ground production and seed rain of an invasive annual grass increases more at elevated CO2 than in several species of native annuals. Consequently, elevated CO2 might enhance the long-term success and dominance of exotic annual grasses in the region. This shift in species composition in favour of exotic annual grasses, driven by global change, has the potential to accelerate the fire cycle, reduce biodiversity and alter ecosystem function in the deserts of western North America

    Hypoplastic Left Heart Syndrome

    No full text
    corecore