506 research outputs found

    The Influence of Redox Conditions on the Seismic Properties of Polycrystalline Olivine

    Get PDF
    Eight olivine specimens were fabricated by use of a solgel method and hot-pressing at 1200 degrees Centigrade and 300 megapascals (MPa) inside of welded Pt capsules. Each hot-pressed specimen was then recovered, precision ground, and wrapped in Pt, Ni or NiFe foil to vary oxygen fugacity (fO2) during the subsequent forced torsional oscillation measurements. Mechanical testing was conducted at 10 oscillation periods between 1 and 1000 seconds, at a confining pressure of 200 MPa, during a slow staged-cooling from a maximum temperature of 1200 degrees Centigrade down to room temperature. After mechanical testing, each specimen was axially sectioned and EBSD (Electron BackScatter Diffraction) was used for the determination of the representative grain size, and grain size distribution of each sample. In addition, each longitudinal section was mapped via FTIR (Fourier Transform Infrared Spectroscopy) to determine the spatial distribution and concentrations of chemically bound and molecular water. Amongst these eight specimens, chemically bound water contents were observed to vary between 0 and 1150 atom parts per million (ppm) H/Si, and molecular water concentrations varied between 0 and 245 atom ppm H/Si. Our forced-oscillation results demonstrate that the measured magnitude of anelastic relaxation within the experimental window of oscillation periods is unrelated to the water content. Rather, a relationship was observed between the magnitude of anelastic relaxation and the prevailing redox conditions, which is influenced by the choice of metal sleeving used during the mechanical test. Further, regardless of water content or metal sleeving, each specimen exhibits coupled variations in shear modulus and dissipation within the observational window, indicative of high-temperature background behavior, that can be described by a Burgers-type model. During initial fitting of the Burgers models, the unrelaxed shear modulus at a reference temperature of 900C (elastic unloading/reloading shear modulus G (sub UR)) and the temperature derivative of the unrelaxed shear modulus (dGU/dT), were treated as adjustable parameters. For all Fe-bearing olivine samples we observe deficits of G (sub UR) and increased values of dGU/dT, relative to the expected elastic (anharmonic) behavior for Fo (Forsterite content percentage) (sub 90) olivine. This behavior is indicative of anelastic relaxation occurring at shorter periods than observable within the window of oscillation periods used in the mechanical test. Moving towards a comprehensive and seismologically applicable Burgers model, which includes this newly observed effect of redox conditions on anelastic relaxation, we will present our progress on reconciling truly anharmonic and elastic behavior of Fo (sub 90) olivine with our observed forced-oscillation data

    The Effect of Redox Conditions on Seismic Waves in Iron-Bearing Olivine: Implications for Understanding Planetary Interiros Through Seismilogy

    Get PDF
    Seismic data, inclusive of velocities and attenuation, can be utilized to elucidate the physical state of planetary interiors]. However, numerous micromechanical factors have been either experimentally demonstrated, or theoretically considered, to affect the propagation and dissipation of seismic energy within crystalline solids - including, but not limited to, changes in grain size, temperature, melt fraction, pressure and dislocation density. Thus, observed variations in seismic wave speeds and attenuation may be used to ultimately map variations in physical properties, such as those listed above, within planetary bodies. But, in order to complete a successful inversion of seismic data into representations of physical properties, a first requirement is to obtain a fundamental laboratory based understanding of how each of these possible factors individually influences seismic waves. Here we conduct an experimental study with the initial objective to further understand one of the most commonly invoked, yet least studied, mechanisms that could alter intrinsic seismic wave attenuation: water content (occurring as chemically-bound hydroxyl). The historical basis for determining the effect of water on seismic properties was established predominantly through analogy with large-strain creep experiments conducted on olivine under water-saturated conditions. While these deformation experiments routinely demonstrate a weakening of olivine in the presence of water, they represent a fundamentally different deformation regime in comparison to the microstrains experienced due to a passing seismic wave. Thus, in order to directly assess the effects of water on seismic properties, small-strain experiments are required. Substantially modified seismic properties in the presence of water have been observed previously at low strains and low frequencies, but only in a single exploratory study conducted under water-saturated conditions. Thus, to properly test the theoretical predictions we conducted a systematic study of the seismic properties of olivine using low-frequency torsional oscillation on aggregates containing varying concentrations of bound hydroxyl, for the first time at under saturated conditions

    Transcranial direct current stimulation of right dorsolateral prefrontal cortex does not affect model-based or model-free reinforcement learning in humans

    Get PDF
    There is broad consensus that the prefrontal cortex supports goal-directed, model-based decision-making. Consistent with this, we have recently shown that model-based control can be impaired through transcranial magnetic stimulation of right dorsolateral prefrontal cortex in humans. We hypothesized that an enhancement of model-based control might be achieved by anodal transcranial direct current stimulation of the same region. We tested 22 healthy adult human participants in a within-subject, double-blind design in which participants were given Active or Sham stimulation over two sessions. We show Active stimulation had no effect on model-based control or on model-free ('habitual') control compared to Sham stimulation. These null effects are substantiated by a power analysis, which suggests that our study had at least 60% power to detect a true effect, and by a Bayesian model comparison, which favors a model of the data that assumes stimulation had no effect over models that assume stimulation had an effect on behavioral control. Although we cannot entirely exclude more trivial explanations for our null effect, for example related to (faults in) our experimental setup, these data suggest that anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex does not improve model-based control, despite existing evidence that transcranial magnetic stimulation can disrupt such control in the same brain region

    The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study

    Get PDF
    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses

    Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain

    Get PDF
    Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results: In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.Bernhard T Baune, Carsten Konrad, Dominik Grotegerd, Thomas Suslow, Eva Birosova, Patricia Ohrmann, Jochen Bauer, Volker Arolt, Walter Heindel, Katharina Domschke, Sonja Schöning, Astrid V Rauch, Christina Uhlmann, Harald Kugel and Udo Dannlowsk

    Establishment of Protein Delivery Systems Targeting Podocytes

    Get PDF
    Podocytes are uniquely structured cells that are critical to the kidney filtration barrier. Their anatomic location on the outer side of the glomerular capillaries expose podocytes to large quantities of both plasma and urinary components and thus are reachable for drug delivery. Recent years have made clear that interference with podocyte-specific disease pathways can modulate glomerular function and influence severity and progression of glomerular disease.Here, we describe studies that show efficient transport of proteins into the mammalian cells mouse 3T3 fibroblasts and podocytes, utilizing an approach termed profection. We are using synthetic lipid structures that allow the safe packing of proteins or antibodies resulting in the subsequent delivery of protein into the cell. The uptake of lipid coated protein is facilitated by the intrinsic characteristic of cells such as podocytes to engulf particles that are physiologically retained in the extracellular matrix. Profection of the restriction enzyme MunI in 3T3 mouse fibroblasts caused an increase in DNA degradation. Moreover, purified proteins such as beta-galactosidase and the large GTPase dynamin could be profected into podocytes using two different profection reagents with the success rate of 95-100%. The delivered beta-galactosidase enzyme was properly folded and able to cleave its substrate X-gal in podocytes. Diseased podocytes are also potential recipients of protein cargo as we also delivered fluorophore labeled IgG into puromycin treated podocytes. We are currently optimizing our protocol for in vivo profection.Protein transfer is developing as an exciting tool to study and target highly differentiated cells such as podocytes

    Thermal Nature of Mantle Upwellings Below the Ibero-Western Maghreb Region Inferred From Teleseismic Tomography

    Get PDF
    ©2019. American Geophysical Union. All Rights Reserved. Independent models of P wave and S wave velocity anomalies in the mantle derived from seismic tomography help to distinguish thermal signatures from those of partial melt, volatiles, and compositional variations. Here we use seismic data from SW Europe and NW Africa, spanning the region between the Pyrenees and the Canaries, in order to obtain a new S-SKS relative arrival-time tomographic model of the upper mantle below Iberia, Western Morocco, and the Canaries. Similar to previous P wave tomographic results, the S wave model provides evidence for (1) subvertical upper-mantle low-velocity structures below the Canaries, Atlas Ranges, and Gibraltar Arc, which are interpreted as mantle upwellings fed by a common lower-mantle source below the Canaries; and (2) two low-velocity anomalies below the eastern Rif and Betics that we interpret as the result of the interaction between quasi-toroidal mantle flow induced by the Gibraltar slab and the mantle upwelling behind it. The analysis of teleseismic P wave and S wave arrival-time residuals and the conversion of the low-velocity anomalies to temperature variations suggest that the upwellings in the upper mantle below the Canaries, Atlas Ranges, and Gibraltar Arc system may be solely thermal in nature, with temperature excesses in the range ~100–350 °C. Our results also indicate that local partial melting can be present at lithospheric depths, especially below the Atlas Ranges. The locations of thermal mantle upwellings are in good agreement with those of thinned lithosphere, moderate to high heat-flow measurements, and recent magmatic activity at the surface

    Effect of Age on Variability in the Production of Text-Based Global Inferences

    Get PDF
    As we age, our differences in cognitive skills become more visible, an effect especially true for memory and problem solving skills (i.e., fluid intelligence). However, by contrast with fluid intelligence, few studies have examined variability in measures that rely on one’s world knowledge (i.e., crystallized intelligence). The current study investigated whether age increased the variability in text based global inference generation–a measure of crystallized intelligence. Global inference generation requires the integration of textual information and world knowledge and can be expressed as a gist or lesson. Variability in generating two global inferences for a single text was examined in young-old (62 to 69 years), middle-old (70 to 76 years) and old-old (77 to 94 years) adults. The older two groups showed greater variability, with the middle elderly group being most variable. These findings suggest that variability may be a characteristic of both fluid and crystallized intelligence in aging
    corecore