28 research outputs found

    Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding

    Full text link
    [EN] BACKGROUNDAroma profile and carotenoids content of melon flesh are two important aspects influencing the quality of this fruit that have been characterized using only selected genotypes. However, the extant variability of the whole species remains unknown. RESULTSA complete view of the volatile/carotenoid profiles of melon flesh was obtained analyzing 71 accessions, representing the whole diversity of the species. Gas chromatography-mass spectrometry and high-performance liquid chromatography were used to analyze 200 volatile compounds and five carotenoids. Genotypes were classified into two main clusters (high/low aroma), but with a large diversity of differential profiles within each cluster, consistent with the ripening behavior, flesh color and proposed evolutionary and breeding history of the different horticultural groups. CONCLUSIONOur results highlight the huge amount of untapped aroma diversity of melon germplasm, especially of non-commercial types. Also, landraces with high nutritional value with regard to carotenoids have been identified. All this knowledge will encourage melon breeding, facilitating the selection of the genetic resources more appropriate to develop cultivars with new aromatic profiles or to minimize the impact of breeding on melon quality. The newly characterized sources provide the basis for further investigations into specific genes/alleles contributing to melon flesh quality. (c) 2018 Society of Chemical IndustryWe would like to thank the metabolomics lab at the IBMCP for technical support. This work was supported by ERA-PG project (MELRIP: GEN2006-27773-C2-2-E), Plant KBBE project (SAFQIM: PIM2010PKB-00691), Accion Complementaria ACOMP/2012/173 and ACOMP/2013/141, and Ministerio de Economia y Competitividad AGL2014-53398-C2-2-R & AGL2010-20858 (jointly funded by FEDER).Esteras Gómez, C.; Rambla Nebot, JL.; Sánchez, G.; López-Gresa, MP.; González-Mas, M.; Fernández-Trujillo, J.; Belles Albert, JM.... (2018). Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. Journal of the Science of Food and Agriculture. 98(10):3915-3925. https://doi.org/10.1002/jsfa.8909S391539259810Pitrat, M. (2016). Melon Genetic Resources: Phenotypic Diversity and Horticultural Taxonomy. Plant Genetics and Genomics: Crops and Models, 25-60. doi:10.1007/7397_2016_10Pitrat, M. (s. f.). Melon. Vegetables I, 283-315. doi:10.1007/978-0-387-30443-4_9Esteras, C., Formisano, G., Roig, C., Díaz, A., Blanca, J., Garcia-Mas, J., … Picó, B. (2013). SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 126(5), 1285-1303. doi:10.1007/s00122-013-2053-5Leida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., … Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16(1). doi:10.1186/s12863-015-0183-2Gonda, I., Burger, Y., Schaffer, A. A., Ibdah, M., Tadmor, Y., Katzir, N., … Lewinsohn, E. (2016). Biosynthesis and perception of melon aroma. Biotechnology in Flavor Production, 281-305. doi:10.1002/9781118354056.ch11Allwood, J. W., Cheung, W., Xu, Y., Mumm, R., De Vos, R. C. H., Deborde, C., … Goodacre, R. (2014). Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry, 99, 61-72. doi:10.1016/j.phytochem.2013.12.010Bernillon, S., Biais, B., Deborde, C., Maucourt, M., Cabasson, C., Gibon, Y., … Moing, A. (2012). Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics, 9(1), 57-77. doi:10.1007/s11306-012-0429-1Aubert, C., & Pitrat, M. (2006). Volatile Compounds in the Skin and Pulp of Queen Anne’s Pocket Melon. Journal of Agricultural and Food Chemistry, 54(21), 8177-8182. doi:10.1021/jf061415sObando-Ulloa, J. M., Moreno, E., García-Mas, J., Nicolai, B., Lammertyn, J., Monforte, A. J., & Fernández-Trujillo, J. P. (2008). Climacteric or non-climacteric behavior in melon fruit. Postharvest Biology and Technology, 49(1), 27-37. doi:10.1016/j.postharvbio.2007.11.004Verzera, A., Dima, G., Tripodi, G., Ziino, M., Lanza, C. M., & Mazzaglia, A. (2010). Fast Quantitative Determination of Aroma Volatile Constituents in Melon Fruits by Headspace–Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry. Food Analytical Methods, 4(2), 141-149. doi:10.1007/s12161-010-9159-zCondurso, C., Verzera, A., Dima, G., Tripodi, G., Crinò, P., Paratore, A., & Romano, D. (2012). Effects of different rootstocks on aroma volatile compounds and carotenoid content of melon fruits. Scientia Horticulturae, 148, 9-16. doi:10.1016/j.scienta.2012.09.015Escribano, S., & Lázaro, A. (2012). Sensorial characteristics of Spanish traditional melon genotypes: has the flavor of melon changed in the last century? European Food Research and Technology, 234(4), 581-592. doi:10.1007/s00217-012-1661-7Pang, X., Chen, D., Hu, X., Zhang, Y., & Wu, J. (2012). Verification of Aroma Profiles of Jiashi Muskmelon Juice Characterized by Odor Activity Value and Gas Chromatography–Olfactometry/Detection Frequency Analysis: Aroma Reconstitution Experiments and Omission Tests. Journal of Agricultural and Food Chemistry, 60(42), 10426-10432. doi:10.1021/jf302373gGonda, I., Lev, S., Bar, E., Sikron, N., Portnoy, V., Davidovich-Rikanati, R., … Lewinsohn, E. (2013). Catabolism ofl-methionine in the formation of sulfur and other volatiles in melon (Cucumis meloL.) fruit. The Plant Journal, 74(3), 458-472. doi:10.1111/tpj.12149Lignou, S., Parker, J. K., Oruna-Concha, M. J., & Mottram, D. S. (2013). Flavour profiles of three novel acidic varieties of muskmelon (Cucumis melo L.). Food Chemistry, 139(1-4), 1152-1160. doi:10.1016/j.foodchem.2013.01.068Vallone, S., Sivertsen, H., Anthon, G. E., Barrett, D. M., Mitcham, E. J., Ebeler, S. E., & Zakharov, F. (2013). An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group) during ripening. Food Chemistry, 139(1-4), 171-183. doi:10.1016/j.foodchem.2012.12.042Verzera, A., Dima, G., Tripodi, G., Condurso, C., Crinò, P., Romano, D., … Paratore, A. (2014). Aroma and sensory quality of honeydew melon fruits (Cucumis melo L. subsp. melo var. inodorus H. Jacq.) in relation to different rootstocks. Scientia Horticulturae, 169, 118-124. doi:10.1016/j.scienta.2014.02.008BAI, X., TENG, L., LÜ, D., & QI, H. (2014). Co-Treatment of EFF and 1-MCP for Enhancing the Shelf-Life and Aroma Volatile Compounds of Oriental Sweet Melons (Cucumis melo var. makuwa Makino). Journal of Integrative Agriculture, 13(1), 217-227. doi:10.1016/s2095-3119(13)60372-xChen, H., Cao, S., Jin, Y., Tang, Y., & Qi, H. (2016). The Relationship between CmADHs and the Diversity of Volatile Organic Compounds of Three Aroma Types of Melon (Cucumis melo). Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00254Guo, X., Xu, J., Cui, X., Chen, H., & Qi, H. (2017). iTRAQ-based Protein Profiling and Fruit Quality Changes at Different Development Stages of Oriental Melon. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-0977-7Spadafora, N. D., Machado, I., Müller, C. T., Pintado, M., Bates, M., & Rogers, H. J. (2015). PHYSIOLOGICAL, METABOLITE AND VOLATILE ANALYSIS OF CUT SIZE IN MELON DURING POSTHARVEST STORAGE. Acta Horticulturae, (1071), 787-793. doi:10.17660/actahortic.2015.1071.104Chaparro-Torres, L. A., Bueso, M. C., & Fernández-Trujillo, J. P. (2015). Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit. Journal of the Science of Food and Agriculture, 96(7), 2352-2365. doi:10.1002/jsfa.7350Fredes, A., Sales, C., Barreda, M., Valcárcel, M., Roselló, S., & Beltrán, J. (2016). Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography–mass spectrometry determination. Food Chemistry, 190, 689-700. doi:10.1016/j.foodchem.2015.06.011Zeinalipour, N., Haghbeen, K., Tavassolian, I., Karkhane, A. A., & Ghashghaie, J. (2017). Enhanced production of 3-methylthiopropionic ethyl ester in native Iranian Cucumis melo L. Group dudaim under regulated deficit irrigation. Journal of Functional Foods, 30, 56-62. doi:10.1016/j.jff.2016.12.019Amaro, A. L., Spadafora, N. D., Pereira, M. J., Dhorajiwala, R., Herbert, R. J., Müller, C. T., … Pintado, M. (2018). Multitrait analysis of fresh-cut cantaloupe melon enables discrimination between storage times and temperatures and identifies potential markers for quality assessments. Food Chemistry, 241, 222-231. doi:10.1016/j.foodchem.2017.08.050Freilich, S., Lev, S., Gonda, I., Reuveni, E., Portnoy, V., Oren, E., … Katzir, N. (2015). Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0449-xGranell, A., & Rambla, J. L. (2013). Biosynthesis of Volatile Compounds. The Molecular Biology and Biochemistry of Fruit Ripening, 135-161. doi:10.1002/9781118593714.ch6Gur, A., Gonda, I., Portnoy, V., Tzuri, G., Chayut, N., Cohen, S., … Katzir, N. (2016). Genomic Aspects of Melon Fruit Quality. Plant Genetics and Genomics: Crops and Models, 377-408. doi:10.1007/7397_2016_29Ibdah, M., Azulay, Y., Portnoy, V., Wasserman, B., Bar, E., Meir, A., … Katzir, N. (2006). Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry, 67(15), 1579-1589. doi:10.1016/j.phytochem.2006.02.009Walter, M. H., Floss, D. S., & Strack, D. (2010). Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta, 232(1), 1-17. doi:10.1007/s00425-010-1156-3Burger, Y., Sa’ar, U., Paris, H., Lewinsohn, E., Katzir, N., Tadmor, Y., & Schaffer, A. (2006). Genetic variability for valuable fruit quality traits in Cucumis melo. Israel Journal of Plant Sciences, 54(3), 233-242. doi:10.1560/ijps_54_3_233Ren, Y., Bang, H., Lee, E. J., Gould, J., Rathore, K. S., Patil, B. S., & Crosby, K. M. (2012). Levels of phytoene and β-carotene in transgenic honeydew melon (Cucumis melo L. inodorus). Plant Cell, Tissue and Organ Culture (PCTOC), 113(2), 291-301. doi:10.1007/s11240-012-0269-8Chayut, N., Yuan, H., Ohali, S., Meir, A., Yeselson, Y., Portnoy, V., … Tadmor, Y. (2015). A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0661-8Saladié, M., Cañizares, J., Phillips, M. A., Rodriguez-Concepcion, M., Larrigaudière, C., Gibon, Y., … Garcia-Mas, J. (2015). Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics, 16(1). doi:10.1186/s12864-015-1649-3Fergany, M., Kaur, B., Monforte, A. J., Pitrat, M., Rys, C., Lecoq, H., … Dhaliwal, S. S. (2010). Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genetic Resources and Crop Evolution, 58(2), 225-243. doi:10.1007/s10722-010-9564-6Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992Shalit, M., Katzir, N., Tadmor, Y., Larkov, O., Burger, Y., Shalekhet, F., … Lewinsohn, E. (2001). Acetyl-CoA:  Alcohol Acetyltransferase Activity and Aroma Formation in Ripening Melon Fruits. Journal of Agricultural and Food Chemistry, 49(2), 794-799. doi:10.1021/jf001075pPortnoy, V., Benyamini, Y., Bar, E., Harel-Beja, R., Gepstein, S., Giovannoni, J. J., … Katzir, N. (2008). The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Molecular Biology, 66(6), 647-661. doi:10.1007/s11103-008-9296-6Raghami, M., López-Sesé, A. I., Hasandokht, M. R., Zamani, Z., Moghadam, M. R. F., & Kashi, A. (2013). Genetic diversity among melon accessions from Iran and their relationships with melon germplasm of diverse origins using microsatellite markers. Plant Systematics and Evolution, 300(1), 139-151. doi:10.1007/s00606-013-0866-yShu, C.-K., Chung, H. L., & Lawrence, B. M. (1995). Volatile Components of Pocket Melon (Cucumis meloL. ssp.dudaimNaud.). Journal of Essential Oil Research, 7(2), 179-181. doi:10.1080/10412905.1995.969849

    Consenso colombiano de atención, diagnóstico y manejo de la infección por SARS-COV-2/COVID-19 en establecimientos de atención de la salud Recomendaciones basadas en consenso de expertos e informadas en la evidencia

    Get PDF
    The “Asociación Colombiana de Infectología” (ACIN) and the “Instituto de Evaluación de Nuevas Tecnologías de la Salud” (IETS) created a task force to develop recommendations for Covid 19 health care diagnosis, management and treatment informed, and based, on evidence. Theses reccomendations are addressed to the health personnel on the Colombian context of health services. © 2020 Asociacion Colombiana de Infectologia. All rights reserved

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Postharvest firmness behaviour of near-isogenic lines of melon

    No full text
    In two consecutive seasons the firmness of 13¿15 near-isogenic lines (NILs) of melons (Cucumis melo L.) was followed during storage at 21 °C. Firmness was measured using non-destructive compression of whole melon fruit to a predefined compression distance of 2 mm. The same individuals (about 6 per near-isogenic line) were repeatedly measured over time. Integral statistical analysis of all individuals using non-linear mixed effects regression analysis revealed that the rate constant of the exponential firmness decrease was the same for all NILs irrespective of their differences in introgression in linkage III or in the other two linkage groups. The only difference observed was found in the (asymptotic) end value of softening. That would imply that the process of softening is very similar, although over a different range for each melon. Melons from some NILs were firmer and showed a higher end value of softening than those of other NILs. The percentage variance accounted for () was 94% (523 observations) for the 2005 season and 85% (829 observations) for the 2006 season. A small variation in asymptotic end value together with a low end value as to ascertain edibility could be a good indication of the usefulness of certain NILs for commercial application

    Postharvest firmness behaviour of near-isogenic lines of melon

    No full text
    In two consecutive seasons the firmness of 13¿15 near-isogenic lines (NILs) of melons (Cucumis melo L.) was followed during storage at 21 °C. Firmness was measured using non-destructive compression of whole melon fruit to a predefined compression distance of 2 mm. The same individuals (about 6 per near-isogenic line) were repeatedly measured over time. Integral statistical analysis of all individuals using non-linear mixed effects regression analysis revealed that the rate constant of the exponential firmness decrease was the same for all NILs irrespective of their differences in introgression in linkage III or in the other two linkage groups. The only difference observed was found in the (asymptotic) end value of softening. That would imply that the process of softening is very similar, although over a different range for each melon. Melons from some NILs were firmer and showed a higher end value of softening than those of other NILs. The percentage variance accounted for () was 94% (523 observations) for the 2005 season and 85% (829 observations) for the 2006 season. A small variation in asymptotic end value together with a low end value as to ascertain edibility could be a good indication of the usefulness of certain NILs for commercial application
    corecore