41 research outputs found
First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management
The description of genetic population structure over a species\u27 geographic range can provide insights into its evolutionary history and also support effective management efforts. Assessments for globally distributed species are rare, however, requiring significant international coordination and collaboration. The global distribution of demographically discrete populations for the humpback whale Megaptera novaeangliae is not fully known, hampering the definition of appropriate management units. Here, we present the first circumglobal assessment of mito - chondrial genetic population structure across the species\u27 range in the Southern Hemisphere and Arabian Sea. We combine new and existing data from the mitochondrial (mt)DNA control region that resulted in a 311 bp consensus sequence of the mtDNA control region for 3009 individuals sampled across 14 breeding stocks and subpopulations currently recognized by the International Whaling Commission. We assess genetic diversity and test for genetic differentiation and also estimate the magnitude and directionality of historic matrilineal gene flow between putative populations. Our results indicate that maternally directed site fidelity drives significant genetic population structure between breeding stocks within ocean basins. However, patterns of connectivity differ across the circumpolar range, possibly as a result of differences in the extent of longitudinal movements on feeding areas. The number of population comparisons observed to be significantly differentiated were found to diminish at the subpopulation scale when nucleotide differences were examined, indicating that more complex processes underlie genetic structure at this scale. It is crucial that these complexities and uncertainties are afforded greater consideration in management and regulatory efforts
Population Structure of Humpback Whales from Their Breeding Grounds in the South Atlantic and Indian Oceans
Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region
Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.
To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC
A Contiguous Compartment Functions as Endoplasmic Reticulum and Endosome/Lysosome in Giardia lambliaâ–¿ â€
The dynamic evolution of organelle compartmentalization in eukaryotes and how strictly compartmentalization is maintained are matters of ongoing debate. While the endoplasmic reticulum (ER) is classically envisioned as the site of protein cotranslational translocation, it has recently been proposed to have pluripotent functions. Using transfected reporter constructs, organelle-specific markers, and functional enzyme assays, we now show that in an early-diverging protozoan, Giardia lamblia, endocytosis and subsequent degradation of exogenous proteins occur in the ER or in an adjacent and communicating compartment. The Giardia endomembrane system is simple compared to those of typical eukaryotes. It lacks peroxisomes, a classical Golgi apparatus, and canonical lysosomes. Giardia orthologues of mammalian lysosomal proteases function within an ER-like tubulovesicular compartment, which itself can dynamically communicate with clathrin-containing vacuoles at the periphery of the cell to receive endocytosed proteins. These primitive characteristics support Giardia's proposed early branching and could serve as a model to study the compartmentalization of endocytic and lysosomal functions into organelles distinct from the ER. This system also may have functional similarity to the retrograde transport of toxins and major histocompatibility complex class I function in the ER of mammals
Data from: Multiple processes drive genetic structure of humpback whale (Megaptera novaeangliae) populations across spatial scales
Elucidating patterns of population structure for species with complex life histories, and disentangling the processes driving such patterns, remains a significant analytical challenge. Humpback whale (Megaptera novaeangliae) populations display complex genetic structures that have not been fully resolved at all spatial scales. We generated a data set of nuclear markers for 3,575 samples spanning the seven breeding stocks and substocks found in the South Atlantic and western and northern Indian Oceans. For the total sample, and males and females separately, we assessed genetic diversity, tested for genetic differentiation between putative populations and isolation by distance, estimated the number of genetic clusters without a priori population information, and estimated rates of gene flow using maximum likelihood and Bayesian approaches. At the ocean basin scale, structure is governed by geographic distance (IBD p<0.05) and female fidelity to breeding areas, in line with current understanding of the drivers of broad-scale population structure. Consistent with previous studies, the Arabian Sea breeding stock was highly genetically differentiated (FST 0.034-0.161; p<0.01 for all comparisons). However, the breeding stock boundary between west South Africa and east Africa was more porous than expected based on genetic differentiation, cluster, and gene flow analyses. Instances of male-fidelity to breeding areas and relatively high rates of dispersal for females were also observed between the three substocks in the western Indian Ocean. This mismatch between demographic units and current management boundaries may have ramifications for assessments of the status and continued protections of populations still in recovery from commercial whaling
Diversity of mitochondrial DNA in three species of great whales before and after modern whaling
The 20 th century commercial whaling industry severely reduced populations of great whales throughout the Southern Hemisphere. The effect of this exploitation on genetic diversity and population structure remains largely undescribed. Here, we compare pre- and post-whaling diversity of mitochondrial DNA (mtDNA) control region sequences for three great whales in the South Atlantic, the blue, humpback and fin whale. Pre-whaling diversity is described from mtDNA extracted from bones collected near abandoned whaling stations, primarily from the South Atlantic island of South Georgia. These bones are known to represent the first stage of 20 th century whaling and thus pre-whaling diversity of these populations. Post-whaling diversity is described from previously published studies reporting large-scale sampling of living whales in the Southern Hemisphere. Despite relatively high levels of surviving genetic diversity in the post-whaling populations, we found evidence of a probable loss of mtDNA lineages in all three species. This is evidenced by the detection of a large number of haplotypes found in the pre-whaling samples that are not present in the post-whaling samples. A rarefaction analysis further supports a loss of haplotypes in the South Atlantic humpback and Antarctic blue whale populations. The bones from former whaling stations in the South Atlantic represent a remarkable molecular archive for further investigation of the decline and ongoing recovery in the great whales of the Southern Hemisphere