40 research outputs found

    Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations.

    Get PDF
    SF3B1, SRSF2, and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the effect of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34+ cells of 84 patients with MDS. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis, and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whereas several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms that independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations, respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the effect of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology

    Hepcidin is regulated by promoter-associated histone acetylation and HDAC3.

    Get PDF
    Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and iron deficiency suppress hepcidin via erythroferrone-dependent and -independent mechanisms, respectively, in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, iron deficiency, thalassemia, and hemochromatosis. Histone deacetylase 3 and its cofactor NCOR1 regulate hepcidin; histone deacetylase 3 binds chromatin at the hepcidin locus, and histone deacetylase 3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting bone morphogenetic protein signaling. In iron deficient mice, the histone deacetylase 3 inhibitor RGFP966 increases hepcidin, and RNA sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by histone deacetylase 3.Hepcidin controls systemic iron levels by inhibiting intestinal iron absorption and iron recycling. Here, Pasricha et al. demonstrate that the hepcidin-chromatin locus displays HDAC3-mediated reversible epigenetic modifications during both erythropoiesis and iron deficiency

    Hepcidin is regulated by promoter-associated histone acetylation and HDAC3

    Get PDF
    Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and iron deficiency suppress hepcidin via erythroferrone-dependent and -independent mechanisms, respectively, in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, iron deficiency, thalassemia, and hemochromatosis. Histone deacetylase 3 and its cofactor NCOR1 regulate hepcidin; histone deacetylase 3 binds chromatin at the hepcidin locus, and histone deacetylase 3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting bone morphogenetic protein signaling. In iron deficient mice, the histone deacetylase 3 inhibitor RGFP966 increases hepcidin, and RNA sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by histone deacetylase 3.Hepcidin controls systemic iron levels by inhibiting intestinal iron absorption and iron recycling. Here, Pasricha et al. demonstrate that the hepcidin-chromatin locus displays HDAC3-mediated reversible epigenetic modifications during both erythropoiesis and iron deficiency

    A Comprehensive Evaluation of Potential Lung Function Associated Genes in the SpiroMeta General Population Sample

    Get PDF
    RATIONALE: Lung function measures are heritable traits that predict population morbidity and mortality and are essential for the diagnosis of chronic obstructive pulmonary disease (COPD). Variations in many genes have been reported to affect these traits, but attempts at replication have provided conflicting results. Recently, we undertook a meta-analysis of Genome Wide Association Study (GWAS) results for lung function measures in 20,288 individuals from the general population (the SpiroMeta consortium). OBJECTIVES: To comprehensively analyse previously reported genetic associations with lung function measures, and to investigate whether single nucleotide polymorphisms (SNPs) in these genomic regions are associated with lung function in a large population sample. METHODS: We analysed association for SNPs tagging 130 genes and 48 intergenic regions (+/-10 kb), after conducting a systematic review of the literature in the PubMed database for genetic association studies reporting lung function associations. RESULTS: The analysis included 16,936 genotyped and imputed SNPs. No loci showed overall significant association for FEV(1) or FEV(1)/FVC traits using a carefully defined significance threshold of 1.3×10(-5). The most significant loci associated with FEV(1) include SNPs tagging MACROD2 (P = 6.81×10(-5)), CNTN5 (P = 4.37×10(-4)), and TRPV4 (P = 1.58×10(-3)). Among ever-smokers, SERPINA1 showed the most significant association with FEV(1) (P = 8.41×10(-5)), followed by PDE4D (P = 1.22×10(-4)). The strongest association with FEV(1)/FVC ratio was observed with ABCC1 (P = 4.38×10(-4)), and ESR1 (P = 5.42×10(-4)) among ever-smokers. CONCLUSIONS: Polymorphisms spanning previously associated lung function genes did not show strong evidence for association with lung function measures in the SpiroMeta consortium population. Common SERPINA1 polymorphisms may affect FEV(1) among smokers in the general population.Peer reviewe

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19

    An integrated genomic approach for the identification and analysis of single nucleotide polymorphisms that affect cancer in humans

    No full text
    The identification of genetic variants such as single nucleotide polymorphisms (SNPs), which affect cancer progression, survival and response to treatments could help in the design of better prevention and treatment strategies. Genome-wide association studies (GWAS) have provided the first step of identifying SNPs associating with cancer risk. However, identifying the causal SNPs responsible for the associations has proven challenging, and GWAS have not been successful for time-to-event phenotypes such as cancer progression, due to the insurmountable obstacle of the large sample size needed. The aim of this thesis is to design and implement strategies that combine the identification of SNPs significantly associated with cancer, focusing on time-to-event phenotypes, with detailed bioinformatics analysis to allow for further experimental validation and modelling, to better understand cancer-associated genomic loci and accelerate their incorporation into the clinic. First, a methodology that utilises the Random Survival Forest is developed and combined with a bioinformatics analysis that ranks SNPs according to their potential to result in differential protein levels or activity, in order to identify SNPs that affect the progression of B-cell chronic lymphocytic leukaemia. Next, an analysis that aims to extend our understanding of the role of SNPs in mediating the cellular responses to chemotherapeutic agents is applied. SNPs that could associate with differential cellular growth responses in cancer cell line panels are identified, and their association with the differential survival of cancer patients is explored. Finally, the potential roles of SNPs in affecting the transcriptional regulation of key cancer genes resulting in differential cancer risk are assessed. First, by focusing on SNPs in an important transcription factor binding motif that has been shown to be extremely sensitive to single base pair changes (the E-box) and next, by exploring the possibility that polymorphic transcription factor binding sites could underlie the significant associations noted in cancer GWAS.</p

    temp.RData

    No full text
    temp fil

    An integrated genomic approach for the identification and analysis of single nucleotide polymorphisms that affect cancer in humans

    No full text
    The identification of genetic variants such as single nucleotide polymorphisms (SNPs), which affect cancer progression, survival and response to treatments could help in the design of better prevention and treatment strategies. Genome-wide association studies (GWAS) have provided the first step of identifying SNPs associating with cancer risk. However, identifying the causal SNPs responsible for the associations has proven challenging, and GWAS have not been successful for time-to-event phenotypes such as cancer progression, due to the insurmountable obstacle of the large sample size needed. The aim of this thesis is to design and implement strategies that combine the identification of SNPs significantly associated with cancer, focusing on time-to-event phenotypes, with detailed bioinformatics analysis to allow for further experimental validation and modelling, to better understand cancer-associated genomic loci and accelerate their incorporation into the clinic. First, a methodology that utilises the Random Survival Forest is developed and combined with a bioinformatics analysis that ranks SNPs according to their potential to result in differential protein levels or activity, in order to identify SNPs that affect the progression of B-cell chronic lymphocytic leukaemia. Next, an analysis that aims to extend our understanding of the role of SNPs in mediating the cellular responses to chemotherapeutic agents is applied. SNPs that could associate with differential cellular growth responses in cancer cell line panels are identified, and their association with the differential survival of cancer patients is explored. Finally, the potential roles of SNPs in affecting the transcriptional regulation of key cancer genes resulting in differential cancer risk are assessed. First, by focusing on SNPs in an important transcription factor binding motif that has been shown to be extremely sensitive to single base pair changes (the E-box) and next, by exploring the possibility that polymorphic transcription factor binding sites could underlie the significant associations noted in cancer GWAS.This thesis is not currently available in ORA

    Transforming growth factor β drives hemogenic endothelium programming and the transition to hematopoietic stem cells

    Get PDF
    SummaryHematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor β (TGFβ) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFβ is two fold and sequential: autocrine via Tgfβ1a and Tgfβ1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfβ3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro

    The Inheritance of p53

    No full text
    The p53 pathway constitutes a major cellular gene network that is crucial in directing the suppression of cancer formation, mediating the response to commonly used cancer therapies, as well as the regulation of germline maintenance, fertility, and reproduction. It has been demonstrated that various cancer predisposition syndromes are caused by low-frequency, highly penetrant inherited mutations in the p53 network, the knowledge of which is already positively affecting patient survival. Mounting evidence from studies utilizing human material, patient cohorts, and mouse models suggests that higher frequency, lesser penetrant genetic variants can also affect p53 signaling, resulting in differences in cancer risk, prognosis, response to therapies, and/or natural selection. Indeed, multiple genes in the p53 network have been shown to harbor functional single nucleotide polymorphisms (SNPs). Comprehensive analyses of two SNPs have demonstrated that their effects on cancer can be modified by factors such as gender, estrogen, and other p53 pathway SNPs. Together these insights suggest that genetic variants in the p53 network could present an excellent opportunity to further define individuals in their abilities to react to stress, suppress tumor formation, and respond to therapies
    corecore