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Key Points 

 

• RNA-seq analysis of CD34+ cells identifies novel aberrantly spliced genes and 

dysregulated pathways in splicing factor mutant MDS. 

 

• Aberrantly spliced isoforms predict MDS survival and implicate dysregulation of focal 

adhesion and exosomes as drivers of poor survival. 
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Abstract 

 

SF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in the 

myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic 

analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA 

splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid 

precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly 

spliced genes and dysregulated pathways in CD34+ cells of 84 MDS patients. Splicing factor 

mutations result in different alterations in splicing and largely affect different genes, but these 

converge in common dysregulated pathways and cellular processes, focused on RNA 

splicing, protein synthesis and mitochondrial dysfunction, suggesting common mechanisms 

of action in MDS. Many of these dysregulated pathways and cellular processes can be linked 

to the known disease pathophysiology associated with splicing factor mutations in MDS, 

whilst several others have not been previously associated with MDS, such as sirtuin 

signaling. We identified aberrantly spliced events associated with clinical variables, and 

isoforms which independently predict survival in MDS and implicate dysregulation of focal 

adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and 

dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant 

MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and 

AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations respectively, led to 

impaired erythroid cell growth and differentiation. This study illuminates the impact of the 

common spliceosome mutations on the MDS phenotype and provides novel insights into 

disease pathophysiology. 

 
 

. 
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Introduction 

 

The myelodysplastic syndromes (MDS) are myeloid malignancies arising from bone marrow 

(BM) hematopoietic stem cells (HSC).1-5 The MDS are characterized by ineffective 

hematopoiesis resulting in peripheral blood cytopenias. MDS patients show increasing 

numbers of BM blasts over time, and 30–40% of cases progress to acute myeloid leukemia 

(AML).1-4 

 

Splicing factor gene mutations occur in >50% of all MDS patients, implicating spliceosome 

dysfunction as a key driver of disease pathophysiology.6 SF3B1, SRSF2, U2AF1 and ZRSR2 

are the most frequently mutated splicing factor genes in MDS.7,8 These splicing factors are 

involved in recognition of 3′ splice sites during pre-mRNA splicing.9 SF3B1 stabilizes U2 

snRNP binding to the branch point sequence,6,10 SRSF2 promotes exon recognition by 

binding mRNA exonic splicing enhancer motifs,6,11,12 whilst U2AF1 recognizes the AG 

dinucleotide at the 3′ splice sites.6,13 These mutated genes have different prognostic impacts 

and to some degree define distinct clinical phenotypes in MDS.8,14-17 SF3B1 mutations are 

strongly associated with the presence of ring sideroblasts.16,18 

 

Splicing factor mutation are typically early events in MDS19,20 and some are found in 

association with clonal hematopoiesis of indeterminate potential,21-23 suggesting that the 

presence of splicing factor mutations can result in clonal expansion in ageing human BM. 

HSCs expressing splicing factor mutations show a compromised repopulation capacity in 

mice compared with wildtype HSCs, however,24-28 and precisely how splicing factor 

mutations confer a positive selection advantage in the BM remains a mystery.  

 

Mouse models expressing splicing factor mutations show some features of MDS, including 

expansion of stem and progenitor cells in the BM and leukopenia.24,26-28 Although these 

models have significantly advanced our understanding of how splicing factor mutations lead 

to particular hematological phenotypes, the differences in intronic sequences and consensus-

binding motifs between mice and humans mean that the splicing abnormalities observed in 

the mice often differ from those observed in patients.25,26 
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Aberrant RNA splicing occurs as a consequence of splicing factor gene mutations in several 

human malignancies.29-33 Some studies have investigated aberrant splicing in MDS and AML 

patients with splicing factor mutations,24,28,34-38 but included small numbers of splicing factor 

mutant (SFmut) cases and/or analyzed unfractionated BM or mononuclear cell samples. 

 

Here, we performed a comprehensive and systematic analysis to determine the impact of 

SF3B1, SRSF2 and U2AF1 mutations on pre-mRNA splicing in purified BM stem and 

progenitor cells from a large cohort of MDS patients. The major cellular processes and 

dysregulated pathways were identified in the CD34+ cells and in precursors of MDS-affected 

lineages of SFmut MDS patients. We have determined the associations between aberrantly 

spliced isoforms and clinical variables and patient survival. Furthermore, we studied the 

functional impact of aberrant splicing of key target genes on erythroid cell growth and 

differentiation. 

 

 

Materials and Methods 

 

Patients and samples 

 

CD34+ cells were isolated from the BM samples of 84 MDS patients (Table S1) and 8 

healthy controls using MACS columns (Miltenyi Biotec, Germany). Of the 84 MDS cases, 

28 were SF3B1 mutant (SF3B1mut), eight SRSF2 mutant (SRSF2mut), six U2AF1 mutant 

(U2AF1mut), two ZRSR2 mutant (with co-mutation of SRSF2) and 40 had no mutations in 

splicing factor genes (SFwt), as determined by targeted next-generation sequencing data8 

(Table S1, Table S2, Figure S1A). 

 

Granulocytic, monocytic and erythroid precursors were purified from the BM samples of 11 

MDS patients (seven SF3B1mut and four SRSF2mut) and five healthy controls. Mononuclear 

cells were isolated from BM aspirates using density gradient centrifugation (Biocoll, 

Biochrom, Germany). After staining with CD34-APC (8G12), CD45-FITC (2D1), and CD14-

PE (MφP9) (all from BD Biosciences, San José, CA, USA), monocytes/macrophages 

restricted precursors (CD34-CD45+SSCmedCD14+), granulocytic precursors (CD34-

CD45medSSChigh) and erythroid precursors (CD34-CD45-) were isolated by FACS using a 
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FACSAria cell sorter and the FACSDIVA software (BD Biosciences). After sorting, 

morphology and purity of the isolated cell populations were determined and the purity was 

>95%. Here, the mutational profile of the MDS patients was determined using a next-

generation sequencing-based myeloid gene panel20 (Table S3, Figure S1B). 

 

The research was approved by the relevant institutional review boards or ethics committees 

and all participants gave written informed consent. 

 

RNA sequencing and data analysis 

 

Total RNA was extracted using TRIzol (Thermo Scientific, UK) with a linear acrylamide 

carrier, treated with DNase I (Life technologies) and purified using Agencourt RNAClean 

XP beads (Beckman Coulter). RNA quality was assessed using a 2100 Bioanalyzer 

(Agilent), and RNA integrity numbers were greater than 8 for all samples.  cDNA libraries 

were produced using a SMARTer library preparation protocol (Clontech). Sequencing was 

performed on an Illumina HiSeq4000 with 100 bp paired-end reads. The reads were 

mapped to human genome GRCh37 using HISAT2 version 2.0.0-beta.39 Uniquely mapped 

read pairs were counted using featureCounts,40 included with subread v1.5.0.41 Quality 

control was performed on the mapped files using Picard CollectRnaSeqMetrics 

(http://broadinstitute.github.io/picard) (Data Supplement 1). Differential splicing was 

assessed using rMATSv3.2.2beta34,42,43 with the bam alignments generated by HISAT2. 

Aberrant splicing events associated with each mutated splicing factor were identified on the 

basis of the overlap between the lists of significant events identified by rMATS consistently 

in the comparisons of SFmut MDS both to SFwt MDS and to healthy controls (FDR <0.05 

and inclusion level difference of >0.1 or <-0.1). The data discussed in this article have been 

deposited in the NCBI’s Gene Expression Omnibus (GEO) repository (GEO accession 

number GSE114922). 

 

Gene Ontology analysis was performed on the genes showing significant aberrant splicing 

events (FDR<0.05) using goseq.44 A weighted bias correction based on the number of exons 

in each gene from Ensembl-GRCh37 was applied. Pathway analysis and upstream regulator 

analysis was performed on the genes showing significant aberrant splicing events 

(FDR<0.05) using Ingenuity Pathway Analysis (IPA) software (Qiagen).  
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Association of aberrant splicing with clinical variables 

 

Clinical variables were analyzed for correlation with the rMATS-generated event inclusion 

levels for each MDS sample. Association between aberrant splicing events and clinical 

variables was determined using Spearman correlation for continuous variables (hemoglobin, 

Hb; white blood cell counts, WBC; absolute neutrophil count, ANC; platelet count, Plt; BM 

blasts; and age) and a Kruskal-Wallis test for categorical variables (gender, International 

Prognostic Scoring System, IPSS; and transfusion dependence), with Bonferroni multiple 

hypothesis correction. 

 

Functional studies 

 

CD34+ cells from healthy donors (Lonza) were cultured in erythroid differentiation media for 

14 days as described previously.45 SEPT2 and AKAP8 genes were knocked down individually 

using Mission shRNA lentiviral vectors (Sigma-Aldrich). Lentiviruses were produced and 

used to transfect CD34+ cells from healthy donors as described previously.43 

 

Additional method details are described in the Supplementary Information. 

 

 

Results  

 

Aberrant pre-mRNA splicing in CD34+ cells of MDS cases with SF3B1, SRSF2 and 

U2AF1 mutations 

 

To identify aberrantly spliced transcripts associated with SF3B1, SRSF2 and U2AF1 

mutations in MDS hematopoietic stem and progenitor cells, we performed RNA-seq on 

CD34+ cells from 82 MDS patients and 8 healthy controls. The rMATS bioinformatics 

pipeline34,42,43 was used to detect alternative (including cryptic) splicing events and 

categorize them as alternative 3′ splice site (A3SS) usage, alternative 5′ splice site (A5SS) 

usage, exon skipping (SE), mutually exclusive exons (MXE) or retained introns (RI). 
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SF3B1mut, SRSF2mut or U2AF1mut patients were compared both with healthy controls and 

with SFwt patients, identifying >200 misregulated splicing events for each splicing factor 

(Figure 1A-C, Data Supplement 2). SF3B1 mutations were associated with a higher 

proportion of A3SS and RI events, while SRSF2 mutations and U2AF1 mutations were 

associated with a higher proportion of SE and RI events (Figure 1D-F).  

 

Hierarchical clustering performed using the aberrant splicing events identified for each 

mutated splicing factor showed that SF3B1mut cases clustered together and separately from 

SFwt cases and healthy controls (Figure 1G). Similarly, SRSF2mut cases clustered together 

(Figure 1H). Most U2AF1 mutations affect the S34 and R156/Q157 codons within the two 

zinc finger (ZF) domains.9 All U2AF1mut cases clustered together, with the S34 mutants and 

the R156/Q157 mutants in two sub-clusters (Figure 1I).  

 

Among the top 40 aberrant splicing events in SF3B1mut MDS (Table S4), the largest 

proportion was A3SS (n=21/40), followed by RI (n=11/40). In contrast, among the highest 

ranking aberrant splicing events in SRSF2mut (Table S4) and U2AF1mut MDS (Table S4), 

the largest proportion was SE (n=31/40 and n=27/40 respectively). 

 

Mutations in splicing factor genes define distinct clinical phenotypes in MDS.6,14 We 

investigated the overlap of the aberrantly spliced genes identified in SF3B1mut, SRSF2mut 

and U2AF1mut patients. The aberrant splicing events associated with each mutated splicing 

factor mainly affected different genes, although some overlap was observed (Figure 1J). A 

total of 147, 132 and 181 genes were aberrantly spliced distinctly in association with 

SF3B1mut, SRSF2mut and U2AF1mut MDS cases, respectively (Data Supplement 3). These 

aberrantly spliced genes include SEPT2 and DYNLL1 in SF3B1mut cases, PKFM and 

METTL17 in SRSF2mut cases and HMGXB4 and LAT2 in U2AF1mut cases. An aberrant 

splicing event (RI) in the caspase 1 (CASP1) gene, the key effector of pyroptosis,46 was 

observed in SF3B1mut MDS cases in our study. Five genes (LST1, LUC7L, MRRF, 

ORMDL1, SUGP2) were common to SF3B1mut, SRSF2mut and U2AF1mut MDS. Some 

recurrently mutated genes in MDS were aberrantly spliced in SF3B1mut and SRSF2mut cases 

(i.e. STAG247,48), or in SRSF2mut and U2AF1mut cases (i.e. EZH249 and BCOR). We found 

increased inclusion of a “poison” cassette exon of EZH2 in SRSF2mut cases as previously 

reported,24 and observed the same aberrant splicing event in U2AF1mut cases. 
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Significantly dysregulated gene expression was observed for 33 (16%) of the aberrantly 

spliced genes identified in SF3B1mut MDS cases, with a lower percentage observed for 

SRSF2mut- and U2AF1mut-associated aberrantly spliced genes (Data Supplement 3). We did 

not observe a difference in gene expression levels between nonsense-mediated mRNA decay 

(NMD)-sensitive and NMD-insensitive events associated with SRSF2 mutations and U2AF1 

mutations (Figure S2A and B). These data are in agreement with other studies.24,35 For events 

associated with SF3B1 mutations, gene expression levels were overall lower for NMD-

sensitive events (Figure S2C). Given the known function of SF3B1, we examined the 

aberrant A3SS events associated with SF3B1 mutation and found a more pronounced 

reduction of gene expression levels for NMD-sensitive events (median log2 fold -0.2 

compared to median log2 fold -0.03 for NMD-insensitive events), albeit this did not reach 

statistical significance (Figure S2D). 

 

Gene ontology analysis of aberrantly spliced genes in SFmut MDS 

 

We performed gene ontology (GO) analysis on the genes showing significant aberrant 

splicing events in SFmut MDS (Data Supplement 4). A marked convergence of significant 

GO themes was identified, with 74 GOs common to all SFmut MDS groups (Figure 2A, Data 

Supplement 5). We refined these overlapping GOs using REVIGO, which removes redundant 

GO terms and visualizes the most informative ontology themes. This analysis showed a 

strong cluster of GOs associated with mRNA metabolism, including RNA splicing, RNA 

processing and mRNA translation (Figure 2A). Another strong GO cluster identified was 

associated with ribonucleoprotein complex biogenesis, which includes mitochondrial 

organization and translation. REVIGO treemap analysis of the 65 overlapping GO terms 

associated with SF3B1mut and SRSF2mut identified ontologies associated with 

ribonucleoprotein complex assembly, ligase activity (including regulation of mitotic cell 

cycle phase transition), and cellular response to DNA damage (Figure S3A). The REVIGO 

treemap of 118 GO terms associated only with SF3B1mut MDS showed multiple GO terms 

associated with cellular response to DNA damage stimulus, and cell cycle processes (Figure 

S3B). 

 

Pathway analysis of aberrantly spliced genes in SFmut MDS 
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Pathway analysis was performed using IPA on the genes showing significant aberrant 

splicing events in SFmut MDS (Figure 2B, Table S5-7). Interestingly, all three mutated 

splicing factors shared six common significant biological pathways, with the Sirtuin 

Signaling Pathway as the top ranking pathway (Figure 2B, Figure S4). Among the significant 

pathways uniquely dysregulated in one SFmut MDS group, the Regulation of eIF4 and 

p70S6K Signaling pathway (a key pathway for translational regulation) was dysregulated in 

SF3B1mut MDS (Figure 2B, Table S5), while Hypoxia Signaling was dysregulated in 

SRSF2mut MDS (Figure 2B, Table S6). 

 

Next, using IPA we performed an analysis of upstream transcriptional regulators (including 

transcription factors) aiming to evaluate the significance of the overlap between the 

significant aberrantly spliced genes associated with each mutant splicing factor and genes 

regulated by a transcriptional regulator. This analysis showed a significant overlap for all 

three mutated splicing factors with several transcriptional regulators, including HNF4A, 

RICTOR, E2F1, MYC and RB1 (Figure 2C). 

 

A similar approach identified drugs/chemicals that can impact the expression of the genes 

found to be aberrantly spliced in SFmut MDS. Two retinoid drugs (CD437 and ST1926), the 

nucleotide antagonist 5−fluorouracil, and the mTOR inhibitor Sirolimus (Rapamycin) were 

significant for all three mutated splicing factors (Figure 2D), indicating that a significant 

proportion of the target genes of these compounds are aberrantly spliced in SFmut MDS. 

 

Aberrantly spliced genes involved in heme metabolism and iron processing in SFmut MDS 

 

SF3B1mut, SRSF2mut and U2AF1mut MDS cases showed significant dysregulation of the 

Heme Biosynthesis II pathway (Figure 2B). Given the striking phenotypic association 

between ring sideroblasts and SF3B1 mutation in MDS,16,18 we performed an extensive 

investigation of the influence of splicing factor mutations on heme metabolism or iron 

processing. Of 200 and 150 genes involved in heme metabolism or in iron homeostasis and 

transport (Supplementary Methods), respectively, we found several showing aberrant splicing 

events in SF3B1mut, SRSF2mut and U2AF1mut MDS cases, with a higher number of events 

occurring in SF3B1mut MDS cases (Data Supplement 6). 
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We have previously reported aberrant splicing of the iron transporter ABCB7 in MDS 

RARS34 and here we have found the same aberrant splicing event in the ABCB7 mRNA 

(FDR=5.20x10-11 in SF3B1mut MDS vs healthy controls and FDR=0 in SF3B1mut MDS 

vs SFwt MDS) and significant ABCB7 downregulation in SF3B1mut cases (adjusted 

p=1.48x10-12 and fold change = -2.4 in SF3B1mut MDS vs healthy controls, and adjusted 

p=3.65x10-31 and fold change = -2.23 in SF3B1mut MDS vs SFwt MDS). 

 

Aberrantly spliced genes involved in R-loop formation and DNA repair in SFmut MDS 

 

Dysregulation of splicing factor genes has been associated with the formation of R-loops 

(structures resulting from the invasion of nascent RNA into DNA) and activation of the DNA 

damage response (DDR).50-52 Several significant GOs dysregulated in SFmut MDS in our 

study have been associated with increased R-loop formation, including mitochondrial 

dysfunction,53,54 aberrant RNA processing,52,55,56 and defective ribonucleoprotein particle 

biogenesis.57 Of 41 genes described in the literature as involved in suppression/regulation of 

R-loop formation and in the DDR,58-63 we found aberrant splicing of four genes (ERCC3, 

FANCI, SETX and ATR) in SF3B1mut cases, three genes (CHEK1, SETX and ATR) in 

SRSF2mut cases and two genes (ERCC8 and FANCM) in U2AF1mut cases (Table S8). 

 

Properties of dysregulated splice sites 

 

We analyzed various properties of the major misregulated splicing events. SF3B1mut-

misregulated A3SSs showed varying sequence profiles between canonical and cryptic sites 

(Figure S5A) and the characteristic 16 nt peak separation of upstream cryptic sites from their 

associated canonical sites (Figure S5B).34,64-66 Exons downregulated in association with 

U2AF1 mutations in the ZF1 and ZF2 domains (S34 and R156/Q157 respectively) showed 

altered 3′ splice site (3SS) logos (Figure S5C) consistent with contact by ZF1 and ZF2 at the -

3 and +1 positions.35 SRSF2mut-misregulated exons showed no alterations in splice site 

compositions (Figure S5D) but, consistent with previous observations,24 CCNG motifs were 

enriched in upregulated cassette exons and GGNG motifs in downregulated exons (Figure 

S5E).  

 

Retained introns were the most common aberrant event in SF3B1mut cells, with the majority 

showing decreased retention (i.e. increased splicing) in SF3B1mut MDS (Figure S6A). We 
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observed that among the most affected RI events, a number used 3SSs that were also 

annotated as the upstream of a pair of A3SSs (Figure S6B-C). For example, ERCC3 showed 

reduced retention of intron 10 in conjunction with use of an A3SS 18 nt upstream of the 

canonical 3′SS with the change in intron retention exceeding the change in A3SS use (Figure 

S6B). DOM3Z showed reduced intron retention using an upstream A3SS, although in this 

case there was no observed switching in A3SS use (Figure S6C). This novel observation 

suggests that reduced intron retention might be linked to the ability of SF3B1 mutants to 

select an upstream A3SS. 

 

Associations between aberrant splicing and clinical variables or patient survival in MDS 

 

We investigated the correlations between aberrantly spliced events and clinical variables. 

Clinical variables showing a significant difference between SFmut and SFwt MDS patients 

were lower percentage of BM blasts and higher number of WBC, ANC and Plt in the 

SF3B1mut group (Table S9). Fifteen aberrant splicing events, all identified in SF3B1mut 

MDS, were significantly correlated with a clinical variable (BM blasts, Plt or ANC) (Table 1, 

Figure 3A-D). These examples include RI events of AP1G2, DOM3Z and ERCC3 with ANC, 

and a RI event of NICN1 with Plt, indicating increased aberrant splicing of these genes in 

MDS cases with higher ANC and higher platelets respectively. 

 

We investigated the association of expression of isoforms produced by aberrant splicing 

events identified above with patient survival. Isoforms arising from significantly 

differentially regulated splicing events between SFmut and both SFwt MDS patients and 

healthy controls were identified. Multivariate Cox proportional hazard modeling of survival 

of patients stratified by median expression of individual isoforms identified 14 genes with 

isoforms which significantly predicted survival in MDS (Table 2, Figure 3E and G, Table 

S10, Figure S7). In all cases the isoforms which predicted survival were ones which would be 

generated due to the aberrant splicing event identified. The affected isoforms showed striking 

enrichment (7/14) in genes involved in the formation of extracellular exosomes and focal 

cellular adhesion. Isoforms from the genes (CRTC2, CAP1, IFI44, IFI44L, CD46, FCGR2A 

and PTPRC) from these pathways were investigated further using the AML data from the 

Cancer Genome Atlas (TCGA). Patients were stratified by median expression of individual 

isoforms of the genes identified in the MDS cohort. Of the seven extracellular exosome/focal 

adhesion genes identified as significant survival predictors in MDS, five genes (CAP1, IFI44, 
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IFI44L, PTPRC, FCGR2A) also expressed isoforms which were significantly predictive of 

survival in the AML TCGA cohort (Figure 3F and H). 

 

Aberrant pre-mRNA splicing in CD34+ cells of MDS cases with ZRSR2 mutations 

 

ZRSR2 is another recurrently mutated splicing factor gene in MDS.7,8 We have performed 

RNA-seq on CD34+ cells from two MDS cases with ZRSR2 mutations to determine the 

aberrant splicing events in these samples. As these two ZRSR2 mutant cases also harbored a 

SRSF2 mutation, we have compared them with SRSF2 mutant cases (without ZRSR2 

mutations) and with healthy controls in order to identify the aberrant splicing events that can 

be attributed to the presence of the ZRSR2 mutations. Using rMATS, a total of 137 

misregulated splicing events were identified, including 11 A3SS, 6 A5SS, 51 RI, 63 SE and 6 

MXE events (Figure S8A, Data Supplement 7). Pathway analysis performed on the genes 

showing significant aberrant splicing events showed dysregulation of pathways including 

Sirtuin Signaling and Protein Ubiquitination (Figure S8B, Table S11). 

 

Aberrant splicing in BM cell populations of SFmut MDS 

 

We performed RNA-seq on the granulocytic, monocytic and erythroid precursors purified 

from BM of SF3B1mut and SRSF2mut MDS patients and healthy controls (Table S3). 

Principal component analysis showed clustering of all samples by cell type (Figure S9). 

 

rMATS analysis identified many unique aberrant splicing events in each cell population for 

SF3B1mut or SRSF2mut samples compared with healthy controls, with a limited overlap 

between cell populations (Figure 4A-B, Data Supplement 8). This suggests that SF3B1 and 

SRSF2 mutations affect splicing in a hematopoietic cell type-specific manner. Pathway 

analysis of the genes showing significant aberrant splicing events showed that two pathways 

involved in translation, EIF2 Signaling and Regulation of eIF4 and p70S6K Signaling, were 

significantly dysregulated in all cell populations in both SF3B1mut and SRSF2mut MDS 

(Figure 4C and F). The analysis of upstream transcriptional regulators and drugs and 

chemicals is shown in Figure 4D-E and G-H for SF3B1mut and SRSF2mut MDS 

respectively. 
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We analyzed panels of 120, 164 and 85 genes described in the literature as involved in 

erythroid,67 granulocyte68 and monocyte69 function (Data Supplement 9). Aberrantly 

spliced genes include GYPB and HMBS in the erythroid precursors of SF3B1mut and 

SRSF2mut MDS cases, and CSF1R and CSF3R respectively in the monocyte and 

granulocyte precursors of SRSF2mut cases. 

 

We have determined the overlap between the aberrant splicing events identified in the 

granulocytic, monocytic and erythroid precursors of SF3B1mut and SRSF2mut MDS patients, 

and the aberrant splicing events identified in the CD34+ cells of SF3B1mut and SRSF2mut 

MDS patients. Many aberrant splicing events were common between CD34+ cells and one or 

more of the granulocytic, monocytic and erythroid precursor populations for SF3B1 

mutations or SRSF2 mutations (Figure S10). Three genes (SEPT2, DDX24 and DYNLL1) and 

one gene (RIMKLB) were aberrantly spliced in common to all four cell populations for 

SF3B1 mutations or SRSF2 mutations, respectively. 

 

Functional effects of splicing aberrations associated with splicing factor mutations 

 

We validated selected aberrant splicing events identified in SFmut MDS using RT-PCR 

(Figure S11A-J). Of these, the AKAP8 SE and SEPT2 A3SS events identified generate 

premature termination codons predicted to trigger NMD, and were associated with 

significant downregulation in SRSF2mut and SF3B1mut MDS respectively (Figure S11B 

and F). AKAP8 and SEPT2 play important roles in the regulation of mitosis and cell 

growth.70,71 Cell growth is dysregulated in MDS1-4 and thus we selected AKAP8 and SEPT2 

for functional studies.   

 

MDS patients suffer from anemia.1 The impact of the splicing abnormalities of AKAP8 and 

SEPT2 on erythroid cell growth and differentiation was studied by knocking down these 

genes individually in human BM CD34+ cells subsequently differentiated towards the 

erythroid lineage. Erythroid cells with AKAP8 or SEPT2 knockdown showed significantly 

impaired growth and G1/S transition arrest compared to the scramble control (Figure 5A-C 

and H-J). Knockdown of these genes resulted in a significant decrease in the intermediate 

erythroid cell population (CD71+CD235a+ and CD36+CD235a+) on day 11 (Figure 5D-E and 

K-L) and the late erythroid cell population (CD71-CD235a+) on day 14 of culture (Figure 5F 
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and M), and in a significant reduction in the number of BFU-E and CFU-E in colony-forming 

cell assays (Figure 5G and N), compared to the scramble control. 

 

 

Discussion 

 

The processes and pathways by which splicing factor mutations exert their effects are not 

established in the stem/progenitor cells and erythroid and myeloid precursors in MDS.  

 

The analysis of a large dataset allowed us for the first time to compare and contrast the 

effects of different mutated splicing factor genes in MDS CD34+ cells. Many significant 

aberrant splicing events associated with SF3B1, SRSF2 and U2AF1 mutations were 

identified, including A3SS, RI and SE. These events may alter isoform expression and impact 

protein levels and function: some A3SS can result in a frameshift leading to stop codon 

generation and gene down-regulation via NMD, RI events can lead to NMD or to an increase 

in mRNA stability,72 and SE events result in alternative isoform generation, often not 

expected to alter gene expression levels.6,24,35,50,73 We present the first evidence of a common 

mechanistic pathway underlying retention of intron sequences and the use of A3SSs in cells 

harboring SF3B1 mutations. This event occurred for example in ERCC3, encoding the XPB 

component of TFIIH, which has roles as a transcription factor and in DNA repair. Loss of 

XPB activity contributes to R-loop-mediated DNA damage.62 Use of the upstream A3SS in 

the upregulated intron would insert six amino acids between the helicase and ResIII domains 

and may affect protein function. 

 

The large majority of aberrantly spliced genes associated with each mutated splicing factor 

were different, although some overlap was observed. Aberrant splicing of five genes was 

observed in SF3B1mut, SRSF2mut and U2AF1mut MDS, and thus represent common targets. 

Of these, LUC7L and SUGP2 encode proteins involved in splicing,74,75 with LUC7L 

associated with the U1 snRNP splicing complex involved in 5’ splice site selection.75 

Dysregulation of the MRRF gene, involved in mitochondrial translational, leads to changes in 

mitochondrial morphology and function.76  
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Several biological processes were significantly affected in all three SFmut MDS groups, 

including RNA splicing, RNA processing, mRNA translation, and mitochondrial translation. 

Thus splicing factor mutations impact cellular processes which are fundamental for the flow 

of information from the genome to proteins. Tightly controlled protein synthesis is critical for 

HSC (and progenitor) function and serves as a tumor suppressive mechanism,77 implicating 

the aberrant splicing of multiple translation-related genes in SFmut MDS in disease 

pathogenesis. 

 

Several commonly dysregulated pathways were associated with all three mutated splicing 

factors, some of which are relevant to the known MDS pathophysiology, including 

Mitochondrial Dysfunction, Oxidative Phosphorylation and Heme Biosynthesis, linking 

aberrant splicing with impaired mitochondrial function in MDS. Mitochondrial dysfunction is 

a well-recognized feature of MDS78,79 and mice with mitochondrial dysfunction develop 

some MDS features including macrocytic anemia.80 The most significant dysregulated 

pathway across the three mutated splicing factors was Sirtuin Signaling, a pathway not 

previously associated with MDS. Sirtuins are histone deacetylases, some of which reside in 

the mitochondria,81 with diverse roles in regulating metabolism, inflammation, genome 

stability, cell proliferation, and have been implicated in aging, cancer and survival.82,83 

 

Dysregulation of splicing factors leads to R-loop formation with associated genomic 

instability, resulting in activation of the DNA damage response (DDR).50-52 Elevated R-loops 

occur in Srsf2(P95H) mice,51 and SRSF2 is involved in maintaining genomic stability.51,52 

Thus R-loop formation and activation of the DDR are tightly linked cellular processes, and 

interestingly regulators of these processes show aberrant splicing in our study. Biological 

processes associated with DDR and cell cycle regulation were significantly affected in both 

SF3B1mut and SRSF2mut MDS. SF3B1, SRSF2 and other splicing factors are components of 

a DNA damage-induced mRNA splicing complex,84 linking splicing factors to the DDR. 

Several genes regulated by this complex, including LIG1 and BRCC3,85,86 showed aberrant 

splicing in SFmut cases in our study. Several genes involved in the suppression/regulation of 

R-loop formation were aberrantly spliced in SFmut MDS in our study, including SETX and 

ATR.87-89 SETX resolves R-loops89 and its loss leads to aberrant R-loop accumulation.87 

Aberrant splicing of R-loop-related genes may contribute to increased formation of R-loops 

in SFmut MDS. This might be expected to result in an increased mutation frequency and 

explain in part the clonal advantage of SFmut MDS HSCs. 
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Dysregulation of cell growth is a feature of MDS.1 We found that genes regulated by the 

transcriptional regulators HNF4A, RICTOR, E2F1, MYC, MYCN and RB1, all major 

controllers of cell growth/cell cycle,90-93 showed significant enrichment for aberrantly spliced 

genes. HNF4A inhibition promotes tumorigenesis in solid cancers.94 Our data suggest for the 

first time a role of HNF4A in SFmut MDS disease pathophysiology. 

 

Taken together, these data demonstrate that splicing factor mutations in MDS result in 

different mechanistic alterations in splicing and largely affect different genes, but these 

converge in overlapping (approximately one third of the total number) dysregulated pathways 

and cellular processes, suggesting common mechanisms of action. Many of the dysregulated 

pathways and cellular processes identified can be linked to the known disease 

pathophysiology and to the phenotypes associated with splicing factor mutations in MDS, 

while several have not previously been associated with MDS. 

 

The association of aberrantly spliced isoforms with clinical parameters and with patient 

survival in MDS is an important aspect which has not been previously investigated. We 

identified several aberrant splicing events associated with clinical features for SF3B1mut 

MDS, demonstrating that specific splicing events may contribute directly to aspects of the 

disease phenotype. The first evidence that disparate splicing mutations in MDS may affect 

survival via effects on a common pathway involving focal adhesion and extracellular 

exosomes is presented here. We showed that the isoform changes which are induced in MDS 

significantly impact on patient survival in multivariate models, and the same genes 

significantly impact on survival in AML. Focal adhesion and extracellular exosomes play a 

role in cancer and leukemia,95,96 and our data implicate their dysregulation as drivers of poor 

survival in both MDS and AML. 

 

The impact of splicing factor mutations remain largely unexplored in the different lineages 

affected in MDS,43 and we showed aberrant splicing of important genes for erythroid, 

granulocyte and monocyte function in the respective cell population in SFmut MDS. For 

example, we have shown aberrant splicing of CSF3R, a critical regulator of 

granulopoiesis,97 in SRSF2mut granulocyte precursors, and of CSF1R, a controller of 

macrophage production and function,98 in SRSF2mut monocyte/macrophage precursors. 

Pathways playing critical roles in translational regulation were significantly dysregulated in 
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all cell populations in both SF3B1mut and SRSF2mut MDS, suggesting that this process may 

be impaired in the erythroid and myeloid precursors of SFmut MDS. 

 

To date, very few of the aberrantly spliced isoforms identified in SFmut malignancies have 

been functionally characterized.6 We identified aberrant splicing of the mitosis regulators 

SEPT299,100 and AKAP8,71 leading to their downregulation in the CD34+ cells of SF3B1mut 

and SRSF2mut MDS, respectively. Anemia is a hallmark of MDS,1 and we found that 

knockdown of SEPT2 or AKAP8 in human hematopoietic progenitors resulted in markedly 

impaired erythroid cell growth and differentiation. These results suggest that aberrant splicing 

of SEPT2 or AKAP8 leads to impaired erythropoiesis in association with SF3B1 and SRSF2 

mutations in MDS. 

 

This comprehensive study provides novel insights into SFmut MDS disease pathophysiology, 

with newly identified clinical associations, and dysregulated genes and pathways representing 

potential new therapeutic targets.   
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Table 1. List of aberrant splicing events, identified in SF3B1mut MDS, significantly correlated with a clinical variable. 
 

Event 
ID 

Gene 
Event 
type 

Chr Strand 
Start 
position 

End Position 
Spearman Correlation 
Variable 

cor_estimate pvalue adj.p 

6795 PARVG A3SS 22 + 44582456 44583758 BM blasts % 0.58 4.38E-07 0.003031 

5420 RPRD1A RI 18 - 33605560 33607038 BM blasts % 0.58 6.21E-07 0.004292 

3146 DOM3Z RI 6 - 31938382 31938924 ANC -0.57 1.00E-06 0.006916 

12280 CXXC1 SE 18 - 47811694 47811721 ANC -0.56 1.28E-06 0.00888 

3305 AP1G2 RI 14 - 24031170 24031624 ANC -0.56 1.68E-06 0.011579 

2362 SNRPN A3SS 15 + 25219434 25219603 ANC -0.55 3.14E-06 0.021689 

5460 TCEA2 A3SS 20 + 62703210 62703294 ANC 0.54 3.24E-06 0.022393 

6627 NICN1 A3SS 3 - 49462381 49462579 Plt -0.54 3.80E-06 0.026281 

6153 ABCC5 A3SS 3 - 183703091 183703243 ANC -0.54 4.23E-06 0.029229 

518 ERCC3 RI 2 - 128046912 128047400 ANC -0.54 4.71E-06 0.032551 

2359 SNRPN A3SS 15 + 25219457 25219603 ANC -0.54 5.02E-06 0.03468 

7563 PPOX A3SS 1 + 161137128 161137276 ANC 0.53 5.99E-06 0.041411 

4975 GPR108 A3SS 19 - 6730997 6731122 ANC -0.53 6.43E-06 0.044443 

5816 PSTPIP1 A3SS 15 + 77328142 77328276 ANC -0.53 6.49E-06 0.044832 

4728 NICN1 RI 3 - 49462381 49462871 Plt -0.53 6.75E-06 0.046655 
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Table 2. Genes with isoforms which significantly predicted survival in MDS in multivariate models. 
 

Gene Associated splice factor 
mutation(s) 

Function/Pathway p-value (multivariate 
survival) 

CAP1 SRSF2 Focal adhesion & extracellular exosomes 0.0044 
PTPRC U2AF1 (S34) Focal adhesion & extracellular exosomes 0.0093 
IFI44 SRSF2, U2AF1 (S34) Interferon, extracellular exosomes 0.012 
IFI44L U2AF1 (S34) Interferon, extracellular exosomes 0.0086 
CD46 U2AF1 (S34) Focal adhesion & extracellular exosomes 0.039 
CRTC2 SF3B1 Extracellular exosomes 0.035 
FCGR2A U2AF1 (S34) Extracellular exosomes 0.016 
PPOX SF3B1, U2AF1 (R156/Q157) Heme biosynthesis 0.031 
AHSA2 SF3B1 HSP90 ATPase 0.029 
DHP5 SF3B1 Translation elongation factor 2 

modification 
0.026 

MECR U2AF1 (S34 & R156/Q157) Mitochondrial reductase 0.022 
NASP U2AF1 (S34) HSP90 binding 0.014 
PFDN5 U2AF1 (R156/Q157) Prefoldin subunit 0.042 
PABPC4 U2AF1 (R156/Q157) NMD mRNA decay 0.036 
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Figure 1: Aberrant splicing events in CD34+ cells of SFmut MDS patients. A-C, Venn 

Diagrams showing the aberrant splicing events identified in SF3B1 (A), SRSF2 (B) and 

U2AF1 (C) mutant MDS patients versus healthy controls and SFwt MDS patients. D-F, 

Doughnut charts showing the distribution of the aberrant splicing events identified in SF3B1 

(D), SRSF2 (E) and U2AF1 (F) mutant MDS cases by event type. For each category, the 

number of significant aberrant splicing event was normalized to the total number of events 

identified by the rMATS pipeline. G-I, Hierarchical clustering of SF3B1 (G), SRSF2 (H), 

and U2AF1 (I) mutant MDS samples, with wildtype MDS and healthy control samples using 

the rMATS-calculated inclusion levels of the 245, 236 and 287 aberrantly spliced events 

identified.  

 

Figure 2: Gene Ontology and Ingenuity Pathway Analysis of aberrantly spliced genes in 

SFmut MDS. A, Venn diagram showing the overlap of significant GOs identified in SF3B1, 

SRSF2 and U2AF1 mutant MDS, and visualization of the significant BP GO terms common 

to all splicing factor mutant MDS using a REVIGO treemap. REVIGO panel sizes are 

inversely proportional to enrichment p values. B-D, Ranked heatmaps, as determined by 

universal significance across all splicing factor mutation groups, showing the significant 

dysregulated pathways (B), top 10 transcriptional regulators (C), and top 6 drug/chemical 

genesets (D) in SF3B1, SRSF2 and U2AF1 mutant MDS. Only heatmap tiles with a -

log10pvalue >1.3 (p value <0.05) are shown. Transcriptional regulators and drug/chemical 

names, heatmaps are ranked by the lowest p-value identified in the SFmut group. 

 

Figure 3: Associations between aberrant splicing and clinical variables or patient 

survival. A-C Scatterplots of aberrant splicing values in AP1G2 (A), DOM3Z (B) and 

ERCC3 (C) and neutrophil counts (ANC) in MDS patients. D, Scatterplot of aberrant splicing 

values in NICN1 and platelet counts in MDS patients. E-H, Kaplan-Meier survival plots for 

individual isoforms of PTPRC and IFI44L in our MDS cohort (E and G respectively), and 

the TCGA AML cohort (F and H respectively). 

 

Figure 4: Aberrant splicing in BM cell populations of SFmut MDS. A-B, UpSet plots 

showing the overlap of aberrant splicing events identified in monocyte (MON), granulocyte 

(GRA) and erythroid (ERY) precursor cell populations isolated from SF3B1 (A) and SRSF2 

(B) mutant MDS patient samples. C-E, Ranked heatmaps showing the top 15 deregulated 

pathways (C and F), top 15 transcriptional regulators (D and G), and top 6 drug/chemical 
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genesets (E and H) in MON, GRA and ERY populations of SF3B1 mutant and SRSF2 

mutant MDS patients. Only heatmap tiles with a -log10pvalue >1.3 (p value <0.05) are 

shown. Heatmap pathways, transcriptional regulators and drug/chemical names are ranked by 

the IPA ranking score. 

 

Figure 5: Functional effects of AKAP8 and SEPT2 knockdown on erythroid 

differentiation. (A and H) Real-time quantitative PCR showing the mRNA knockdown of 

AKAP8 (A) and SEPT2 (H) in erythroid cells. B and I, Growth curves for erythroid cells with 

knockdown of AKAP8 (B) and SEPT2 (I). C and I, Cell cycle analysis of erythroid cells with 

knockdown of AKAP8 (C) and SEPT2 (I) on day 11 of culture. D-F and K-M, Flow 

cytometry quantification of erythroid differentiation. D and K, Percentage of 

CD71+CD235a+ cells in erythroid cultures with knockdown of AKAP8 (D) and SEPT2 (K) on 

day 11. E and L, Percentage of CD36+CD235a+ cells in erythroid cultures with knockdown 

of AKAP8 (E) and SEPT2 (L) on day 11. F and M, Percentage of CD71-CD235a+ cells in 

erythroid cultures with knockdown AKAP8 (F) and SEPT2 (M) on day 14. G and N, Number 

of BFU-E and CFU-E obtained from CD34+ progenitors with knockdown of AKAP8 (G) and 

SEPT2 (N) after 14 days in methylcellulose (colony-forming cell assays). Results shown in 

panels A-G were obtained from 5 independent experiments, except for panel C (3 replicates). 

Results shown in panels H-N were obtained from 4 independent experiments. Data represent 

the mean ± SEM. All p-values were obtained by 1-way ANOVA with Bonferroni’s post-test 

with the exception of panels G and N where 2-way ANOVA with Bonferroni’s post test was 

used. * = p<0.05, ** = p< 0.01, *** = p< 0.001. 
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