217 research outputs found

    Galaxy pairs in the SDSS - XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers.

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≀ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios ≀4, projected separations r p ≀ 30 kpc and velocity separations ΔV ≀ 300 km s -1, and have been selected to exhibit enhanced specific star formation rates (sSFRs). We calculate molecular gas (H 2) masses, assigning to each galaxy a physically motivated conversion factor αCO, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS; Saintonge et al.) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H 2 masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.Peer reviewe

    The neutral hydrogen cosmological mass density at z = 5

    Get PDF
    We present the largest homogeneous survey of z > 4.4 damped Lyα systems (DLAs) using the spectra of 163 QSOs that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, ΩHi. At such high redshift, important systematic uncertainties in the identification of DLAs are produced by strong intergalactic medium absorption and QSO continuum placement. These can cause spurious DLA detections, result in real DLAs being missed or bias the inferred DLA column density distribution. We correct for these effects using a combination of mock and higher resolution spectra, and show that for the GGG DLA sample the uncertainties introduced are smaller than the statistical errors on ΩHi. We find ΩHI=0.98+0.20−0.18×10−3 at 〈z〉 = 4.9, assuming a 20 per cent contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that ΩHi can be described by the functional form ΩHI(z)∝(1+z)0.4. This gradual decrease from z = 5 to 0 is consistent with the bulk of H I gas being a transitory phase fuelling star formation, which is continually replenished by more highly ionized gas from the intergalactic medium and from recycled galactic winds

    The First Detection of Cobalt in a Damped Lyman Alpha System

    Get PDF
    We present the first ever detection of Cobalt in a Damped Lyman Alpha system (DLA) at z = 1.92. In addition to providing important clues to the star formation history of these high redshift galaxies, we discuss how studying the Co abundance in DLAs may also help to constrain models of stellar nucleosynthesis in a regime not probed by Galactic stars.Comment: 4 pages, to appear in the proceedings of `New Quests in Stellar Astrophysics: The Link Between Stars and Cosmology', eds. M. Chavez, A. Bressan, A. Buzzoni, D. Mayy

    Do AGN triggering mechanisms vary with radio power? – II. The importance of mergers as a function of radio power and optical luminosity

    Get PDF
    Investigation of the triggering mechanisms of radio active galactic nuclei (radio AGN) is important for improving our general understanding of galaxy evolution. In the first paper in this series, detailed morphological analysis of high-excitation radio galaxies (HERGs) with intermediate radio powers suggested that the importance of triggering via galaxy mergers and interactions increases strongly with AGN radio power and weakly with optical emission-line luminosity. Here, we use an online classification interface to expand our morphological analysis to a much larger sample of 155 active galaxies (3CR radio galaxies, radio-intermediate HERGs, and Type 2 quasars) that covers a broad range in both 1.4 GHz radio power and [O III] λ5007 emission-line luminosity. All active galaxy samples are found to exhibit excesses in their rates of morphological disturbance relative to 378 stellar-mass- and redshift-matched non-active control galaxies classified randomly and blindly alongside them. These excesses are highest for the 3CR HERGs (4.7σ) and Type 2 quasar hosts (3.9σ), supporting the idea that galaxy mergers provide the dominant triggering mechanism for these subgroups. When the full active galaxy sample is considered, there is clear evidence to suggest that the enhancement in the rate of disturbance relative to the controls increases strongly with [O III] λ5007 emission-line luminosity but not with 1.4 GHz radio power. Evidence that the dominant AGN host types change from early-type galaxies at high radio powers to late-type galaxies at low radio powers is also found, suggesting that triggering by secular, disc-based processes holds more importance for lower-power radio AGN

    The Milky Way Bulge: Observed properties and a comparison to external galaxies

    Full text link
    The Milky Way bulge offers a unique opportunity to investigate in detail the role that different processes such as dynamical instabilities, hierarchical merging, and dissipational collapse may have played in the history of the Galaxy formation and evolution based on its resolved stellar population properties. Large observation programmes and surveys of the bulge are providing for the first time a look into the global view of the Milky Way bulge that can be compared with the bulges of other galaxies, and be used as a template for detailed comparison with models. The Milky Way has been shown to have a box/peanut (B/P) bulge and recent evidence seems to suggest the presence of an additional spheroidal component. In this review we summarise the global chemical abundances, kinematics and structural properties that allow us to disentangle these multiple components and provide constraints to understand their origin. The investigation of both detailed and global properties of the bulge now provide us with the opportunity to characterise the bulge as observed in models, and to place the mixed component bulge scenario in the general context of external galaxies. When writing this review, we considered the perspectives of researchers working with the Milky Way and researchers working with external galaxies. It is an attempt to approach both communities for a fruitful exchange of ideas.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen E., Peletier R., Gadotti D., Springer Publishing. 36 pages, 10 figure

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
    • 

    corecore