466 research outputs found

    The analysis of user behaviour of a network management training tool using a neural network

    Get PDF
    A novel method for the analysis and interpretation of data that describes the interaction between trainee network managers and a network management training tool is presented. A simulation based approach is currently being used to train network managers, through the use of a simulated network. The motivation is to provide a tool for exposing trainees to a life like situation without disrupting a live network. The data logged by this system describes the detailed interaction between trainee network manager and simulated network. The work presented here provides an analysis of this interaction data that enables an assessment of the capabilities of the trainee network manager as well as an understanding of how the network management tasks are being approached. A neural network architecture is implemented in order to perform an exploratory data analysis of the interaction data. The neural network employs a novel form of continuous self-organisation to discover key features in the data and thus provide new insights into the learning and teaching strategies employed

    Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation

    Full text link
    By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we augmented the kinetic equation by an empirical dissipation term modelling the strongly nonlinear process of white-capping. Fitting the two experiments, we determined the dissipation function due to wave breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness). The onset of white-capping can be compared to a second-order phase transition. This result corroborates with experimental observations by Banner, Babanin, Young.Comment: 5 pages, 5 figures, Submitted in Phys. Rev. Letter

    An estimate of the global distribution of radon emissions from the ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 31 (2004): L19104, doi:10.1029/2004GL021051.There is a need for improved estimates of the radon (222Rn) flux density from the ocean for use in the modeling and interpretation of atmospheric radon in global climate and air pollution studies. We use a modification of a frequently used model of gas transfer to generate global predictions of ocean radon flux density for each month of the year (climate averaged) on a 192 by 94 global grid. Compared with the often-used approximation of a constant radon flux from the ocean, the model's predictions indicate large variations over regions of the ocean (a factor of ten is not uncommon). For example, latitude bands near the equator and Southern Ocean are predicted to emit relatively high average radon flux compared with other latitude bands. The predicted annually-averaged flux density from the ocean is 0.0382 mBq m−2 s−1 (0.00182 atoms cm−2 s−1), smaller than some commonly-used estimates

    Modification of Turbulence at the Air-Sea Interface Due to the Presence of Surfactants and Implications for Gas Exchange. Part I: Laboratory Experiment

    Get PDF
    The air-sea gas transfer of gases like CO2 is substantiallydetermined bythe properties of the aqueous diffusion sublayer and free-surface turbulent boundarylayer. Little is known about the effect of surfactants on turbulence in the near-surface layer of the ocean. In order to investigate the effect of surfactants on turbulent exchanges below the air-sea interface, we have conducted a series of laboratoryexperiments at the UM RSMAS Air-Sea Interaction Saltwater Tank (ASIST) facility. Results from these experiments demonstrate that the surfactant monolayer suppresses turbulence and reduces drag below the water surface and increases the surface drift velocity. This effect is important for parameterization of the interfacial component of gas exchange under low wind speed conditions. From the theoretical standpoint, the mechanism of the turbulence reduction can be explained bythe modification of the “streaks” in the buffer zone near the interface byvisco-elastic properties of the water surface when surfactants are present. These findings are consistent with results from high-resolution non-hydrostatic numerical simulations presented in a companion paper.https://nsuworks.nova.edu/occ_facbooks/1051/thumbnail.jp

    Frequency References for Gravitational Wave Missions

    Get PDF
    The mitigation of laser frequency noise is an important aspect of interferometry for LISA-like missions. One portion of the baseline mitigation strategy in LISA is active stabilization utilizing opto-mechanical frequency references. The LISA optical bench is an attractive place to implement such frequency references due to its environmental stability and its access to primary and redundant laser systems. We have made an initial investigation of frequency references constructed using the techniques developed for the LISA and LISA Pathfinder optical benches. Both a Mach-Zehnder interferometer and triangular Fabry-Perot cavity have been successfully bonded to a Zerodur baseplate using the hydroxide bonding method. We will describe the construction of the bench along with preliminary stability results

    Traffic Instabilities in Self-Organized Pedestrian Crowds

    Get PDF
    In human crowds as well as in many animal societies, local interactions among individuals often give rise to self-organized collective organizations that offer functional benefits to the group. For instance, flows of pedestrians moving in opposite directions spontaneously segregate into lanes of uniform walking directions. This phenomenon is often referred to as a smart collective pattern, as it increases the traffic efficiency with no need of external control. However, the functional benefits of this emergent organization have never been experimentally measured, and the underlying behavioral mechanisms are poorly understood. In this work, we have studied this phenomenon under controlled laboratory conditions. We found that the traffic segregation exhibits structural instabilities characterized by the alternation of organized and disorganized states, where the lifetime of well-organized clusters of pedestrians follow a stretched exponential relaxation process. Further analysis show that the inter-pedestrian variability of comfortable walking speeds is a key variable at the origin of the observed traffic perturbations. We show that the collective benefit of the emerging pattern is maximized when all pedestrians walk at the average speed of the group. In practice, however, local interactions between slow- and fast-walking pedestrians trigger global breakdowns of organization, which reduce the collective and the individual payoff provided by the traffic segregation. This work is a step ahead toward the understanding of traffic self-organization in crowds, which turns out to be modulated by complex behavioral mechanisms that do not always maximize the group's benefits. The quantitative understanding of crowd behaviors opens the way for designing bottom-up management strategies bound to promote the emergence of efficient collective behaviors in crowds.Comment: Article published in PLoS Computational biology. Freely available here: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.100244

    Asymmetry of wind waves studied in a laboratory tank

    No full text
    International audienceAsymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves

    Microwave Gaseous Discharges

    Get PDF
    Contains reports on three research projects

    Freely decaying weak turbulence for sea surface gravity waves

    Full text link
    We study numerically the generation of power laws in the framework of weak turbulence theory for surface gravity waves in deep water. Starting from a random wave field, we let the system evolve numerically according to the nonlinear Euler equations for gravity waves in infinitely deep water. In agreement with the theory of Zakharov and Filonenko, we find the formation of a power spectrum characterized by a power law of the form of ∣k∣−2.5|{\bf k}|^{-2.5}.Comment: 4 pages, 3 figure
    • 

    corecore