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ABSTRACT 

A novel method for the analysis and interpretation of data that 
describes the interaction between trainee network managers and 
a network management training tool is presented. A simulation 
based approach is currently being used to train network 
managers, through the use of a simulated network. The 
motivation is to provide a tool for exposing trainees to a life like 
situation without disrupting a live network. The data logged by 
this system describes the detailed interaction between trainee 
network manager and simulated network. The work presented 
here provides an analysis of this interaction data that enables an 
assessment of the capabilities of the trainee network manager as 
well as an understanding of how the network management tasks 
are being approached. A neural network architecture is 
implemented in order to perform an exploratory data analysis of 
the interaction data. The neural network employs a novel form of 
continuous self-organisation to discover key features in the data 
and thus provide new insights into the learning and teaching 
strategies employed. 
 
Keywords: Network Management, Simulation based training 
tool, Neural Networks, Data Analysis. 

 

1.INTRODUCTION 

The simulation based approach to the task of training network 
managers was originally presented in [1] and aims to provide a 
tool for exposing trainees to a life like situation, where both 
normal network operation and ‘fault’ scenarios can be simulated 
without disrupting a live network. The approach makes use of a 
production-standard network management platform, interacting 
with processes (model agents) representing network entities. This 
paper presents the analysis and interpretation of the interaction 
between trainee network managers and the network management 
training tool, using neural networks. The aim is to provide a new 
insight into the interaction data in order to support and 
complement learning and teaching activities and outcomes. 
 
The simulation tool has been successfully used in the training of 
network managers at undergraduate and postgraduate level. 
Tasks are set such as exploration exercises to identify active 
components of a network and the control of simulated ‘fault’ 

conditions. The student needs to quickly establish how to 
approach a given task, which devices need to be interrogated, 
parameters of which networking protocol offer the most relevant 
information on network traffic and what parameters need to be 
monitored in order to obtain information on the status of the 
network quickly and efficiently. The student selects commands 
that to the best of their knowledge represent the most 
appropriate course of action required to manage the network and 
data describing their actions is automatically computer logged to 
an output file. It is this data that is under scrutiny here in order 
to assess the capabilities and effectiveness of the trainee network 
manager from how the tasks are being approached. The data 
includes a description of the commands issued by the student 
that request current values of, or set up processes to monitor, 
various parameters of the network. The commands that may be 
used can be divided into groups defined by the layer (or 
networking protocol) that they apply to, such as IP, TCP, UDP, 
ICMP or SNMP. Other information includes the node/device 
within the network that the command is directed at, any 
associated variables and a date and time stamp for each 
command.  

 
2.NEURAL NETWORK APPROACH 

The conventional method for assessing the students’ behaviour 
is through a detailed visual examination of the output file 
created during a network management session. Through prior 
knowledge of the task in hand, an inspection of the devices 
located within the network and commands used, a picture of the 
accuracy and completeness of the suggested solution and 
whether it was achieved within an acceptable time limit is given. 
Whilst it can be determined whether the overall desired outcome 
was achieved it can be difficult to follow the logical sequence of 
events, particularly in a lengthy task and if many devices are 
involved. It is therefore difficult to determine approaches and 
methods being adopted. Applying neural networks to the user 
behaviour data presents an opportunity to find hidden patterns 
and establish relationships between variables that would not 
have necessarily been identified otherwise. This may offer new 
information about the interaction occurring between student and 
simulation platform.  
 



An unsupervised technique is adopted as unsupervised 
classification or clustering requires no a priori knowledge about 
the data. Classes or categories are formed by the neural network 
according to attributes of the data and it is then possible to make 
an intelligent interpretation of the results by determining which 
properties the neural network has used in its classification [2-4].  
 
The objectives to be acheived through the establishment of 
relationships identified by the neural network include:  
 
(i) A more detailed examination of the approaches being 

undertaken to complete specific tasks, i.e. are the 
preferred (taught) methods being implemented or 
alternative less (or more) efficient methods? 

 
(ii) To observe whether basic commands are being over-used 

in place of more specialized, directed commands.  
 
(iii) To investigate whether commands that are expected to 

follow a sequence of events, do so. i.e. is information 
about the network previously obtained, being used to its 
maximum potential? 

 
(iv) Do some functionalities of the simulator impede rather 

than advance the students’ progress? 
 
(v) Does the logical sequence of events demonstrate a basic 

understanding of the network structure? 
 
In general, as well as being able to assess the students 
capabilities and effectiveness as network managers  and 
highlight areas where knowledge is lacking, the results from this 
research also provide an opportunity to assess teaching methods 
and emphasize areas that may need further explanation. 
 
There have been many projects involving NNs for user data 
analysis and pattern discovery. Zhang et al [5] used NNs for 
learning relations between textual data to aid the construction of 
hypertext computer assisted learning material. 
 

3. THE NEURAL NETWORK 

The P-ART has been selected to perform the classification of the 
user data. This is because it makes use of a novel learning 
algorithm that helps to classify all the data according to different 
attributes and yet allows a level of control over the properties of 
the categoreis being formed. These algorithms are summarised 
below and described in detail in [2-4]. 
 
Performance-guided ART (P-ART) Architecture 
The P-ART architecture is illustrated in Fig. 1.  
 
The P-ART network is a modular, multi-layered architecture and 
was originally presented in [2]. It comprises two P-ART 
modules and an external input that influences the learning 
technique and therefore the properties of the category groupings 
that are formed. The learning combines Learning Vector 
Quantisation with Adapaptive resonace Theory (ART). ART [6] 
is an unsupervised adaptive technique that maps n-dimensional 
input vectors into a number of output categories or classes based 
upon the input pattern’s features. The network performs real-
time learning and can form new output categories when a novel 
input pattern is presented.  
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Figure 1: P-ART Network 

 
The P-ART network is composed of 2 modules, a Distributed P-
ART (dP-ART) network, and a Selection P-ART (sP-ART). The 
F11 ↔ F21 connections of the dP-ART network and F12 ↔ F22 
of the sP-ART are interconnected through weighted bottom-up 
and top-down connections that can be modified during the 
learning stage. For clarity, only the connections from the F1 
layer to the active (winning) F2 node in each P-ART module are 
shown. On presentation of an input pattern at the input layer 
F01, the dP-ART will learn to group the input patterns according 
to their general features using the novel learning principles of 
the snap-drift algorithm recently developed [2-4]. The new 
version used here is fully self-organising, and toggles between 
snap and drift learning modes on successive epochs (complete 
passes of the data). 
 
The ‘Snap-Drift’ Algorithm 
In an environment where new patterns are introduced over time, 
the learning utilises a novel snap-drift algorithm based on fast, 
convergent, minimalist learning (snap) and cautious learning 
(drift). Snap is based on a modified form of ART; and drift is 
based on Learning Vector Quantization (LVQ) [7]. In general 
terms, the snap-drift algorithm can be stated as: 
 

)()__( LVQARTLearningFastw σα +=  

(1) 
 

In this paper, α and σ  are toggled between (0,1) and (1,0) at 
the end of each epoch.  The point of this is to perform two 
complementary forms of feature discovery within one system. 
The ART style learning acquires features characterized by the 
intersection of patterns, whereas LVQ performs clustering, 
discovering features that are averaged across patterns.  
 
The Distributed P-ART (dP-ART) Learning 
On presentation of an input pattern, the bottom-up activation is 
calculated. Then the D F21 nodes with the highest bottom-up 
activation are selected: 
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D is set to 3 in this application. The three F21 nodes learn 
according to: 
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where wji= top-down weights vectors; I = binary input vectors,  
and β  = the drift speed constant = 0.5. When α =1, w updates 
simply to: 
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This invokes fast minimalist learning, causing the top-down 
weights to reach their new asymptote on each input presentation: 
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(5) 
In contrast, when σ = 1: 
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This causes a simple form of clustering or LVQ at a speed 
determined by β. Overall the learning is a combination of the 
two forms of adaptation as the mode is toggled between snap 
and drift. The novel bottom-up learning of the P-ART is a 
normalised version of the top-down learning: 
 

|| )(

)(
)(

new
iJ

new
iJnew

Ji
w

w
w =  

(7) 
 

where wiJ
(new) = top-down weights of the network after 

learning.    
 

4.METHODOLOGY 
A methodology is developed and presented here that enables the 
application of a neural network to any ‘interaction’ or ‘user 
behaviour’ data so it may be implemented in other on-line 
teaching environments. The aim is to minimise the pre-and post-
processing tasks that are required through the definition of a 
structured approach. In order to obtain an analysis of this kind of 
data through the use of a neural network (NN), there are several 
considerations that need to be given to the method and the stages 
of transformation the data must undergo before it is suitable as 
an input to a neural network. A methodology is developed and 
realised in the form of a set of procedures that embrace the 
following processes: (i) Pre-processing: conversion of the ‘raw 
user data’ into a form suitable for input to the neural network as 
the computer logged data contains both qualitative and 
quantitative data and therefore requires careful processing and 
encoding (ii) Selection of optimal neural network parameters, 
(iii) Post-processing: manipulation of the results in order to 
provide a novel and intelligent analysis. These stages, including 
considerations on the contextual aspect of the data and 
descriptions of how the data is encoded, are discussed in this 
paper and described in terms of the network management user 
behaviour being analysed. The methodology is summarised by 
way of a flow chart in Figure 2. 
 
There are some fundamental issues regarding collection and 
initial assessment of the data that need to be addressed initially 
such as: How much data is available? Is there a constant output 

of data? Is there sufficient data to adequately train and test the 
network? 
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Figure 2: General Methodology 
 
The performance of a NN is dependent on the training data. The 
training data must be representative of the task being learnt and 
tends to be chosen through trial and error before finding an 
acceptable training data set [8]. The production of the network 
management data is on-going but for the purposes of this paper a 
sample has been used to provide an initial evaluation of the data. 
Fifty-five datasets are used, where a single dataset represents a 
trainee undertaking a single network management task.  
 
The next consideration in pre-processing the data is how to 
structure the encoded data in order to ensure all appropriate 
variables contribute towards the NN’s decision making and is in 
a form suitable for input to a NN. The data is initially primary 
encoded into a list of consecutive events, where an event 
comprises all the information required to describe what is taking 
place at a given instant in time. The aim is to ensure that each 
event comprises the same amount of information in order to 
introduce some structure to the data. 
 
The network management data is already in a format that lists 
events, it simply needs condensing into the relevant information. 
For the user behaviour data under scrutiny here, this takes the 
form: {Action ; Node Description ; Duration}. Action describes 
the command issued by the student, Node Description refers to 
which device the command relates to and whether it is active or 
inactive and Duration is the time taken to execute the current 
command taken from time of issue of the previous command. 
Determining the structure of an event is the first level of 
encoding and the resulting event is called the primary encoded 
data. This process reduces the feature space and simplifies the 
data therefore care must be taken to ensure relevant information 
is not excluded. 
 



Another consideration is how to interpret the context of the data. 
Although the data is in a serial format, relationships between 
consecutive and subsequent events may be an important factor 
that needs to be considered. When the NN receives an input 
vector, it compares it to previously stored input patterns and 
then either puts it into the class that most closely matches it, or 
if no such class exists, creates a new one. Any patterns that are 
being identified within the data are so across input vectors. 
Therefore the length and quantity of data within each input 
vector is extremely important. The investigation requires several 
stages where each stage can be described in terms of the length 
of the input vector, which is a multiple of events (1xEvent, 
2xEvent etc.). The first stage is simply concerned with the 
occurrence of individual events, i.e. an input vector is equal to 1 
event. Whilst this provides information on the significance of 
each of the different events within a network management 
session, no information is afforded on the context of events. The 
second stage of investigations tackles the contextual aspect of 
the data. An input vector presented to the NN comprises 2 or 
more consecutive events. Consecutive input vectors comprise 
overlapping events as illustrated in the following equation. The 
final, binary encoded m-th input vector that is presented to the 
initial layer of the neural network, for the N-th stage of 
investigations, where N is the number of events per input vector 
(NxEvent) is represented by equation (8), where Em+n is the 
(m+n)th event and U  represents the concatenation function.  
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Encoding the Network Management Data 
Once the structure of an event has been established, each 
component (Action, Node Description and Duration) that makes 
up the event can be individually coded and the coded 
components concatenated to form the overall input vector. It is 
necessary to know how many different values each of these 
components may take to facilitate the implementation of an 
appropriate coding scheme. Examples of the coding scheme for 
the Action component are illustrated in Table 1 in terms of a 
sample of the possible actions, their primary encoded form, and 
the final coded format (‘O’ represents binary ‘1’ and ‘X’ binary 
‘0’). The first segment of the codeword distinguishes between 
categories or layers the action belongs to, such as IP or TCP. 
The second segment distinguishes between the different actions 
within a category.  
 

Table 1: Encoded Action Component of an Event 
 

 Name 
(Primary Encoding) 

Secondary Encoding 

1 System Info(SI) OXXXXXXX XXXXXXX 
2 IF Status(IF St) XOXXXXXX OXXXXXX 
3 IF Parameter(IF P) XOXXXXXX XOXXXXX 
4 IF Usage(IF Usg) XOXXXXXX XXOXXXX 
5 IF Error(IF Err) XOXXXXXX XXXOXXX 
6 IF Quality(IF Q) XOXXXXXX XXXXOXX 
7 IP Stats(IP Stat) XXOXXXXX XXXXXOX 

…. …… ….. ….. 
22 Start Monitor(Smon) XXXXXXXO XXXXXOX 
23 Help (Help) XXXXXXXO XXXXXXO 

 

The second component of an event is the Node Description. 
Again, the codeword is segmented. The first bit of the codeword 
indicates whether the node is active (O) or inactive (X) and the 
remaining 14 bits are used to distinguish between the active 
nodes. Finally, the third component is the Duration. This is 
useful as it gives an indication of the time taken to execute a 
command. A coarse coding scheme [9] is used, where 
neighbouring sub-divisions are allocated codewords that differ 
from each other by 1 bit position. An example event in its 
original and encoded formats are illustrated below. 
 
Original User Data:  System Information{NODE 
node53 node53 192.3.47.4 0 {}}Fri Apr 4 
15:47:32 2003 
Primary Encoded Data:   { SI ; 1/4 ; t0  } 
Secondary Encoded Data: 

Duration

{OXXXXXXXXXXXXXXOXXXOXXXXXXXXXXXXXX}

Action Node Description  
Neural Network Parameters 
There are several parameters concerning the dimensions of the 
NN and the level of categorisation. The NN architecture has 
been presented in detail elsewhere [2-4]. In this paper, the 
vigilance parameter is set to 0.3, which in effect means that the 
criterion for allowing a node to respond and learn the input 
pattern is a 30% match. The number of input neurons to the dP-
ART is determined by the length of the input vector. The 
number of output neurons for the dP-ART and therefore the 
input neurons the sP-ART, has been set at 500 which has proved 
large enough to avoid saturation of all the output neurons of the 
dP-ART. The number of output neurons of the sP-ART has been 
set at 150 in order to limit the number of output classes that can 
be formed to a manageable number and yet ensure that the 
majority (approximately 95%) of inputs are classified.  
 

5.RESULTS 

The P-ART is implemented in C++ and a total of 2700 input 
vectors are input to the NN at each stage of the investigation.  
The inputs are binary vectors, constructed using the encoding 
scheme detailed previously, and the output is a corresponding 
column of numbers indicating the output class selected for that 
input. An analysis is performed on the output of the neural 
network in order to see how the data has been classified. The 
results identify both commonly occurring combinations of 
events and other interesting, less common, sequences of events 
that provide insights into the students’ behaviour. This is used to 
compare instances of good and bad practice and reveal patterns 
embedded within the data that may not have been recognized 
through other methods. Actions are referred to by number or 
primary encoded format. These and their basic functionalities 
within the network management simulator are summarised in 
Table 2 below. 
 
Firstly, it is necessary to assess the number and size of the 
output classes that have been formed, i.e. how many output 
nodes of the NN are used and how many input vectors are 
assigned to each of these. The results are easily rearranged, 
grouped and manipulated in order to make different 
comparisons. 

 
 



Table 2: Summary of Actions 
 

 Primary 
Encoding 

Description of functionality 

1 SI Display information of the system group 
2 IF St Display information of the interfaces 
3 IF P Display interface parameter like speed 
4 IF Usg Display interface statistics 
5 IF Err Display interface statistics 
6 IF Q Show error and discard rate for each interface 
7 IP Stat Display statistics and parameters of IP layer 
8 IP A Show IP addresses used by this device 
9 IP R Display routing table 
10 IP ARP Display other devices its been in contact with 
11 TCP Stat Display statistics and parameters of TCP layer 
12 TCP C Display status of existing TCP connections 
13 UDP Stat Display statistics and parameters of UDP layer 
14 UDP L Display status of existing USP listener 
15 ICMP Stat Display stats and parameters of ICMP layer 
16 SNMP Stat Display stats and parameters of SNMP layer 
17 W Walk through MIB tree and print object values 
18 SetP Set SNMP parameters 
19 monV Monitor an SNMP variable in a stripchart 
20 Del Delete the monitoring proceess 
21 Lmon Set up monitoring process 
22 Smon Start monitoring process 
23 Help List choice of actions 

 
Results are reorganized and displayed by output node in order to 
visualise the input vectors clustered within each output class. 
The second stage is to establish which of the classes formed are 
major, significant and minority classes. Major classes are the 
most commonly used classes, significant classes are smaller but 
still populated sufficiently have an impact on conclusions, 
whereas minority classes are those that are only used once or 
twice and have little impact so are disregarded. Once the results 
are grouped by output class the key or dominant features of each 
group are established. A dominant feature is defined as a feature 
common to over 90% of the input vectors within that class. It 
may take a single value or a group of values, e.g. action 1 (SI) or 
actions 2-6 (all IF type actions). A class may be defined by a 
single dominant feature, such as an action, or by several, such as 
action and node. Where the dominant features are discussed the 
terminology {action ; node ; duration} is adopted. For example 
{ 12 ; 1/- ; - } represents an output class where a majority of the 
input vectors within this class are action 12 (TCP C) 
implemented on an unspecific active node. 
 
1xEvent 

These results provide information on the significance of events. 
Table 3 summarises some of the classes that have an action or 
group of actions as a dominant feature along with their size 
(combined size where more than one class exists with the same 
feature).  

Action 1 (SI) is by far the most frequently used action. This is 
expected as this is the conventional method by which to obtain 
standard information regarding the network devices. Action 21 
(Lmon) is also a common action which is also expected as this 
enables the monitoring of interface (network card) loads and is a 
common networking requirement.  

In respect to types of actions, it is the IP actions that are the 
most commonly applied, which implies a good use of 
commands. IP layer actions and action 12 (TCP C) reflect 
requirements to determine network topology through address 
structure and are encouraged methods of exploration.  

 

Table 3: Dominant Features for 1xEvent Results 

Action Number 
of classes 

Class size 

1 (SI) 4 813 

2 (IF St) 2 49 

3 (IF P) 1 47 

6 (IF Q) 1 10 

8 (IP A) 2 153 

9 (IP R) 1 169 

10 (IP ARP) 3 181 

12 (TCP C) 2 148 

21 (Lmon) 1 164 

17-23 (monitor actions) 5 146 

2-6 (IF actions) 2 200 

11-16 (TCP, UDP, ICMP and SNMP ) 1 13 

 

Due to the way the NN has grouped certain inputs it is possible 
to compare classes that feature actions directed at an inactive 
node with those directed at active nodes. For example, the four 
output classes associated with action 1 (SI) are summarised in 
terms of their dominant features and size in Table 4. 

 

Table 4: Major Output Classes Featuring ‘SI’ 

Output Class Dominant Features Class Size 

5 {  1  ;  1/9  ; 1-5 } 64 

14 {  1  ;  0/0  ; 1    } 215 

16 {  1  ;  1/-  ; 1-7 } 455 

28 {  1  ;  0/0  ; -    } 79 

 

Classes 5 and 16 illustrate action 1 applied to an active node 
within the network and have a combined size of 519. Classes 14 
and 28 illustrate the same action but applied to an inactive node, 
and have a combined size of 294. The latter two classes imply 
inefficient practice or limited knowledge of the network 
structure and make up 36% of the total number of occurrences 
of this command. 

Similarly, the classes featuring action 8 (IP A), as an individual 
dominant feature are illustrated in Table 5. Those featuring this 
action applied to an inactive node (output class 47) make up 
27% of the total.  
 
 

Table 5: Output Classes Featuring (IP A) 

Output Class Dominant Features Class Size 
30 

 
{  8 ; 1/-  ;  -    } 112 

47 
 

{  8 ; 0/0  ; 1-4  } 41 



 
However, for action 10 (IP ARP), as illustrated in Table 6, the 
percentage of cases this action is applied to an inactive node, is 
only 9%, illustrating a more efficient application of this 
particular command. 
 
 

Table 6: 1xEvent Output Classes Featuring (IP ARP) 

Output Class Dominant Features Class Size 
2 {  10 ;  1/1  ; 1-2 } 

 
36 

34 {  10 ;  1/-  ; 1-5 } 
 

128 

40 {  10 ;  0/0  ; 1-4 } 
 

17 

 

2xEvent and 3xEvent 

Whereas the 1xEvent results are useful to determine the 
frequency of specific events, the 2xEvent and 3xEvent results 
can be used to identify relationships between consecutive 
events. 

A strong relationship exists between action 1 (SI), and the 
monitoring actions. Several output classes (combined size of 
241) have been created that illustrate this action both preceding 
and following a monitoring action. Another interesting 
observation is the formation of several output classes that 
feature inactive nodes as dominant features in consecutive 
events. For the 2xEvent results, four output classes are formed 
that feature an inactive node in both events. One of these is a 
major class (size 105) and contains instances when the SI 
command is repeatedly implemented on an inactive node. This 
behaviour implies an ineffective use of the SI command, both 
due to its repetition and it being directed at an inactive node. 
Major classes where inactive nodes appear as dominant features 
in both events of an episode make up 7% of the overall major 
classes for the 2xEvent results. Extending this investigation to 
the 3xEvent results to determine how common it is that three 
consecutive events feature an inactive node, it is seen that four 
classes are formed. One is of a significant size (33) and again 
shows repeated use of the SI command on an inactive node. 

As expected from the 1xEvent results, the SI command features 
most prominently. For the 2xEvent results it is a dominant 
feature of four out of the fourteen major classes (45%) and is a 
dominant feature of both events in three of these. For the 
3xEvent results, many of the classes formed are not defined by 
multiple specific dominant features. This is because although the 
input vector length has increased the vigilance parameter has 
remained the same in order to encourage a more generalised 
clustering of the input patterns.  
 
One interesting result is the output classes that highlight events 
that follow action 1 (SI) – i.e. what the trainee manager does 
once basic system information has been obtained. The most 
popular course of action following SI is a repetition of the same 
action (combined size 165). The network management simulator 
has a functionality that allows the selection of multiple nodes 
and the application of a single action to each of the nodes 
selected. Whilst this feature exists, it is not an efficient method 
for collating information on the network as redundant 
information is gathered and therefore has implications on the 
bandwidth required due to unnecessary network traffic being 

generated. The output classes discussed here, with the repetition 
of the command over 3 consecutive events, implies the use of 
this simulator feature, which in turn implies lack of 
consideration to the way in which the exploration of the network 
is conducted. In comparison, the preferred course of action to 
follow the SI action is the use of IP layer commands to provide a 
more thorough and yet directed interrogation of network 
devices. This does appear as a dominant feature, but less 
frequently than the repeated use of SI (combined size 49). 
 

6.CONCLUSIONS AND FURTHER WORK 

A novel method for the analysis of interactions between a 
trainee network manager and a network management training 
platform has been presented. The method has been used to 
uncover hidden patterns in user behaviour and highlight 
instances of good and bad practice, which has consequently lead 
to novel insights into the learning experiences of the trainee. 
 
The overall project can be broken down into three stages, as 
illustrated in Figure 3.  
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Figure 3: Future Stages of the Project 
 

Stage I has been described here and planned future stages 
include development of integrated post-processing operations to 
enable automated definition of the dominant features of the 
clusters formed and the development of algorithms that allow 
analyst influence on the type of clusters being formed (Stage II). 
The eventual aim is to develop and integrate a real-time 
feedback system to the user of the Network Management 
Simulator (trainee), to provide on-line tutoring to support and 
enhance learning and teaching strategies offered by the training 
tool (Stage III). The feedback system would respond to real-time 
operation of the simulated network with advice in response to 
the approaches chosen by the trainee network manager. 
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