
Open Research Online
The Open University’s repository of research publications
and other research outputs

The analysis of user behaviour of a network
management training tool using a neural network
Journal Item
How to cite:

Donelan, H; Pattinson, C and Palmer-Brown, D (2006). The analysis of user behaviour of a network management
training tool using a neural network. Journal of Systemics, Cybernetics and Informatics, 3(5)

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://www.iiisci.org/Journal/SCI/Abstract.asp?var=&id=P556837

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://www.iiisci.org/Journal/SCI/Abstract.asp?var=&id=P556837
http://oro.open.ac.uk/policies.html

The Analysis of User Behaviour of a Network Management Training Tool

using a Neural Network

Helen DONELAN and Colin PATTINSON
Computer Communications Research Group

Leeds Metropolitan University,
Leeds, LS6 3QS, UK

and

Dominic PALMER-BROWN

School of Computing and Technology,
University of East London,

Longbridge Road, Essex, RM8 2AS

ABSTRACT

A novel method for the analysis and interpretation of data that
describes the interaction between trainee network managers and
a network management training tool is presented. A simulation
based approach is currently being used to train network
managers, through the use of a simulated network. The
motivation is to provide a tool for exposing trainees to a life like
situation without disrupting a live network. The data logged by
this system describes the detailed interaction between trainee
network manager and simulated network. The work presented
here provides an analysis of this interaction data that enables an
assessment of the capabilities of the trainee network manager as
well as an understanding of how the network management tasks
are being approached. A neural network architecture is
implemented in order to perform an exploratory data analysis of
the interaction data. The neural network employs a novel form of
continuous self-organisation to discover key features in the data
and thus provide new insights into the learning and teaching
strategies employed.

Keywords: Network Management, Simulation based training
tool, Neural Networks, Data Analysis.

1.INTRODUCTION

The simulation based approach to the task of training network
managers was originally presented in [1] and aims to provide a
tool for exposing trainees to a life like situation, where both
normal network operation and ‘fault’ scenarios can be simulated
without disrupting a live network. The approach makes use of a
production-standard network management platform, interacting
with processes (model agents) representing network entities. This
paper presents the analysis and interpretation of the interaction
between trainee network managers and the network management
training tool, using neural networks. The aim is to provide a new
insight into the interaction data in order to support and
complement learning and teaching activities and outcomes.

The simulation tool has been successfully used in the training of
network managers at undergraduate and postgraduate level.
Tasks are set such as exploration exercises to identify active
components of a network and the control of simulated ‘fault’

conditions. The student needs to quickly establish how to
approach a given task, which devices need to be interrogated,
parameters of which networking protocol offer the most relevant
information on network traffic and what parameters need to be
monitored in order to obtain information on the status of the
network quickly and efficiently. The student selects commands
that to the best of their knowledge represent the most
appropriate course of action required to manage the network and
data describing their actions is automatically computer logged to
an output file. It is this data that is under scrutiny here in order
to assess the capabilities and effectiveness of the trainee network
manager from how the tasks are being approached. The data
includes a description of the commands issued by the student
that request current values of, or set up processes to monitor,
various parameters of the network. The commands that may be
used can be divided into groups defined by the layer (or
networking protocol) that they apply to, such as IP, TCP, UDP,
ICMP or SNMP. Other information includes the node/device
within the network that the command is directed at, any
associated variables and a date and time stamp for each
command.

2.NEURAL NETWORK APPROACH

The conventional method for assessing the students’ behaviour
is through a detailed visual examination of the output file
created during a network management session. Through prior
knowledge of the task in hand, an inspection of the devices
located within the network and commands used, a picture of the
accuracy and completeness of the suggested solution and
whether it was achieved within an acceptable time limit is given.
Whilst it can be determined whether the overall desired outcome
was achieved it can be difficult to follow the logical sequence of
events, particularly in a lengthy task and if many devices are
involved. It is therefore difficult to determine approaches and
methods being adopted. Applying neural networks to the user
behaviour data presents an opportunity to find hidden patterns
and establish relationships between variables that would not
have necessarily been identified otherwise. This may offer new
information about the interaction occurring between student and
simulation platform.

An unsupervised technique is adopted as unsupervised
classification or clustering requires no a priori knowledge about
the data. Classes or categories are formed by the neural network
according to attributes of the data and it is then possible to make
an intelligent interpretation of the results by determining which
properties the neural network has used in its classification [2-4].

The objectives to be acheived through the establishment of
relationships identified by the neural network include:

(i) A more detailed examination of the approaches being

undertaken to complete specific tasks, i.e. are the
preferred (taught) methods being implemented or
alternative less (or more) efficient methods?

(ii) To observe whether basic commands are being over-used

in place of more specialized, directed commands.

(iii) To investigate whether commands that are expected to

follow a sequence of events, do so. i.e. is information
about the network previously obtained, being used to its
maximum potential?

(iv) Do some functionalities of the simulator impede rather

than advance the students’ progress?

(v) Does the logical sequence of events demonstrate a basic

understanding of the network structure?

In general, as well as being able to assess the students
capabilities and effectiveness as network managers and
highlight areas where knowledge is lacking, the results from this
research also provide an opportunity to assess teaching methods
and emphasize areas that may need further explanation.

There have been many projects involving NNs for user data
analysis and pattern discovery. Zhang et al [5] used NNs for
learning relations between textual data to aid the construction of
hypertext computer assisted learning material.

3. THE NEURAL NETWORK

The P-ART has been selected to perform the classification of the
user data. This is because it makes use of a novel learning
algorithm that helps to classify all the data according to different
attributes and yet allows a level of control over the properties of
the categoreis being formed. These algorithms are summarised
below and described in detail in [2-4].

Performance-guided ART (P-ART) Architecture
The P-ART architecture is illustrated in Fig. 1.

The P-ART network is a modular, multi-layered architecture and
was originally presented in [2]. It comprises two P-ART
modules and an external input that influences the learning
technique and therefore the properties of the category groupings
that are formed. The learning combines Learning Vector
Quantisation with Adapaptive resonace Theory (ART). ART [6]
is an unsupervised adaptive technique that maps n-dimensional
input vectors into a number of output categories or classes based
upon the input pattern’s features. The network performs real-
time learning and can form new output categories when a novel
input pattern is presented.

Snap-drift toggle
on each epoch

Input
Pattern

(I)

F22

F2 1
 F1 2

 F11

F01
 Selection P-ART (sP - ART)

(Categorisation)

Distributed P -ART (dP-ART)
(Feature Extraction)

Figure 1: P-ART Network

The P-ART network is composed of 2 modules, a Distributed P-
ART (dP-ART) network, and a Selection P-ART (sP-ART). The
F11 ↔ F21 connections of the dP-ART network and F12 ↔ F22
of the sP-ART are interconnected through weighted bottom-up
and top-down connections that can be modified during the
learning stage. For clarity, only the connections from the F1
layer to the active (winning) F2 node in each P-ART module are
shown. On presentation of an input pattern at the input layer
F01, the dP-ART will learn to group the input patterns according
to their general features using the novel learning principles of
the snap-drift algorithm recently developed [2-4]. The new
version used here is fully self-organising, and toggles between
snap and drift learning modes on successive epochs (complete
passes of the data).

The ‘Snap-Drift’ Algorithm
In an environment where new patterns are introduced over time,
the learning utilises a novel snap-drift algorithm based on fast,
convergent, minimalist learning (snap) and cautious learning
(drift). Snap is based on a modified form of ART; and drift is
based on Learning Vector Quantization (LVQ) [7]. In general
terms, the snap-drift algorithm can be stated as:

)()__(LVQARTLearningFastw σα +=

(1)

In this paper, α and σ are toggled between (0,1) and (1,0) at
the end of each epoch. The point of this is to perform two
complementary forms of feature discovery within one system.
The ART style learning acquires features characterized by the
intersection of patterns, whereas LVQ performs clustering,
discovering features that are averaged across patterns.

The Distributed P-ART (dP-ART) Learning
On presentation of an input pattern, the bottom-up activation is
calculated. Then the D F21 nodes with the highest bottom-up
activation are selected:

},.....,2,1|max{ MJTT JJ ==
(2)

D is set to 3 in this application. The three F21 nodes learn
according to:

))(()()()()()(old
Ji

old
Ji

old
Ji

new
Ji wIwwIw −++∩= βσα

(3)

where wji= top-down weights vectors; I = binary input vectors,
and β = the drift speed constant = 0.5. When α =1, w updates
simply to:

)()()(old

Ji
new

Ji wIw ∩=
(4)

This invokes fast minimalist learning, causing the top-down
weights to reach their new asymptote on each input presentation:

)(old
JJ wIw ∩→

(5)
In contrast, when σ = 1:

))(()()()(old
Ji

old
Ji

new
Ji wIww −+= β

(6)

This causes a simple form of clustering or LVQ at a speed
determined by β. Overall the learning is a combination of the
two forms of adaptation as the mode is toggled between snap
and drift. The novel bottom-up learning of the P-ART is a
normalised version of the top-down learning:

||)(

)(
)(

new
iJ

new
iJnew

Ji
w

w
w =

(7)

where wiJ
(new) = top-down weights of the network after

learning.

4.METHODOLOGY
A methodology is developed and presented here that enables the
application of a neural network to any ‘interaction’ or ‘user
behaviour’ data so it may be implemented in other on-line
teaching environments. The aim is to minimise the pre-and post-
processing tasks that are required through the definition of a
structured approach. In order to obtain an analysis of this kind of
data through the use of a neural network (NN), there are several
considerations that need to be given to the method and the stages
of transformation the data must undergo before it is suitable as
an input to a neural network. A methodology is developed and
realised in the form of a set of procedures that embrace the
following processes: (i) Pre-processing: conversion of the ‘raw
user data’ into a form suitable for input to the neural network as
the computer logged data contains both qualitative and
quantitative data and therefore requires careful processing and
encoding (ii) Selection of optimal neural network parameters,
(iii) Post-processing: manipulation of the results in order to
provide a novel and intelligent analysis. These stages, including
considerations on the contextual aspect of the data and
descriptions of how the data is encoded, are discussed in this
paper and described in terms of the network management user
behaviour being analysed. The methodology is summarised by
way of a flow chart in Figure 2.

There are some fundamental issues regarding collection and
initial assessment of the data that need to be addressed initially
such as: How much data is available? Is there a constant output

of data? Is there sufficient data to adequately train and test the
network?

DATA
COLLECTION

DEFINITION
OF AN EVENT

PERFORM
EXPERIMENTS

ANALYSIS OF RESULTS:
• Identification of

patterns/features
• Interpretation of

groupings

Adjust encoding
parameters
Adjust NN
parameters

ENCODING THE
DATA

CONTEXT STRUCTURE

INITIAL
ASSESSMENT

Figure 2: General Methodology

The performance of a NN is dependent on the training data. The
training data must be representative of the task being learnt and
tends to be chosen through trial and error before finding an
acceptable training data set [8]. The production of the network
management data is on-going but for the purposes of this paper a
sample has been used to provide an initial evaluation of the data.
Fifty-five datasets are used, where a single dataset represents a
trainee undertaking a single network management task.

The next consideration in pre-processing the data is how to
structure the encoded data in order to ensure all appropriate
variables contribute towards the NN’s decision making and is in
a form suitable for input to a NN. The data is initially primary
encoded into a list of consecutive events, where an event
comprises all the information required to describe what is taking
place at a given instant in time. The aim is to ensure that each
event comprises the same amount of information in order to
introduce some structure to the data.

The network management data is already in a format that lists
events, it simply needs condensing into the relevant information.
For the user behaviour data under scrutiny here, this takes the
form: {Action ; Node Description ; Duration}. Action describes
the command issued by the student, Node Description refers to
which device the command relates to and whether it is active or
inactive and Duration is the time taken to execute the current
command taken from time of issue of the previous command.
Determining the structure of an event is the first level of
encoding and the resulting event is called the primary encoded
data. This process reduces the feature space and simplifies the
data therefore care must be taken to ensure relevant information
is not excluded.

Another consideration is how to interpret the context of the data.
Although the data is in a serial format, relationships between
consecutive and subsequent events may be an important factor
that needs to be considered. When the NN receives an input
vector, it compares it to previously stored input patterns and
then either puts it into the class that most closely matches it, or
if no such class exists, creates a new one. Any patterns that are
being identified within the data are so across input vectors.
Therefore the length and quantity of data within each input
vector is extremely important. The investigation requires several
stages where each stage can be described in terms of the length
of the input vector, which is a multiple of events (1xEvent,
2xEvent etc.). The first stage is simply concerned with the
occurrence of individual events, i.e. an input vector is equal to 1
event. Whilst this provides information on the significance of
each of the different events within a network management
session, no information is afforded on the context of events. The
second stage of investigations tackles the contextual aspect of
the data. An input vector presented to the NN comprises 2 or
more consecutive events. Consecutive input vectors comprise
overlapping events as illustrated in the following equation. The
final, binary encoded m-th input vector that is presented to the
initial layer of the neural network, for the N-th stage of
investigations, where N is the number of events per input vector
(NxEvent) is represented by equation (8), where Em+n is the
(m+n)th event and U represents the concatenation function.

U
1

0

−

=
+=

N

n
nmm EI

(8)

Encoding the Network Management Data
Once the structure of an event has been established, each
component (Action, Node Description and Duration) that makes
up the event can be individually coded and the coded
components concatenated to form the overall input vector. It is
necessary to know how many different values each of these
components may take to facilitate the implementation of an
appropriate coding scheme. Examples of the coding scheme for
the Action component are illustrated in Table 1 in terms of a
sample of the possible actions, their primary encoded form, and
the final coded format (‘O’ represents binary ‘1’ and ‘X’ binary
‘0’). The first segment of the codeword distinguishes between
categories or layers the action belongs to, such as IP or TCP.
The second segment distinguishes between the different actions
within a category.

Table 1: Encoded Action Component of an Event

 Name
(Primary Encoding)

Secondary Encoding

1 System Info(SI) OXXXXXXX XXXXXXX
2 IF Status(IF St) XOXXXXXX OXXXXXX
3 IF Parameter(IF P) XOXXXXXX XOXXXXX
4 IF Usage(IF Usg) XOXXXXXX XXOXXXX
5 IF Error(IF Err) XOXXXXXX XXXOXXX
6 IF Quality(IF Q) XOXXXXXX XXXXOXX
7 IP Stats(IP Stat) XXOXXXXX XXXXXOX

…. …… ….. …..
22 Start Monitor(Smon) XXXXXXXO XXXXXOX
23 Help (Help) XXXXXXXO XXXXXXO

The second component of an event is the Node Description.
Again, the codeword is segmented. The first bit of the codeword
indicates whether the node is active (O) or inactive (X) and the
remaining 14 bits are used to distinguish between the active
nodes. Finally, the third component is the Duration. This is
useful as it gives an indication of the time taken to execute a
command. A coarse coding scheme [9] is used, where
neighbouring sub-divisions are allocated codewords that differ
from each other by 1 bit position. An example event in its
original and encoded formats are illustrated below.

Original User Data: System Information{NODE
node53 node53 192.3.47.4 0 {}}Fri Apr 4
15:47:32 2003
Primary Encoded Data: { SI ; 1/4 ; t0 }
Secondary Encoded Data:

Duration

{OXXXXXXXXXXXXXXOXXXOXXXXXXXXXXXXXX}

Action Node Description
Neural Network Parameters
There are several parameters concerning the dimensions of the
NN and the level of categorisation. The NN architecture has
been presented in detail elsewhere [2-4]. In this paper, the
vigilance parameter is set to 0.3, which in effect means that the
criterion for allowing a node to respond and learn the input
pattern is a 30% match. The number of input neurons to the dP-
ART is determined by the length of the input vector. The
number of output neurons for the dP-ART and therefore the
input neurons the sP-ART, has been set at 500 which has proved
large enough to avoid saturation of all the output neurons of the
dP-ART. The number of output neurons of the sP-ART has been
set at 150 in order to limit the number of output classes that can
be formed to a manageable number and yet ensure that the
majority (approximately 95%) of inputs are classified.

5.RESULTS

The P-ART is implemented in C++ and a total of 2700 input
vectors are input to the NN at each stage of the investigation.
The inputs are binary vectors, constructed using the encoding
scheme detailed previously, and the output is a corresponding
column of numbers indicating the output class selected for that
input. An analysis is performed on the output of the neural
network in order to see how the data has been classified. The
results identify both commonly occurring combinations of
events and other interesting, less common, sequences of events
that provide insights into the students’ behaviour. This is used to
compare instances of good and bad practice and reveal patterns
embedded within the data that may not have been recognized
through other methods. Actions are referred to by number or
primary encoded format. These and their basic functionalities
within the network management simulator are summarised in
Table 2 below.

Firstly, it is necessary to assess the number and size of the
output classes that have been formed, i.e. how many output
nodes of the NN are used and how many input vectors are
assigned to each of these. The results are easily rearranged,
grouped and manipulated in order to make different
comparisons.

Table 2: Summary of Actions

 Primary
Encoding

Description of functionality

1 SI Display information of the system group
2 IF St Display information of the interfaces
3 IF P Display interface parameter like speed
4 IF Usg Display interface statistics
5 IF Err Display interface statistics
6 IF Q Show error and discard rate for each interface
7 IP Stat Display statistics and parameters of IP layer
8 IP A Show IP addresses used by this device
9 IP R Display routing table
10 IP ARP Display other devices its been in contact with
11 TCP Stat Display statistics and parameters of TCP layer
12 TCP C Display status of existing TCP connections
13 UDP Stat Display statistics and parameters of UDP layer
14 UDP L Display status of existing USP listener
15 ICMP Stat Display stats and parameters of ICMP layer
16 SNMP Stat Display stats and parameters of SNMP layer
17 W Walk through MIB tree and print object values
18 SetP Set SNMP parameters
19 monV Monitor an SNMP variable in a stripchart
20 Del Delete the monitoring proceess
21 Lmon Set up monitoring process
22 Smon Start monitoring process
23 Help List choice of actions

Results are reorganized and displayed by output node in order to
visualise the input vectors clustered within each output class.
The second stage is to establish which of the classes formed are
major, significant and minority classes. Major classes are the
most commonly used classes, significant classes are smaller but
still populated sufficiently have an impact on conclusions,
whereas minority classes are those that are only used once or
twice and have little impact so are disregarded. Once the results
are grouped by output class the key or dominant features of each
group are established. A dominant feature is defined as a feature
common to over 90% of the input vectors within that class. It
may take a single value or a group of values, e.g. action 1 (SI) or
actions 2-6 (all IF type actions). A class may be defined by a
single dominant feature, such as an action, or by several, such as
action and node. Where the dominant features are discussed the
terminology {action ; node ; duration} is adopted. For example
{ 12 ; 1/- ; - } represents an output class where a majority of the
input vectors within this class are action 12 (TCP C)
implemented on an unspecific active node.

1xEvent

These results provide information on the significance of events.
Table 3 summarises some of the classes that have an action or
group of actions as a dominant feature along with their size
(combined size where more than one class exists with the same
feature).

Action 1 (SI) is by far the most frequently used action. This is
expected as this is the conventional method by which to obtain
standard information regarding the network devices. Action 21
(Lmon) is also a common action which is also expected as this
enables the monitoring of interface (network card) loads and is a
common networking requirement.

In respect to types of actions, it is the IP actions that are the
most commonly applied, which implies a good use of
commands. IP layer actions and action 12 (TCP C) reflect
requirements to determine network topology through address
structure and are encouraged methods of exploration.

Table 3: Dominant Features for 1xEvent Results

Action Number
of classes

Class size

1 (SI) 4 813

2 (IF St) 2 49

3 (IF P) 1 47

6 (IF Q) 1 10

8 (IP A) 2 153

9 (IP R) 1 169

10 (IP ARP) 3 181

12 (TCP C) 2 148

21 (Lmon) 1 164

17-23 (monitor actions) 5 146

2-6 (IF actions) 2 200

11-16 (TCP, UDP, ICMP and SNMP) 1 13

Due to the way the NN has grouped certain inputs it is possible
to compare classes that feature actions directed at an inactive
node with those directed at active nodes. For example, the four
output classes associated with action 1 (SI) are summarised in
terms of their dominant features and size in Table 4.

Table 4: Major Output Classes Featuring ‘SI’

Output Class Dominant Features Class Size

5 { 1 ; 1/9 ; 1-5 } 64

14 { 1 ; 0/0 ; 1 } 215

16 { 1 ; 1/- ; 1-7 } 455

28 { 1 ; 0/0 ; - } 79

Classes 5 and 16 illustrate action 1 applied to an active node
within the network and have a combined size of 519. Classes 14
and 28 illustrate the same action but applied to an inactive node,
and have a combined size of 294. The latter two classes imply
inefficient practice or limited knowledge of the network
structure and make up 36% of the total number of occurrences
of this command.

Similarly, the classes featuring action 8 (IP A), as an individual
dominant feature are illustrated in Table 5. Those featuring this
action applied to an inactive node (output class 47) make up
27% of the total.

Table 5: Output Classes Featuring (IP A)

Output Class Dominant Features Class Size
30

{ 8 ; 1/- ; - } 112

47

{ 8 ; 0/0 ; 1-4 } 41

However, for action 10 (IP ARP), as illustrated in Table 6, the
percentage of cases this action is applied to an inactive node, is
only 9%, illustrating a more efficient application of this
particular command.

Table 6: 1xEvent Output Classes Featuring (IP ARP)

Output Class Dominant Features Class Size
2 { 10 ; 1/1 ; 1-2 }

36

34 { 10 ; 1/- ; 1-5 }

128

40 { 10 ; 0/0 ; 1-4 }

17

2xEvent and 3xEvent

Whereas the 1xEvent results are useful to determine the
frequency of specific events, the 2xEvent and 3xEvent results
can be used to identify relationships between consecutive
events.

A strong relationship exists between action 1 (SI), and the
monitoring actions. Several output classes (combined size of
241) have been created that illustrate this action both preceding
and following a monitoring action. Another interesting
observation is the formation of several output classes that
feature inactive nodes as dominant features in consecutive
events. For the 2xEvent results, four output classes are formed
that feature an inactive node in both events. One of these is a
major class (size 105) and contains instances when the SI
command is repeatedly implemented on an inactive node. This
behaviour implies an ineffective use of the SI command, both
due to its repetition and it being directed at an inactive node.
Major classes where inactive nodes appear as dominant features
in both events of an episode make up 7% of the overall major
classes for the 2xEvent results. Extending this investigation to
the 3xEvent results to determine how common it is that three
consecutive events feature an inactive node, it is seen that four
classes are formed. One is of a significant size (33) and again
shows repeated use of the SI command on an inactive node.

As expected from the 1xEvent results, the SI command features
most prominently. For the 2xEvent results it is a dominant
feature of four out of the fourteen major classes (45%) and is a
dominant feature of both events in three of these. For the
3xEvent results, many of the classes formed are not defined by
multiple specific dominant features. This is because although the
input vector length has increased the vigilance parameter has
remained the same in order to encourage a more generalised
clustering of the input patterns.

One interesting result is the output classes that highlight events
that follow action 1 (SI) – i.e. what the trainee manager does
once basic system information has been obtained. The most
popular course of action following SI is a repetition of the same
action (combined size 165). The network management simulator
has a functionality that allows the selection of multiple nodes
and the application of a single action to each of the nodes
selected. Whilst this feature exists, it is not an efficient method
for collating information on the network as redundant
information is gathered and therefore has implications on the
bandwidth required due to unnecessary network traffic being

generated. The output classes discussed here, with the repetition
of the command over 3 consecutive events, implies the use of
this simulator feature, which in turn implies lack of
consideration to the way in which the exploration of the network
is conducted. In comparison, the preferred course of action to
follow the SI action is the use of IP layer commands to provide a
more thorough and yet directed interrogation of network
devices. This does appear as a dominant feature, but less
frequently than the repeated use of SI (combined size 49).

6.CONCLUSIONS AND FURTHER WORK

A novel method for the analysis of interactions between a
trainee network manager and a network management training
platform has been presented. The method has been used to
uncover hidden patterns in user behaviour and highlight
instances of good and bad practice, which has consequently lead
to novel insights into the learning experiences of the trainee.

The overall project can be broken down into three stages, as
illustrated in Figure 3.

Neural Network
for pattern

recognition and
classification

Analysis of
Results

Development of
adaptive algorithms

Development of real-
time, on-line feedback

Network
Management
Training Tool

Production of data
describing trainee's

interaction with training tool

Modular neural network
architecture, using novel

learning algorithms

Develop algorithms
in NN to automatise

feature definition and
allow external

influence of cluster
formation

Integrated software
on NM platform to

identify pre-defined
patterns of interest
and provide on-line

feedback to user

Stage I

Stage II

Stage III

Figure 3: Future Stages of the Project

Stage I has been described here and planned future stages
include development of integrated post-processing operations to
enable automated definition of the dominant features of the
clusters formed and the development of algorithms that allow
analyst influence on the type of clusters being formed (Stage II).
The eventual aim is to develop and integrate a real-time
feedback system to the user of the Network Management
Simulator (trainee), to provide on-line tutoring to support and
enhance learning and teaching strategies offered by the training
tool (Stage III). The feedback system would respond to real-time
operation of the simulated network with advice in response to
the approaches chosen by the trainee network manager.

7.REFERENCES

[1] C. Pattinson, “A Simulated Network Management
Information Base”, Journal of Network and Computer
Applications, 23, 2000, pp.93-701.
[2] Lee, S.W.; D. Palmer-Brown; J.Tepper; C.Roadknight. 2002.
“Performance-guided Neural Network for Rapidly Self-
Organising Active Network Management.” In Soft Computing

Systems: Design Management and Applications, A. Abraham
et al (Eds.), IOS Press, 22-31.
[3] S.W. Lee, D. Palmer-Brown, J.A. Tepper, C.M. Roadknight,
“Snap-Drift: Real-time, Performance-guided Learning”,
Proceedings of the International Joint Conference on Neural
Networks (IJCNN’2003), Portland, Oregon, 20-24 July 2003.
[4] Lee, S. W., D. Palmer-Brown, et al. (2004). "Performance-
Guided Neural Network for Rapidly Self-Organising Active
Network Management." Accepted for Neurocomputing.
[5] Zhang, S.; H. Powell and D. Palmer-Brown 2001. “Methods
for Concept Extraction using ANNs and Stemming Analysis and
Their Portability Across Domains.” In Proceeding of The 2nd
Workshop on Natural Language Processing and Neural
Network (Tokyo, Japan), 62 - 79.
[6] Grossberg, S. 1976. “Adaptive Pattern Classification and
Universal Recoding. I. Parallel Development and Coding of
Neural Feature Detectors,” Biol. Cybern., Vol. 23, 121 - 134.
[7] Kohonen, T. 1990. “Improved versions of learning vector
quantization’, In Proceedings of Int. Joint Conf. Neural
Networks, Vol. 1. 545-550.
[8] Callan, R. 1999. The Essence of Neural Networks. Prentice
Hall, Europe.
[9] Eurich, C.W.; H. Schwegler, and R. Woesler, “Coarse
Coding: Applications to the Visual System of Salamanders.”
Biol. Cybern., Vol. 77, 1997, pp. 41-47.

