7,562 research outputs found
Magnetic fields and differential rotation on the pre-main sequence I: The early-G star HD 141943 - brightness and magnetic topologies
Spectroscopic and spectropolarimetric observations of the pre-main sequence
early-G star HD 141943 were obtained at four observing epochs (in 2006, 2007,
2009 and 2010). The observations were undertaken at the 3.9-m Anglo-Australian
Telescope using the UCLES echelle spectrograph and the SEMPOL
spectropolarimeter visitor instrument. Brightness and surface magnetic field
topologies were reconstructed for the star using the technique of least-squares
deconvolution to increase the signal-to-noise of the data.
The reconstructed brightness maps show that HD 141943 had a weak polar spot
and a significant amount of low latitude features, with little change in the
latitude distribution of the spots over the 4 years of observations. The
surface magnetic field was reconstructed at three of the epochs from a high
order (l <= 30) spherical harmonic expansion of the spectropolarimetric
observations. The reconstructed magnetic topologies show that in 2007 and 2010
the surface magnetic field was reasonably balanced between poloidal and
toroidal components. However we find tentative evidence of a change in the
poloidal/toroidal ratio in 2009 with the poloidal component becoming more
dominant. At all epochs the radial magnetic field is predominantly
non-axisymmetric while the azimuthal field is predominantly axisymmetric with a
ring of positive azimuthal field around the pole similar to that seen on other
active stars.Comment: 18 pages, 17 figures, accepted by MNRA
Magnetic cycles of the planet-hosting star Tau Bootis: II. a second magnetic polarity reversal
In this paper, we present new spectropolarimetric observations of the
planet-hosting star Tau Bootis, using ESPaDOnS and Narval spectropolarimeters
at Canada-France-Hawaii Telescope (CFHT) and Telescope Bernard Lyot (TBL),
respectively. We detected the magnetic field of the star at three epochs in
2008. It is a weak magnetic field of only a few Gauss, oscillating between a
predominant toroidal component in January and a dominant poloidal component in
June and July. A magnetic polarity reversal was observed relative to the
magnetic topology in June 2007. This is the second such reversal observed in
two years on this star, suggesting that Tau Boo has a magnetic cycle of about 2
years. This is the first detection of a magnetic cycle for a star other than
the Sun. The role of the close-in massive planet in the short activity cycle of
the star is questioned.
Tau Boo has strong differential rotation, a common trend for stars with
shallow convective envelope. At latitude 40 deg., the surface layer of the star
rotates in 3.31 d, equal to the orbital period. Synchronization suggests that
the tidal effects induced by the planet may be strong enough to force at least
the thin convective envelope into corotation. Tau Boo shows variability in the
Ca H & K and Halpha throughout the night and on a night to night time scale. We
do not detect enhancement in the activity of the star that may be related to
the conjunction of the planet. Further data is needed to conclude about the
activity enhancement due to the planet.Comment: 9 pages, 5 figures, 3 tables Accepted to MNRA
Dynamo Processes in the T Tauri star V410 Tau
We present new brightness and magnetic images of the weak-line T Tauri star
V410 Tau, made using data from the NARVAL spectropolarimeter at Telescope
Bernard Lyot (TBL). The brightness image shows a large polar spot and
significant spot coverage at lower latitudes. The magnetic maps show a field
that is predominantly dipolar and non-axisymmetric with a strong azimuthal
component. The field is 50% poloidal and 50% toroidal, and there is very little
differential rotation apparent from the magnetic images.
A photometric monitoring campaign on this star has previously revealed V-band
variability of up to 0.6 magnitudes but in 2009 the lightcurve is much flatter.
The Doppler image presented here is consistent with this low variability.
Calculating the flux predicted by the mapped spot distribution gives an
peak-to-peak variability of 0.04 magnitudes. The reduction in the amplitude of
the lightcurve, compared with previous observations, appears to be related to a
change in the distribution of the spots, rather than the number or area.
This paper is the first from a Zeeman-Doppler imaging campaign being carried
out on V410 Tau between 2009-2012 at TBL. During this time it is expected that
the lightcurve will return to a high amplitude state, allowing us to ascertain
whether the photometric changes are accompanied by a change in the magnetic
field topology.Comment: 12 pages, 11 figures, accepted by MNRA
Magnetic field, differential rotation and activity of the hot-Jupiter hosting star HD 179949
HD 179949 is an F8V star, orbited by a giant planet at ~8 R* every 3.092514
days. The system was reported to undergo episodes of stellar activity
enhancement modulated by the orbital period, interpreted as caused by
Star-Planet Interactions (SPIs). One possible cause of SPIs is the large-scale
magnetic field of the host star in which the close-in giant planet orbits.
In this paper we present spectropolarimetric observations of HD 179949 during
two observing campaigns (2009 September and 2007 June). We detect a weak
large-scale magnetic field of a few Gauss at the surface of the star. The field
configuration is mainly poloidal at both observing epochs. The star is found to
rotate differentially, with a surface rotation shear of dOmega=0.216\pm0.061
rad/d, corresponding to equatorial and polar rotation periods of 7.62\pm0.07
and 10.3\pm0.8 d respectively. The coronal field estimated by extrapolating the
surface maps resembles a dipole tilted at ~70 degrees. We also find that the
chromospheric activity of HD 179949 is mainly modulated by the rotation of the
star, with two clear maxima per rotation period as expected from a highly
tilted magnetosphere. In September 2009, we find that the activity of HD 179949
shows hints of low amplitude fluctuations with a period close to the beat
period of the system.Comment: Accepted for publication in Monthly Notices of The Royal Astronomical
Societ
Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph
From observations collected with the ESPaDOnS spectropolarimeter, we report
the discovery of magnetic fields at the surface of the mildly accreting
classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in
photospheric lines and in the emission lines formed at the base of the
accretion funnels linking the disc to the protostar, and monitored over the
whole rotation cycle of V2129 Oph. We observe that rotational modulation
dominates the temporal variations of both unpolarized and circularly polarized
line profiles. We reconstruct the large-scale magnetic topology at the surface
of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to
be rather complex, with a dominant octupolar component and a weak dipole of
strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to
the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar
radial field spots located at high latitudes and coinciding with cool dark
polar spots at photospheric level. This large-scale field geometry is unusually
complex compared to those of non-accreting cool active subgiants with moderate
rotation rates. As an illustration, we provide a first attempt at modelling the
magnetospheric topology and accretion funnels of V2129 Oph using field
extrapolation. We find that the magnetosphere of V2129 Oph must extend to about
7R* to ensure that the footpoints of accretion funnels coincide with the
high-latitude accretion spots on the stellar surface. It suggests that the
stellar magnetic field succeeds in coupling to the accretion disc as far out as
the corotation radius, and could possibly explain the slow rotation of V2129
Oph. The magnetospheric geometry we derive produces X-ray coronal fluxes
typical of those observed in cTTSs.Comment: MNRAS, in press (18 pages, 17 figures
Magnetic cycles of the planet-hosting star tauBootis
We have obtained new spectropolarimetric observations of the planet-hosting
star tauBootis, using the ESPaDOnS and NARVAL spectropolarimeters at the
Canada-France-Hawaii Telescope and Telescope Bernard-Lyot. With this data set,
we are able to confirm the presence of a magnetic field at the surface of
tauBoo and map its large-scale structure over the whole star. The overall
polarity of the magnetic field has reversed with respect to our previous
observation (obtained a year before), strongly suggesting that tauBoo is
undergoing magnetic cycles similar to those of the Sun. This is the first time
that a global magnetic polarity switch is observed in a star other than the
Sun; we speculate that the magnetic cycle period of tauBoo is much shorter than
that of the Sun.
Our new data also allow us to confirm the presence of differential rotation
from the latitudinal shearing that the magnetic structure is undergoing. The
differential rotation surface shear that tauBoo experiences is found to be 6 to
10 times larger than that of the Sun. We propose that the short magnetic cycle
period is due to the strong level of differential rotation. With a rotation
period of 3.0 and 3.9 d at the equator and pole respectively, tauBoo appears as
the first planet-hosting star whose rotation (at intermediate latitudes) is
synchronised with the orbital motion of its giant planet (period 3.3 d).
Assuming that this synchronisation is not coincidental, it suggests that the
tidal effects induced by the giant planet can be strong enough to force the
thin convective enveloppe (though not the whole star) into corotation and thus
to play a role in the activity cycle of tauBoo.Comment: MNRAS, in pres
Magnetometry of the classical T Tauri star GQ Lup: non-stationary dynamos & spin evolution of young Suns
We report here results of spectropolarimetric observations of the classical T
Tauri star (cTTS) GQ Lup carried out with ESPaDOnS at the Canada-France-Hawaii
Telescope (CFHT) in the framework of the "Magnetic Protostars and Planets"
(MaPP) programme, and obtained at 2 different epochs (2009 July & 2011 June).
From these observations, we first infer that GQ Lup has a photospheric
temperature of 4,300+-50\^A K and a rotation period of 8.4+-0.3 d; it implies
that it is a 1.05+-0.07 Msun star viewed at an inclination of ~30deg, with an
age of 2-5 Myr, a radius of 1.7+-0.2 Rsun, and has just started to develop a
radiative core.
Large Zeeman signatures are clearly detected at all times, both in
photospheric lines & in accretion-powered emission lines, probing longitudinal
fields of up to 6 kG and hence making GQ Lup the cTTS with the strongest
large-scale fields known as of today. Rotational modulation of Zeeman
signatures is clearly different between our 2 runs, demonstrating that
large-scale fields of cTTSs are evolving with time and are likely produced by
non-stationary dynamo processes.
Using tomographic imaging, we reconstruct maps of the large-scale field, of
the photospheric brightness & of the accretion-powered emission of GQ Lup. We
find that the magnetic topology is mostly poloidal & axisymmetric; moreover,
the octupolar component of the large-scale field (of strength 2.4 & 1.6 kG in
2009 & 2011) dominates the dipolar component (of strength ~1 kG) by a factor of
~2, consistent with the fact that GQ Lup is no longer fully-convective.
GQ Lup also features dominantly poleward magnetospheric accretion at both
epochs. The large-scale dipole of GQ Lup is however not strong enough to
disrupt the surrounding accretion disc further than about half-way to the
corotation radius, suggesting that GQ Lup should rapidly spin up like other
similar partly-convective cTTSs (abridged).Comment: MNRAS, in press (17 pages, 10 figures, 1 table
Propriété de Markov des équations stationnaires discrÚtes quasi-linéaires
AbstractIn this paper, we consider the stochastic discrete equation â ÎU(x)+Æ(U(x))=A(x) where x runs over a finite domain Î of Zd, Î is a discretization od the Laplacian operator, {A(x)} is a sequence of i.i.d. Gaussian variables, and we impose the Dirchlet condition U(x)=0 for xâÎ. We prove existence and uniquesness of a solution assuming monotonicity condition on Æ, and we study the Markov property of the solution
- âŠ