31 research outputs found

    Limits on the ultra-bright Fast Radio Burst population from the CHIME Pathfinder

    Full text link
    We present results from a new incoherent-beam Fast Radio Burst (FRB) search on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder. Its large instantaneous field of view (FoV) and relative thermal insensitivity allow us to probe the ultra-bright tail of the FRB distribution, and to test a recent claim that this distribution's slope, αlogNlogS\alpha\equiv-\frac{\partial \log N}{\partial \log S}, is quite small. A 256-input incoherent beamformer was deployed on the CHIME Pathfinder for this purpose. If the FRB distribution were described by a single power-law with α=0.7\alpha=0.7, we would expect an FRB detection every few days, making this the fastest survey on sky at present. We collected 1268 hours of data, amounting to one of the largest exposures of any FRB survey, with over 2.4\,×\times\,105^5\,deg2^2\,hrs. Having seen no bursts, we have constrained the rate of extremely bright events to < ⁣13<\!13\,sky1^{-1}\,day1^{-1} above \sim\,220(τ/ms)\sqrt{(\tau/\rm ms)} Jy\,ms for τ\tau between 1.3 and 100\,ms, at 400--800\,MHz. The non-detection also allows us to rule out α0.9\alpha\lesssim0.9 with 95%\% confidence, after marginalizing over uncertainties in the GBT rate at 700--900\,MHz, though we show that for a cosmological population and a large dynamic range in flux density, α\alpha is brightness-dependent. Since FRBs now extend to large enough distances that non-Euclidean effects are significant, there is still expected to be a dearth of faint events and relative excess of bright events. Nevertheless we have constrained the allowed number of ultra-intense FRBs. While this does not have significant implications for deeper, large-FoV surveys like full CHIME and APERTIF, it does have important consequences for other wide-field, small dish experiments

    A Detection of Cosmological 21 cm Emission from CHIME in Cross-correlation with eBOSS Measurements of the Lyman-α\alpha Forest

    Full text link
    We report the detection of 21 cm emission at an average redshift zˉ=2.3\bar{z} = 2.3 in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyman-α\alpha forest from eBOSS. Data collected by CHIME over 88 days in the 400500400-500~MHz frequency band (1.8<z<2.51.8 < z < 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales with k0.13 Mpc1k_\parallel \lesssim 0.13\ \text{Mpc}^{-1} at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyman-α\alpha forest flux transmission spectra to estimate the 21 cm-Lyman-α\alpha cross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σ9\sigma detection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals 610\sim6-10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of \tcm emission to date, and set the stage for future 21 cm intensity mapping analyses at z>1.8z>1.8

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Analysis of chemical signals from complex oceanic gas hydrate ecosystems with infrared spectroscopy

    Get PDF
    Substantial amounts of methane are sequestered in naturally occurring ice-like formations known as gas hydrates. In particular, oceanic gas hydrates are globally distributed in complex heterogeneous ecosystems that typically occur at depths exceeding 300 m. Gas hydrates have received attention for their potential as an alternative energy resource, as marine geohazards, and their role in cycling of greenhouse gases. In addition, chemosynthetic communities often play a vital role in the cycling and sequestration of carbon emanating from cold hydrocarbon seeps surrounding hydrate sites. Research efforts are presently striving to better understand the significance and complexity of these ecosystems through the establishment of seafloor observatories capable of long-term monitoring with integrated sensor networks. In this thesis, infrared (IR) spectroscopy has been implemented for the investigation of molecular-specific signatures to monitor gas hydrate growth dynamics and evaluate carbonate minerals, which are intimately connected with complex chemosynthetic processes occurring in these harsh environments. The first fundamental principles and data evaluation strategies for monitoring and quantifying gas hydrate growth dynamics utilizing mid-infrared (MIR) fiber-optic evanescent field spectroscopy have been established by exploiting the state-responsive IR absorption behavior of water. This has been achieved by peak area evaluation of the O-H stretch, H-O-H bend, and libration modes and assessing peak shifts in the 3rd libration overtone and libration bands during the formation and dissociation of simple clathrate hydrates of methane, ethane, and propane formed from aqueous solution. Hydrate growth and monitoring was facilitated with a customized pressure cell enabling operation up to ~5.9 MPa with spectroscopic, temperature, pressure, and video monitoring capabilities. Furthermore, the initial feasibility for extending the developed IR spectroscopic hydrate monitoring strategies into oceanic gas hydrate ecosystems has been demonstrated through the evaluation of potential spectroscopic interferences from sediment matrices in samples collected from two hydrate sites in the Gulf of Mexico (GoM). With exception of the libration band, the primary IR absorption features of water are readily accessed within hydrated sediment samples. Additional consideration for potential long-term hydrate monitoring applications revealed that the collection of approx. 2 IR spectra per day should enable direct insight into the temporal dynamics of hydrates...Ph.D.Committee Chair: Dr. Boris Mizaikoff; Committee Member: Dr. Andrew Lyon; Committee Member: Dr. Donald R. Webster; Committee Member: Dr. Facundo M. Fernandez; Committee Member: Dr. Joseph Montoy

    Infrared Spectroscopy for Monitoring Gas Hydrates in Aqueous Solution

    No full text
    The presented work describes first principles for monitoring gas hydrate formation and dissociation in solution by evaluating state-responsive IR absorption features of water with fiberoptic evanescent field spectroscopy. In addition, a first order linear functional relationship has been derived according to Lambert Beer’s law, which enables quantification of percentage gas hydrate within the volume of water directly probed via the evanescent field. Moreover, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components, thereby establishing evanescent field sensing strategies as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments.Non UBCUnreviewe
    corecore