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reflection until exiting the waveguide. ‘Active’ sensing regions are generated at 
each area of internal reflection where sample molecules interact with the 
evanescent field at the waveguide surface. Chapter 7 provides a combined 
experimental and simulation approach for characterizing sensing regions along 
planar waveguide surfaces. (Figure adapted from Dobbs and Mizaikoff).9 51 
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Figure 3-14: (a.) Optical image of HATR accessories placed inside the sample 
compartments of a Bruker Equinox 55 FT-IR spectrometer with trough-top 
plate assembly mounted onto the optics base unit and sample deposited onto a 
ZnSe crystal. (b.) Optical image displaying HATR components inside a Bruker 
IFS 66/S FT-IR spectrometer. (c.) Schematic diagram depicting sample 
placement onto a HATR waveguide with the radiation path traced through the 
optics base unit and HATR crystal. 52 

Figure 4-1: Liquid water (Lw)-hydrate (H)-vapor (V) phase boundaries for simple methane, 
ethane, and propane hydrates in deionized water as reviewed by Sloan.2 In this 
work, gas hydrates were grown between ~0 °C and ~4 °C. Dashed lines 
represent ceiling operational pressures for hydrate trials with respect to each 
guest gas. 59 

Figure 4-2: The cluster nucleation hypothesis proposed by Christiansen and Sloan.28 Upon 
entering hydrate conditions with no gas in solution (1), gas is readily solvated 
by liquid water coupled with the formation of higher-order liquid water 
structures including labile hydrate cages (2), labile clusters agglomerate 
through sharing of hydrate-like faces and increase solution entropy (3), 
agglomeration continues until a critical cluster size initiates primary nucleation 
followed by rapid hydrate growth (4). Figure adapted from Christiansen and 
Sloan.2, 28 61 

Figure 4-3: The reaction kinetic (RK) model for gas hydrates grown from liquid water as 
proposed by Lekvam and Ruoff with graphical representations following the 
cluster nucleation hypothesis.2, 26-28 (k1 ↔ k-1) dissolution of gas by water in 
hydrate conditions with formation of oligomeric precursors (N), (k2 ↔ k-2) 
uncatalyzed formation of hydrate from N precursors, (→ k-3) primary 
nucleation of gas hydrate, which results in autocatalysis of the growth 
mechanisms indicated with (k4 ↔ k-4) and (k5 ↔ k-5). 62 

Figure 4-4: The IR spectrum of liquid water as collected with a silver halide fiber-optic 
waveguide in this work. Conventional vibrational mode assignments are 
provided, indicating the four major absorption features of water. Minor 
atmospheric CO2 (~2350 cm-1) and PTFE  features (from fiber feedthroughs at 
~1150 cm-1)are observed as negative absorption bands relative to a reference 
spectrum of air at room temperature. The detector cut-off occurs at ~680 cm-1. 
This spectrum is an average of 250 sample scans collected at 0.5 cm-1 
resolution. (Lib. = Libration). 65 

Figure 4-5: Representative IR transmittance profile from a reference spectrum (average of 
250 sample scans at 0.5 cm-1 resolution) for a PTFE mounted AgX fiber. All 
reference spectra for hydrate monitoring trials were collected with an empty 
chamber at room temperature and atmospheric pressure. 68 

Figure 4-6: Pressure and temperature traces from an ethane hydrate trial (with SDS) 
indicating a rapid drop in pressure and increase in temperature at hydrate 
nucleation. Pressure fluctuations reflect intermittent introduction of ethane into 
the sample chamber. Temperature spikes likely result from localized hydrate 
growth in close proximity to the submersed temperature probe as opposed to 
bulk solution temperature changes. 69 
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Figure 4-7: Image captures displaying the sample chamber contents from (a.) pre-hydrate 
nucleation, (b.) catastrophic hydrate nucleation with spindling growths, and 
(c. – f.) primary growth of ethane hydrate over a period of 2 mins. In images 
(a. – c.), the liquid water level is above the viewport, appears at the mid-line in 
capture (d.), and drops below the viewing region in capture (e.). 70 

Figure 4-8: White surfactant foam formed inside the hydrate chamber from outgassing 
ethane during hydrate dissociation. Arrows accentuate growing ethane bubbles 
in sequential images collected at 2 min intervals. 70 

Figure 4-9: Image series displaying visual cues inside the pressure chamber throughout an 
ice trial with SDS solution. Chamber contents with liquid water (a.) prior to 
nucleation. The initial minutes of ice growth following nucleation (b.) with 
continued growth (c.) until completion (d.) while maintaining a clear viewing 
of the internal cooling coil. Melting of ice (e. – h.) with few bubble formations 
until finally returning to initial conditions (i.) with no surfactant foaming. 71 

Figure 4-10: Image series depicting the sample chamber contents throughout a methane 
hydrate trial with SDS. Viewing of liquid water (a.) followed by hydrate 
nucleation (b.) and growth (c. – e). Final viewing of methane hydrate (f.) prior 
to initial stages of pressure induced dissociation (g.). Continuing dissociation 
(h.) with formation of surfactant foam until returning to initial conditions with 
methane bubbles attached to the sapphire viewport. 72 

Figure 4-11: Optical images of an extracted portion of ethane hydrate from the pressure 
cell. 73 

Figure 4-12: IR transmission-absorption results from the interrogation of outgassing 
constituents from extracted gas hydrate structures for (a. and b.) methane 
hydrate, (c. and d.) ethane hydrate, and (e. and f.) propane hydrate. All graphs 
on the left side represent selected transmission-absorption spectra from each 
experiment. All graphs on the right side illustrate absorption intensity for the 
expulsion of guest gases versus time for each measurement series (≥ 36 mins) 
as the peak area respective to C-H stretching features for each hydrocarbon 
species. Peak integration criteria are provided in the respective graphs (b.), (d.), 
and (f.). 74 

Figure 4-13: Series of image captures at 1 s time intervals demonstrating the combustion of 
propane expulsion from gas hydrate. In capture (a.), a white foam of propane 
filled surfactant bubbles is observed; obstructing the view of hydrate mass 
contained within the 250 mL glass jar. 75 

Figure 4-14: Fiber-optic IR-ATR spectra for (a.) liquid water and methane hydrate with 
labeled absorption features for water and indication to spectral changes during 
the formation of gas hydrate and (b.) methane (sI), ethane (sI), and propane 
(sII) hydrates illustrating the similarity in spectral shifts observed for each 
clathrate hydrate structure. 76 
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Figure 4-15: (a.) Peak integration results from spectroscopic monitoring of propane gas 
hydrate formation and dissociation in DI water by evaluating the population 
dynamics of the highly H-bonded O-H stretch feature. (b.) Fiber-optic IR-ATR 
spectra displaying comparable shifts in H-bonded populations during propane 
hydrate growth in a trial with surfactant solution (380 ppm SDS). (IR spectra 
were collected at 360 s intervals (a.) with an average of 250 sample scans at 
0.5 cm-1 resolution (a. and b.). 81 

Figure 4-16: (a.) Peak integration analysis from spectroscopic monitoring of ethane hydrate 
formation and dissociation in 380 ppm SDS solution. (b.) IR-ATR spectra from 
a separate ethane hydrate trial (grown from a 380 ppm SDS solution) depicting 
spectral changes in the H-O-H bend throughout the liquid-to-hydrate phase 
transition. ((a.) IR spectra were an average of 1000 sample scans at 0.5 cm-1 
resolution collected in 15 min intervals, and (b.) IR spectra are an average of 
250 sample scans at 0.5 cm-1 resolution). 84 

Figure 4-17: Spectroscopic results from a methane hydrate trial with SDS solution 
(380 ppm) for (a.) evaluation of the libration peak maximum and (b.) peak area 
of the libration region from 925 – 700 cm-1. Representative fiber-optic IR-ATR 
spectra from an ethane hydrate trial (380 ppm SDS) display the shifting 
absorption behavior of the libration mode throughout formation of gas hydrate. 
((a.) and (b.) were from analyses of IR spectra collected at 15 min intervals 
with an average of 1000 sample scans and 0.5 cm-1 resolution; (c.) IR spectra 
are an average of 250 sample scans at 0.5 cm-1 resolution). 87 

Figure 4-18: (a.) Analysis of the peak maximum for the 3rd libration overtone from IR 
spectra during the formation and dissociation of propane hydrate in SDS 
solution (380 ppm). Fiber-optic IR-ATR spectra from a methane hydrate trial 
(DI water) exhibit shifts in the overtone absorption feature throughout 
formation of gas hydrate. ((a.) is from the analysis of IR spectra collected at 
6 min intervals with an average of 250 sample scans at 0.5 cm-1 resolution; IR 
spectra in (b.) were collected with an average of 250 sample scans at 0.5 cm-1 
resolution). 89 

Figure 4-19: (a.) System temperature log recorded during a propane hydrate trial without 
SDS. (b.) Shifting peak maximum for the 3rd libration overtone in response to 
the corresponding temperature trace in (a.). (c.) Temperature dependent 
response of the 3rd libration overtone peak maximum for two propane hydrate 
trials; with 380 ppm SDS solution and DI water only (w/out SDS). Error bars 
are ± 1 standard deviation. (All spectral data were an average of 250 sample 
scans at 0.5 cm-1 resolution collected at 6 min intervals). 91 

Figure 4-20: Analysis of fiber-optic evanescent field spectra with respect to each of the four 
absorption features of water for a propane hydrate trial grown from DI water. 
The data gap is the result of instrument down-time for servicing of the air dryer 
(see Section 4.3.1.2). 92 
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Figure 4-21: Plot of calculated %Hydrate within Vl during a methane hydrate trial (no SDS) 
following spectroscopic analysis of 3νL. This hydrate trial was carried out 
pressures comparable to oceanic environments in the GoM with documented 
hydrate occurrences.1 IR-ATR spectra were an average of 250 sample scans 
with 0.5 cm-1 resolution collected at 6 min intervals. (Lines are present to assist 
visualization). 99 

Figure 4-22: (a.) IR-ATR spectrum of hydrated sediments from the BC12 location at 
MC118, (b.) IR-ATR spectrum of dried sediments from the BC7 location at 
MC118, and (c.) selected IR-ATR spectra of hydrated sediments from different 
sampling locations at MC118. (All spectra were the average of 100 sample 
scans collected at 1 cm-1 resolution). 102 

Figure 4-23: Spectroscopic analysis of the 3rd libration overtone for a propane hydrate trial 
(discussed in Section 4.3.2) with (a.) spectra collected at 6 min intervals and 
(b.) the same trial with reduction of data points by a factor of 100 (1 point per 
600 min time interval). 105 

Figure 4-24: Temporal analysis of the 3νL peak position with respect to measurement-to-
measurement changes in the peak maximum during a propane hydrate series 
with (a.) 6 min intervals between measurements and (b.) the same data reduced 
to one measurement point for 600 min intervals. (Lines are present to assist 
visualization). 106 

Figure 4-25: Predicted measurement-to-measurement changes in the %Hydrate within Vl 
during a propane hydrate series with (a.) 6 min intervals between 
measurements and (b.) the same data reduced to one measurement point for a 
600 min. Plot generated from the transformation of the 3rd libration overtone 
peak position data displayed in Figure 4-24. (Lines are present to assist 
visualization). 107 

Figure 4-26: Proposed Reaction Kinetic-Thermodynamic Model expanded from the cluster 
nucleation hypothesis of Christiansen and Sloan and the RK model of Lekvam 
and Ruoff.2, 26-28 109 

Figure 5-1: IR-ATR spectrum of witherite (BaCO3) mined from Illinois, USA with 
carbonate vibrational mode assignments. The spectrum is an average of 100 
sample scans collected at a spectral resolution of 1 cm-1. This representative 
spectrum was collected for the IR-ATR spectral database described in Section 
5.2. (Abbreviations are assym = asymmetric, sym. = symmetric, and oop = out-
of-plane). 134 

Figure 5-2: GPS trace of the June 2006 GOMGHRC cruise to MC118 aboard the R/V 
Pelican. The inset provides an accentuated view of grid profiles from the 
collection of geophysical lines for mapping acoustic reflections throughout the 
sediments. 145 

Figure 5-3: Box core unit equipped with USBL navigational component (blue frame with 
black cylinder) utilized to collect seafloor sediments during the June 2006 
GOMGHRC cruise to MC118 on the R/V Pelican. 146 
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Figure 5-4: Screen capture of navigational feedback for the ship and box core unit locations 
following a successful sampling event. The sample location is indicated by the 
bull’s-eye with triangular center. The rings surrounding the bull’s-eye are 100, 
200, and 300 m in diameter. Screen shots were recorded for each target 
location containing the date, time, and coordinates for each sample location. 147 

Figure 5-5: Representative image of a push-cored sub-sample with a 5.1 cm id. clear PVC 
pipe capped with rubber stoppers. Four distinct color changes within the 
sediments can be visualized in the pipe section next to the graduated ruler. The 
light brown layer in this image corresponds to the top sediment layer at the 
sediment-seawater interface. 148 

Figure 5-6: IR-ATR spectrum of hydrated BC12 sediments. General absorption 
characteristics are labeled for point of reference. This spectrum contains 
substantial absorption features from water, carbonates, quartz, and clays. 
Additional minor C-H stretch features above 2800 cm-1 resulting from the 
presence of crude oil are also observed. Sample: BC12B Bot. 152 

Figure 5-7: IR-ATR spectra from four box core locations at MC118. Variations in the 
spectral profiles for water, crude oil, and carbonates are readily apparent. 
Samples: BC7A Bot, BC9A Bot, BC5B Bot, and BC12A Bot. 153 

Figure 5-8: Pockets of highly concentrated biodegraded crude oil (brown stains circled in 
red) in push-cored BC9 sediments from MC118 collected in June 2006. 
Although the crude appears to be a low mass percentage of the overall 
sediment composition, enough oil is present to generate absorption features in 
IR-ATR spectra when within evanescent field sensing regions. For scale, the 
diameter of this push-core tube is approx. 7.6 cm. 154 

Figure 5-9: Accentuated view of ν3 carbonate profiles in the IR-ATR spectra of native box 
core sediments collected from MC118. The spectral signature from each 
sample exhibits unique absorption characteristics. Samples: BC7A Bot, BC9A 
Bot, BC5B Bot, and BC12A Bot. 155 

Figure 5-10: Representative IR-ATR spectrum of dried BC7 sediments collected from 
MC118. General absorption characteristics are labeled for reference. This 
spectrum displays improved spectral access to sediment components following 
the reduction of water interferences by drying. Sample: BC7A Bot. 156 

Figure 5-11: Labeled view of the fingerprint region for an IR-ATR spectrum of dried BC7 
sediments. Quartz and clay exhibit similar absorption features resulting from 
Si-O moieties. Improved spectral access to fundamental carbonate absorption 
bands is clearly observed. Sample: BC7A Bot. 157 

Figure 5-12: Selected views of ν4 carbonate absorption features for IR-ATR spectra 
obtained from (a.) BC1C Bot, (b.) BC7A Bot, (c.) BC9A Bot, (d.) BC12A Bot, 
(e.) MC118 Core 26, and (f.) 27+m sediments from core MD02-2570. The ν4 
absorption characteristic to calcite was observed in all samples. Dolomite is 
clearly present in BC1C Bot, BC12A Bot, and Core 26 sediments from 
MC118, as well as in 27+m sediments from MD02-2570. Mg-calcite was only 
observed in BC12 sediments, as indicated in (d.). 159 
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Figure 5-13: IR-ATR spectra highlighting the ν4 carbonate region for calibration standards 
used to establish the correlation of peak areas to the mass % of each 
component. Spectra were uniformly shifted to a zero baseline at 740 cm-1. As 
expected, the intensity of calcite and dolomite absorption features varied 
according to the relative mass fraction present in each sample. (D = dolomite 
and C = calcite). 165 

Figure 5-14: Calibration functions for determining the mass % of calcite and dolomite 
contributions to the total carbonate content using Prop. PA ratios for ν4 
absorptions (a.) D/(C+D) and (b.) C/(C+D). Error bars represent the mass % 
error calculated from three times the SD of triplicate measurements. In 
addition, the mass % determinations of calcite and dolomite from IR analysis 
for four blind samples (BS#) are plotted along with actual mass % values 
calculated from the recorded mass composition. (BS2* was prepared from 
secondary calcite and dolomite stocks). 168 

Figure 5-15: Condensed summary of IR-ATR spectral analyses of MC118 sediments 
collected in June 2006 (BC#) and October 2005 (C#). Each sampling location 
and significant findings are provided. Variability with respect to hydrocarbon 
detection and carbonate mineral diversity around the MC118 system is readily 
visualized and accentuated around the SW hydrate mound and the NW 
ridgeline. Dolomite mass % (red text with % D) are averages relative to the 
total carbonate mass, not sample mass. δ13C values (V-PDB scale as brown 
text with ‰) are also provided as discussed in Appendix A-1 and Chapter 6. 
(Swath batyhmetry color-shaded relief map provided courtesy of the 
GOMGHRC, and produced by Alessandro Bosman (University of Rome, La 
Sapienza) and Leonardo Macelloni (CMRET) from acoustic data collected by 
C&C Technologies (Lafayette, LA) with the Hugin 3000 AUV). 171 

Figure 5-16: Selected viewings of an IR-ATR spectrum for BC7A Bot sediments. (a.) IR-
ATR spectrum displaying calcite-only carbonate absorption features and tailing 
of the clay absorption feature centered at ~750 cm-1 readily apparent. (b.) 
Accentuated view of the dolomite integration region imposed on the same IR-
ATR spectrum from (a.). The red (solid) line illustrates a small gap below the 
baseline imposed during peak integration analysis resulting in the calculation 
of negative mass % values for dolomite in the total carbonate composition in 
sediment samples. Thus, C = 100% and D = 0% when this occurs during 
sediment analysis with the prescribed evaluation strategy. 172 

Figure 5-17: Representative IR-ATR spectra for sediments from gravity cores 21, 26, and 
38. Strong dolomite signatures are observed near 730 cm-1 in core 21 and core 
26 sediments. While not clearly evident, a minor hump may indicate the 
presence of dolomite in core 38. 177 

Figure 5-18: Semi-quantitative assessments from IR-ATR spectra for the mass % of 
dolomite and calcite in the total carbonate fraction of piston core sediments 
collected from MD02-2570. For each sediment depth, the calcite and dolomite 
mass % are plotted with the sum equal to 100% of the carbonate fraction. Error 
bars for 6, 18, and 21 mbsf samples are twice the SD from triplicate evaluation. 
Lines are present to assist visualization. 179 
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Figure 6-1: SEM images of coccoliths from MC118 gravity core 38 sediments. A small 
sediment portion was smeared onto a glass microscope slide and allowed to dry 
before collection of images with a Nova Nanolab 200 (FEI Company, 
Hillsboro, OR). Coccolith shield morphologies are characteristic of the 
coccolithophore species Emiliania huxleyi (E. huxleyi).1-4 194 

Figure 6-2: Authigenic carbonate nodules collected from (a.) BC3* and (b.) BC5 MC118 
samples. (* nodules provided courtesy of Dr. Roger Sassen, GERG, Texas 
A&M University). 200 

Figure 6-3: An IR-ATR spectrum for an authigenic carbonate nodule recovered from BC5 
sediments. Notice very strong carbonate absorption features in addition to 
minor spectral abosrptions from clay and quartz minerals. Of particular 
importance is the broad ν3 carbonate absorption profile around 1500 cm-1. 202 

Figure 6-4: IR-ATR spectra of 7 nodule samples from MC118 demonstrating the diversity 
of carbonate mineral compositions observed for (a.) High Aragonite nodule 
samples, (b.) Medium Dolomite nodule samples, and (c.) a High Mg-calcite 
nodule sample. Spectra were uniformly shifted to and absorbance of 0.0 at 
740 cm-1 to aid visualization. (* Sample provided courtesy of Dr. Roger 
Sassen, GERG, Texas A & M University). 203 

Figure 6-5: Observed ν3 carbonate absorption features from IR-ATR spectra of (a.) 
authigenic carbonate nodules from three general composition classifications 
(average δ13C of -28.98‰ for 4 examined nodule specimens), (b.) sediments in 
close proximity to recovered nodules from BC5B Bot sample (δ13C of -
18.7‰), and (c.) sediments from BC11A Bot sample displaying sharp, well-
defined absorption characteristics with no significant context clues indicative to 
authigenic carbonate formation at this sample collection (average δ13C of 
0.50‰ for BC7 and BC11 sediments). 204 

Figure 6-6: SEM images exhibiting coccoliths with taxonomic identification of 4 primary 
taxa found in GoM sediments. Images (a.), (c.), and (d.) were collected from 
BC7 sediments, and image (b.) was collected during surface evaluation of an 
authigenic carbonate nodule collected from BC3. In images (b.) and (c.), well-
preserved E. huxleyi coccoliths are also indicated without an identification tag. 
More coccoliths and coccolith fragments can be observed in each image. 207 

Figure 6-7: SEM images with highlighted whole coccoliths and coccolith fragments from 
BC7 sediments; E. huxleyi (green), G. oceanica (blue), and an unidentified taxa 
(yellow). 208 

Figure 6-8: Optical microscope image at x100 magnification (a.) and SEM image (b.) of 
coccoliths produced by Pleurochrysis carterae. The coccoliths are ellipsoidal 
shaped rings approx. 2 μm in length along the major axis. 210 

Figure 6-9: IR-ATR spectra for each sample of coccolith condensates from cultured 
coccolithophores of P. carterae. 212 
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Figure 6-10: IR-ATR spectra displaying accentuated views of the ν3 carbonate region for 
(a.) coccoliths from culture (CfC) for evaluated condensate samples and (b.) 
overlays of CfC and coccolith rich BC7A Bot sediments collected from 
MC118. Each carbonate profile exhibits an intense, narrow absorption feature 
centered at 1413 cm-1. 213 

Figure 6-11. OM image (x2.5) contrasting a bare portion of ZnSe crystal with a high 
surface density of coccolith/coccolithophore residue after IR-ATR 
measurements. 214 

Figure 6-12: OM images of dried coccolith accumulations on ZnSe crystals following 
spectroscopic evaluation of (a.) CfC trial 1 at x50 magnification in dark-field 
lighting and (b.) CfC trial 2 at x50 magnification. Copious coccoliths are 
observed on the ZnSe waveguide surface in both images. 215 

Figure 6-13: IR-ATR spectra focused on the ν3 carbonate absorption features for calcite for 
coccoliths from culture (CfC) and hand ground non-biogenic calcite (calcite). 
The calcite spectrum was obtained from the IR-ATR spectral database 
described in Section 5.2. 217 

Figure 6-14: The ν2 carbonate absorption region displaying the IR absorption of hand 
ground inorganic calcite (calcite), coccoliths from culture (CfC), BC7A Bot 
sediments without authigenic carbonate interference, and BC1C Bot sediments 
with authigenic carbonate interference. 222 

Figure 7-1: Conceptual scaled CAD rendering of the modeled ‘Sphere-IR’ unit indicating 
the design, construction, and incorporation of electronics sub-system 
components and initial modeling of primary optical components for the optics 
sub-system compartment. 238 

Figure 7-2: Schematic for the electronics sub-system designed by Dr. Frank Vogt. The 
IRcube spectrometer components are treated as a single entity in this diagram. 
(Drawing not to scale). 239 

Figure 7-3: (a.) Representative IR-ATR absorbance spectrum of PSCB with highlighted 
spectral features utilized for peak area evaluation. Spectral regions are provided 
in Table 7-1. Peak area values obtained for PSCB absorption features for (b.) 
internal reflection and (c.) non-reflection regions along the ZnSe waveguide 
surface. 247 

Figure 7-4: Representative absorbance spectra from a simulated HATR reflection and non-
reflection region. 250 

Figure 7-5: (a.) Optical image of PSCB deposits along the HATR crystal surface mounted 
in a topless flow cell. (b.) Absorption intensity (as PAs) of PSCB vs. distance 
from the in-coupling facet along the measurement surface.* (c.) Surface map 
projecting the absorbance intensity of PSCB residues along the measurement 
surface of a HATR crystal and displaying discrete ‘active’ sensing regions 
along the crystal surface.** (* Lines are for assisting visual inspection. ** Plot 
generated from PAs for PSCB absorbance in the spectral region from 2986 –
 2817 cm-1). 252 
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Figure 7-6: Calculated signal densities across each incremental area exposed with stepped 
iris aperture diaphragm settings and the ATR bench placed in the sample 
chamber. Signal densities are plotted ± the aperture radius in cm with 0 
representing the aperture center positioned on the central axis of radiation 
propagation. The Gaussian fit provides a close functional resemblance to the 
data plot assuming an axial-symmetric radiation profile. 256 

Figure 7-7: Averages of normalized PAs for experimental and simulation data*,** with 
respect to the measurement location plotted versus distance from the in-
coupling facet of the HATR crystal (error bars are ± 1 standard deviation).*** 
(* Simulation ValuesCCA represent normalized and averaged PAs for data 
obtained with combinations of a 0.1278 cm ± 0.042 cm light source radii with a 
constant cone angle (CCA) of 2°. ** Simulation ValuesCLSR represent 
normalized and averaged PAs for data obtained with combinations of a 
constant light source radius (CLSR) of 0.1278 cm with cone angles of 2° ± 1°. 
*** Lines are present for assisting visual inspection). 259 

Figure 7-8: Simulated radiation density maps for visualizing internal reflection regions and 
the influence of increasing radiation cone angles from left to right (2º, 4°, 8°, 
and 16°). Simulations were generated with a source radius of 0.1278 cm. 260 

Figure 7-9: (a.) Normalized peak areas for simulated deposits plotted versus distance from 
the HATR in-coupling facet with increasing cone angles and a source radius of 
0.1278 cm.* (b.) Normalized peak areas for simulated deposits plotted versus 
distance from the HATR in-coupling facet with increasing source radii and a 
cone angle of 2°.* (* Lines are for assisting visual inspection). 261 

Figure 7-10: Elliptical surface projections of (i) the estimated range of dimensions for 
‘active’ sensing regions shaded green, (ii) the most probable range of 
dimensions for ‘active’ sensing regions shaded in red, (iii) always ‘active’ 
sensing regions shaded in orange, and (iv) always ‘inactive’ measurement 
regions shaded blue. The ellipse minor axis diameters used for calculating 
these projections are provided in Table 7-3 where the minor axis diameter is 
approx. 41% of the major axis diameter. 264 

Figure A-2.1: IR-ATR spectrum of calcite, CaCO3. 281 

Figure A-2.2: IR-ATR spectrum of magnesite*, MgCO3 (* very minor dolomite 
contamination). 281 

Figure A-2.3: IR-ATR spectrum of siderite, FeCO3. 282 

Figure A-2.4: IR-ATR spectrum of rhodochrosite, MnCO3. 282 

Figure A-2.5: IR-ATR spectrum of smithsonite: ZnCO3. 283 

Figure A-2.6: IR-ATR spectrum of aragonite: CaCO3. 283 

Figure A-2.7: IR-ATR spectrum of witherite, BaCO3. 284 

Figure A-2.8: IR-ATR spectrum of strontianite*, SrCO3 (* very minor dolomite 
contamination). 284 
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Figure A-2.9: IR-ATR spectrum of cerussite, PbCO3. 285 

Figure A-2.10: IR-ATR spectrum of dolomite, CaMg(CO3)2. 285 
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SUMMARY 
 
 
 

Substantial amounts of methane are sequestered in naturally occurring ice-like formations known 

as gas hydrates. In particular, oceanic gas hydrates are globally distributed in complex 

heterogeneous ecosystems that typically occur at depths exceeding 300 m. Gas hydrates have 

received attention for their potential as an alternative energy resource, as marine geohazards, and 

their role in cycling of greenhouse gases. In addition, chemosynthetic communities often play a 

vital role in the cycling and sequestration of carbon emanating from cold hydrocarbon seeps 

surrounding hydrate sites. Research efforts are presently striving to better understand the 

significance and complexity of these ecosystems through the establishment of seafloor 

observatories capable of long-term monitoring with integrated sensor networks. In this thesis, 

infrared (IR) spectroscopy has been implemented for the investigation of molecular-specific 

signatures to monitor gas hydrate growth dynamics and evaluate carbonate minerals, which are 

intimately connected with complex chemosynthetic processes occurring in these harsh 

environments. 

The first fundamental principles and data evaluation strategies for monitoring and quantifying gas 

hydrate growth dynamics utilizing mid-infrared (MIR) fiber-optic evanescent field spectroscopy 

have been established by exploiting the state-responsive IR absorption behavior of water. This 

has been achieved by peak area evaluation of the O-H stretch, H-O-H bend, and libration modes 

and assessing peak shifts in the 3rd libration overtone and libration bands during the formation and 

dissociation of simple clathrate hydrates of methane, ethane, and propane formed from aqueous 

solution. Hydrate growth and monitoring was facilitated with a customized pressure cell enabling 

operation up to ~5.9 MPa with spectroscopic, temperature, pressure, and video monitoring 

capabilities. 

Furthermore, the initial feasibility for extending the developed IR spectroscopic hydrate 

monitoring strategies into oceanic gas hydrate ecosystems has been demonstrated through the 
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evaluation of potential spectroscopic interferences from sediment matrices in samples collected 

from two hydrate sites in the Gulf of Mexico (GoM). With exception of the libration band, the 

primary IR absorption features of water are readily accessed within hydrated sediment samples. 

Additional consideration for potential long-term hydrate monitoring applications revealed that the 

collection of approx. 2 IR spectra per day should enable direct insight into the temporal dynamics 

of hydrates within hydrate-bearing sediments, which further supports the development and 

application of deep-sea MIR chemical sensors for advancing the capabilities of exploration, 

characterization, and long-term monitoring of oceanic gas hydrate ecosystems. 

It has previously been well established that chemosynthetic communities play a significant role in 

carbon cycling and sequestration within oceanic gas hydrate ecosystems. Specifically, enhanced 

sulfate reduction from the activity of chemosynthetic organisms shift pore water alkalinity to 

favor authigenic carbonate formation, which traps enormous amounts of carbon dioxide generated 

by various microbes and archaea from the anaerobic oxidation of methane and other 

hydrocarbons emanating from deep fault conduits surrounding many gas hydrate sites. 

Complementary to investigating the dynamics of gas hydrate formation, IR attenuated total 

reflection (IR-ATR) spectroscopy was utilized for evaluating and characterizing the diversity of 

carbonate minerals within sediment and authigenic carbonate nodule samples collected from the 

Mississippi Canyon region in the GoM. Calcite was detected in all sediment and nodule samples. 

Dolomite and Mg-calcite were only detected in sediments indicative to authigenic carbonate 

formation. Authigenic nodules exhibited diverse carbonate compositions, which were grouped 

into three general classifications: (1) High Aragonite, (2) Medium Dolomite, and (3) Hign Mg-

calcite. 

In addition, it was discovered that unique changes in the ν3 carbonate IR signature from seafloor 

sediments facilitate the detection of authigenic carbonate formation within very fine particle 

fractions containing an abundance of sedimented coccolith calcite, which is formed by single-

celled algae that thrive within the photic zone in many of Earth’s oceans and seas. The combined 
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spectroscopic evaluation of authigenic carbonate nodules and coccoliths formed by cultures of the 

coccolithophore Pleurochrysis carterae and carbon isotope analyses of sediment and nodule 

samples confirmed the origin of peculiar carbonate signatures within seafloor sediments arise 

from the regional distribution of coccoliths within GoM sediments. Thus, IR-ATR spectroscopy 

was utilized for characterizing the diversity and patchy distributions of authigenic carbonate 

minerals from samples collected around the Mississippi Canyon 118 (MC118) gas hydrate site. 

Overall, spectroscopic evidence enabled the characterization and assessment of carbonate origins 

within biological, biogeochemical, and geophysical frameworks extending from the photic zone 

to surficial seafloor sediments at a prominent gas hydrate system, providing attractive 

applications following the development of suitable MIR sensing platforms for on-ship and in situ 

measurements. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 

Thesis Objective: The objective for this thesis was the fundamental and practical development of 

mid-infrared (MIR) chemical sensor applications for evaluating and monitoring oceanic gas 

hydrate ecosystems with specific focus on gas hydrate growth dynamics and carbonate 

mineralogy. 

 

Original Contributions of This Thesis: 

• In situ monitoring of simple clathrate hydrates of methane, ethane, and propane grown 

from solution in a pressure chamber with infrared (IR) fiber-optic evanescent field 

spectroscopy. 

• Verification of the feasibility for extending hydrate monitoring strategies utilizing IR 

spectroscopy into oceanic gas hydrate ecosystems. 

• IR-attenuated total reflection (IR-ATR) characterization of carbonate mineral diversity 

surrounding the Mississippi Canyon Block 118 (MC118) hydrate site in the Gulf of 

Mexico (GoM) as proof-of-concept for future on-ship and in situ IR-ATR sediment 

studies. 

• Established the traceability of IR signatures for coccolith shields produced by single-

celled photosynthetic algae (coccolithophores) within seafloor sediments. 

• IR-ATR spectroscopic detection of authigenic carbonates within shallow seafloor 

sediments from spectral differences in the ν3 carbonate signature of coccolith-rich 

sediments from the GoM. 
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• Development of complimentary experimental and simulation strategies for characterizing 

and predicting ‘active’ IR sensing regions along planar attenuated total reflection (ATR) 

waveguide surfaces. 

 

1.1 Motivation 

Globally, a substantial amount of methane is sequestered in naturally occurring ice-like structures 

known as gas hydrates, which are estimated to contain approximately (approx.) 10 × 1018 g of 

methane carbon.1, 2 The most prominent environmental factors influencing the natural occurrence 

of gas hydrates, including pressure, temperature, source gas composition, and water ionic 

strength, are generally well understood after many years of extensive research.1 Although 

naturally occurring gas hydrates have been discovered at many locations on Earth, they are 

limited to specific geographic settings providing thermodynamically favorable conditions for 

hydrate stability.1-8 In oceanic environments, gas hydrates are generally restricted to sediments 

below approx. 300 m of water depth.1, 9 The abundance of greenhouse gasses sequestered within 

gas hydrate and authigenic carbonate minerals (carbonate formed in-place) corroborates the 

importance of oceanic hydrate ecosystems to the global carbon cycle and the regulation of global 

climate.2, 4, 5, 7, 10-14 

In oceanic hydrate ecosystems, the potential migration of greenhouse gasses into the atmosphere 

from hydrocarbon seeps and microbial activity is buffered by the formation of metastable gas 

hydrates and authigenic carbonate minerals with cycling and sequestration of methane and carbon 

dioxide strongly influenced by thriving chemosynthetic communities.10, 11, 14-27 However, a 

growing body of experimental and theoretical evidence supports the presence of atmospheric 

methane that has escaped gas hydrate sequestration following release of hydrate masses into the 

water column and/or catastrophic dissociation from thermal or pressure disturbances that 

overwhelm natural compensatory processes (i.e., dissolution or microbial oxidation).28-36 

Although a broad knowledge base regarding oceanic hydrate systems is accumulating, limited 
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evidence is currently available to fully assess methane flux into the atmosphere. This is 

confounded by the dynamics subsurface venting and hydrate dissociation whereby the frequency 

and magnitude of outgassing events and the buffering capacity of degradation/sequestration 

pathways remain to be intermittently observed and somewhat obscure processes.1, 2, 4, 18, 20, 26, 34, 37 

To address the complexity and scope of this problem, enhanced characterization and 

quantification of biodiversity, bioactivity, viability, stability, and temporal dynamics of hydrate 

ecosystems are necessary; however, this remains a challenging task due to the occasional and 

limited access to the harsh, isolated environments where these events occur. 

In 1998, the Gulf of Mexico Gas Hydrate Research Consortium (GOMGHRC) was formed as a 

joint effort between academic, government, and industry partners to further understand the 

intricate relationships and temporal dynamics of oceanic gas hydrate ecosystems by establishing a 

seafloor observatory with integrated sensing networks capable of sustainable, long-term 

monitoring campaigns. The GOMGHRC has additionally fostered the development of novel 

sensor technologies, which has facilitated studies in this thesis focusing on the development and 

application of MIR chemical sensors for evaluating and monitoring oceanic gas hydrate 

ecosystems. 

 

1.2 Overview of Gas Hydrates in the Gulf of Mexico 

The first documented recovery of gas hydrates from the Gulf of Mexico (GoM) dates to 1983.38 

In the years following this initial discovery, extensive studies have revealed abundant, complex 

gas hydrate ecosystems scattered throughout the GoM.13, 16, 37, 39-42 A map of the Gulf region 

(Figure 1-1) displays many documented occurrences of gas hydrates (thermogenic and biogenic) 

in addition to gas seeps commonly associated with chemosynthetic communities in the absence of 

gas hydrate. 
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Figure 1-1: Distribution of gas hydrates (thermogenic and biogenic) and high flux gas seeps 
without gas hydrate in the northern slope region of the Gulf of Mexico. (Map courtesy of Dr. 
Roger Sassen, Geochemical & Environmental Research Group (GERG), Texas A&M 
University). 
 

To date, the GoM is among only a few locations where the natural occurrence of the three known 

crystalline forms of gas hydrates, structure-I (sI), structure-II (sII), and structure-H (sH), has been 

verified.39, 43, 44 While > 99% of naturally occurring gas hydrates contain low-molecular weight 

hydrocarbons (C1 – C5) formed via biogenic processes, hydrates within the GoM commonly 

contain hydrocarbon gas emanating from both biogenic and thermogenic sources.1, 16, 37, 38 

Thermogenic hydrates contain hydrocarbon gasses originating from deeply buried sources created 

by thermal degradation of geologically old organic matter, and biogenic gas hydrates contain 

gasses from the recent breakdown of organic material closer to the seafloor surface by bacteria 

and archaea.1, 37 

Extensive faulting within the Gulf region is typically associated with salt tectonics, and results in 

vast conduits for fluid migration including gas and oil seepage from deeply buried sources.23, 39, 42, 

45, 46 Abundant gas flux through these conduits provides conditions suitable for gas hydrate 
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formation within deep sediments extending up to the seafloor and into massive hydrate 

outcrops/mounds.8, 40, 45, 47 In addition, proliferate gas and oil seepage establish the foundation for 

thriving chemosynthetic communities, which significantly impact the cycling and sequestration of 

oceanic methane and carbon dioxide.10, 15-17, 23, 26, 27, 47-49 

Oceanic gas hydrate occurrence and stability in the GoM is greatly affected by intricate 

relationships between dynamic and heterogeneous geophysical and biogeochemical processes 

surrounding fault conduits.8, 37, 41, 45, 50-52 Despite the fairly recent discovery of gas hydrates in this 

region, an extensive knowledge base regarding these complex natural systems has been 

accumulated through intermittent observations. However, many processes remain unknown or 

inadequately characterized, particularly regarding the temporal dynamics, microbiological 

influences, and the local and regional scale distributions.13, 37 With increasing interest in gas 

hydrates as a potential alternative energy resource, as submarine geohazards, and a potentially 

important factor in regulating global climate, it is pertinent to improve the analytical capabilities 

for characterizing the rates and magnitudes of gas hydrate growth, chemosynthetic activities, and 

authigenic carbonate formation to facilitate improved assessments of the local and global impacts 

of carbon cycling and sequestration within oceanic hydrate ecosystems.2, 5, 11 

 

1.3 Overview and Scientific Objectives of the GOMGHRC 

The GOMGHRC, managed by the Center for Marine Resources and Environmental Technology 

(CMRET) at the University of Mississippi, provides an extensive interdisciplinary platform 

facilitating collaborative research to address the complexity, diversity, and large-scale scientific 

objectives required for evaluating and monitoring oceanic hydrate ecosystems. The scope of the 

anticipated GOMGHRC seafloor gas hydrate observatory is shown schematically in Figure 1-2. 
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Figure 1-2: Schematic overview of the anticipated GOMGHRC seafloor observatory comprising 
various geophysical, microbial, and biogeochemical sensor arrays for long-term monitoring of the 
Mississippi Canyon 118 hydrate site. (Figure courtesy of the GOMGHRC, by Paul Mitchell, 
Technical Design Specialist for CMRET and the Mississippi Mineral Resources Institute 
(MMRI)). 
 

The consortium consists of four focus groups to address specific goals of the seafloor 

observatory, which is to be stationed at a prominent and isolated gas hydrate system located in 

Mississippi Canyon Block 118 (MC118). The research objectives for each focus group are 
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outlined below, with the work described in this thesis primarily supportive of the 

Biogeochemistry focus group: 

• Biogeochemistry: Focus on benthic geochemistry and biogeochemical processes 

(sediments and pore fluids from approx. 10 m-below-seafloor (MBSF) to approx. 10 m 

into the water column). 

o Pore Fluids: Depth profiles of salinity, temperature, and dissolved hydrocarbon 

gasses (composition, concentration, and isotopes). 

o Benthic Boundary Layer: Analysis of composition and quantity of gas flux 

through the seafloor, and profiling the low water column temperature, salinity, 

conductivity, and density. 

o Sediment and Hydrate Biogeochemistry: Characterization and profiling of gas 

hydrate, mineralogy, dissolved gasses, and heavy hydrocarbons (composition, 

concentration, quantity, morphology, distribution, dynamics, flux, and stable 

isotopes), as well as depth profiling sulfate reduction chemistry. 

• Microbial: Focus on abundance, diversity, distribution, and temporal variability of 

chemosynthetic (bacteria and archaea) activities. 

o Rates of methane/hydrocarbon oxidation, methanogenesis, and sulfate reduction. 

o Impact on gas hydrates (gas composition, consumption, and origin). 

o Relationships between microbial byproducts and gas hydrate formation (i.e., 

biosurfactants). 

• Seismo-acoustic: Focus on evaluating and monitoring the stability and temporal 

variability in geophysical structuring of sediments and the relationship to gas hydrate 

occurrences, stability, and pervasiveness. 

o Geophysical structuring of faults and fluid migration conduits. 

o Trapped gas pockets and migration routes. 

o Large-scale hydrate and seafloor stability. 
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• Technology and Logistics: Focus on developing and implementing technological and 

logistical support. 

o Power and data storage, recovery, and archiving. 

o Instrument deployment and recovery. 

o Providing compatible instrument networking capabilities. 

 

1.4 Introduction to the Gas Hydrate Ecosystem at Mississippi Canyon 118 

The MC118 gas hydrate site (28.852295 N; -88.491950 W) has been extensively characterized 

following multiple seafloor visits with manned submersibles, detailed geophysical surveys, and 

core sample collections to assist integration of sensor networks for a seafloor observatory.13, 53, 54 

Water depth at the site is ~890 m with seafloor temperatures averaging ~5.4° C from 

conductivity, temperature, and depth (CTD) casts collected during a cruise in June 2006 (more 

details in Chapter 5). Hydrocarbon gas and oil emanate at the surface through fault conduits 

linked to deeply buried gas and oil sources.13 Gas vents and hydrocarbon seepage facilitate gas 

hydrate formation and the establishment of thriving chemosynthetic communities of bacterial 

mats (i.e., Beggiatoa), tube worms, and mussels.13 Abundant sII gas hydrates amass by trapping a 

portion of small hydrocarbon gasses, primarily CH4 with considerably high amounts of C3H8, 

exuding from active gas vents.13 Additionally, substantial sequestration of CO2 generated by 

microbial oxidation of hydrocarbons is evidenced by 13C composition of gas and oil recovered in 

sediments and authigenic carbonate rock accumulations.13 Sequestration of biogenic CO2 is aided 

by robust sulfate reducing microbes that shift pore water alkalinity in favor of authigenic 

carbonate precipitation with pervasive production of H2S.13 It is estimated that the equivalent of 

approx. 3 billion m3 of CO2 at standard temperature and pressure (STP) has accumulated in the 

form of authigenic carbonate rock at the MC118 site.13 Figure 1-3 displays an autonomous 

underwater vehicle (AUV) survey of MC118. 
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Figure 1-3: Survey of the hydrate system located in the south central area of MC118. This 
location is characterized by diverse topographical features with active hydrocarbon vent areas 
highlighted with red circles (smaller diameter). sII hydrate outcrops have been found at the NW 
vent (i) with recent findings of massive hydrate mounds around the SW vent (ii).13 (Swath 
batyhmetry shaded relief map provided courtesy of the GOMGHRC, and produced by Alessandro 
Bosman (University of Rome, La Sapienza) and Leonardo Macelloni (CMRET) from acoustic 
data collected by C&C Technologies (Lafayette, LA) with the Hugin 3000 AUV). 
 

The hydrate system at MC118 exhibits significant fluctuations in topographical features near 

active hydrocarbon vents featuring massive sII hydrate outcrops surrounding the NW (i) and SW 

(ii) vents. A large fault associated with seismic activity lies to the east of the hydrate system 

stretching NW to SE. With exception of the fault, seafloor topography becomes essentially 

featureless a short distance away from the hydrate site. 
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The NW (i) and SW (ii) vent areas are locations of substantial interest as massive hydrate and 

carbonate formations have been observed surrounding fluid seeps. In September 2006, several 

dives were performed with the Johnson Sea-Link manned submersible to visually inspect seafloor 

morphology and to deploy and recover various scientific experiments at MC118 by members of 

the GOMGHRC. Audio-visual (A/V) logs and optical images were obtained during each dive. 

Figures 1-4 through 1-7 provide selected images, with brief descriptions, collected around the 

MC118 site during manned submersible dives. All images are courtesy of the GOMGHRC and 

the Johnson Sea-Link Crew (Harbor Branch Oceanographic Institution). 

 

  
 
Figure 1-4: A massive, sediment draped gas hydrate outcrop around the SW vent (ii). 
 

  
 
Figure 1-5: Large authigenic carbonate ledges and mounds resulting from chemosynthetic activity 
at the hydrate site with crabs scavenging the area for food. 
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Figure 1-6: Hydrocarbon gas bubbles emerging from the seafloor characterized by hydrate, 
carbonate, and mollusk shell accumulations. 
 

  
 
Figure 1-7: Fracture filling gas hydrate stained orange with biodegraded crude oil in an authigenic 
carbonate mound. Hydrate grows in the crevices of large authigenic carbonate mounds are the 
result of copious gas venting. Abundant aragonite shell litter is scattered and cemented into the 
large carbonate mass. 
 

 
1.5 IR Spectroscopy and Oceanic Gas Hydrate Ecosystems 

The work presented in this thesis focuses on the development and practical application of IR 

spectroscopic measurement and data evaluation strategies for monitoring and characterizing gas 

hydrates and carbonate minerals in the context of oceanic gas hydrate ecosystems. The most 
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significant findings reported herein include: (1) establishing the feasibility and first principles for 

monitoring and quantifying hydrate dynamics with IR fiber-optic evanescent field spectroscopy 

and (2) identifying and characterizing authigenic carbonates in surficial sediments comprised of 

abundant coccolith calcite surrounding the MC118 hydrate site. The respective sub-topics 

addressed throughout this thesis detail the fundamental principles on how the molecular specific 

information provided by vibrational spectroscopy can be utilized to gain direct insight into local 

and regional scale natural processes involved with carbon cycling and sequestration within 

oceanic gas hydrate ecosystems. Furthermore, the capability, feasibility, and potential for the 

application of submersible MIR chemical sensing platforms, as well as on-ship and laboratory 

based analytical and exploratory spectroscopic support modules, for evaluating and monitoring 

oceanic gas hydrate ecosystems is discussed. 
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CHAPTER 2 
 

BACKGROUND 
 
 
 

This chapter introduces the fundamental principles and theory of infrared (IR) absorption 

spectroscopy for transmission-absorption and attenuated total reflection measurement strategies. 

In addition, a general overview of oceanic gas hydrate characteristics and methods for detection 

and characterization are provided. This chapter concludes by summarizing classical methods and 

analytical techniques implemented for characterizing marine carbonates. 

 

2.1 Infrared Spectroscopy 

In general, optical spectroscopy is the investigation of interactions between light and matter. 

Specifically, IR spectroscopy is a common analytical tool used to probe the absorption of 

radiation resulting from the resonant transfer of energy through permanent dipole moments 

associated with fundamental vibrations and rotations of molecules respective to structure and 

symmetry in the spectral region from 4000 – 400 cm-1.1-4 Hence, IR spectroscopy (particularly in 

the fingerprint region from 1200 – 400 cm-1) generates inherently molecular specific absorption 

patterns suited for sample characterization. In addition, the molecular specificity of this analytical 

strategy has lead to the development of various sensing configurations targeting single or multiple 

analyte species in gas, liquid, and solid sample matrices. 

The underlying principle of IR spectroscopy is the frequency (or wavelength) dependent measure 

in the reduction of light intensity following interaction with a sample (I) relative to the intensity 

of incident radiation, I0. This is often expressed as transmittance, T, which is defined as: 

 

0I
IT =  

 
Equation 2.1 
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A more common expression for quantitative application is a rearrangement of Equation 2.1 for 

sample absorbance, A, following: 

 

⎟
⎠

⎞
⎜
⎝

⎛=−=
I
I

TA 0log)log(  

 
Equation 2.2 

 

In transmission-absorption spectroscopy, light is propagated directly through a sample, and the 

absorbance of light is proportional to the sample thickness and analyte concentration following 

the Beer-Lambert law such that: 

 
aClA =  

 
Equation 2.3 

 

where A is absorbance, C is the sample concentration, l is the sample thickness (measurement 

pathlength or volume), and a is the sample absorptivity with inverse units corresponding to C and 

l such that A is a unitless value. The sample absorptivity is usually presented as the molar 

absorptivity, ε, when concentration units are expressed in moles per liter. 

IR spectroscopy is often used for quantitative applications. The Beer-Lambert law illustrates that 

under a given set of measurement conditions where a and l remain constant, A varies with respect 

to C with a first order linear relationship. However, there are several fundamental limitations to 

the Beer-Lambert law. At high analyte concentrations, a change in the sample absorptivity can 

occur following a shift in the sample refractive and/or the onset of inter-molecular interactions 

between analyte molecules. 

The term frequency (ν), wavelength (λ), and wavenumber (ω) are used interchangeably 

throughout this thesis to describe IR absorption characteristics of samples. The respective 

relationships between each are as follows: 
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ν
λ c

=  

 
Equation 2.4 

 

where c is the speed of light in vacuum, and: 

 

λ
1ω =  

 
Equation 2.5 

 

2.1.1 Infrared-Attenuated Total Reflection (IR-ATR) Spectroscopy 

Attenuated total reflection spectroscopy was independently pioneered by Fahrenfort and Harrick 

in the early 1960’s.5, 6 This technique exploits the transfer of radiation to an absorbing sample 

(lossy coupling) through the surface phenomenon of the so-called evanescent field, as opposed to 

absorption following direct transmission of light through a sample in conventional transmission-

absorption methods. The evanescent field results when light is totally internally reflected at the 

interface between an optically dense medium (refractive index of n1) and optically rare medium 

(refractive index of n2) where n1 > n2. The conditions for total internal reflection are achieved 

when the incident angle of radiation, θ, normal to the reflection interface  is > the critical angle, 

θc, where:6 

 

1

21

n
n

sin −=cθ  

 
Equation 2.6 

 

The evanescent field is a standing wave penetrating the optically rare medium normal to the 

reflection interface resulting from the superposition of electrical fields for incoming and reflected 

waves.6 Figure 2-1 provides a schematic representation of the evanescent field resulting from 
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total internal reflection of light propagated through a trapezoidal internal reflection element 

(waveguide). 

 
 
Figure 2-1: The evanescent field arising from light propagating through an optically dense 
waveguide via total internal reflection. 
 

The evanescent field intensity, E, decays exponentially with increasing distance from the 

reflection surface following: 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

= pdeEE
z

0  
 

Equation 2.7 
 

where E0 is the evanescent field intensity at the interface (z = 0), and dp is the penetration depth 

where E0 has decreased to a value of 1/e.6 The penetration depth is dependent upon θ, n1, n2, and 

the wavelength of radiation, λ, propagated through an optically “transparent” waveguide:6 
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Equation 2.8 
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The localized surface interaction of light and sample in IR-ATR spectroscopy facilitates the 

interrogation of a wide variety of samples either unsuitable or difficult to analyze with 

transmission-absorption configurations (i.e., powders and turbid liquid media).6 In practice the 

effective interaction between the evanescent field and sample extends beyond dp; hence, an 

effective sample thickness, de, has been described.6, 7 For ATR spectroscopy, the attenuation of 

reflected light, R, by sample absorption following N number of reflections respective to 

wavelength for constant θ, n1, and n2, can be expressed as: 

 
edaCR N)(ln −=λ  

 
Equation 2.9 

 

In Equation 2.9, ln R is comparable to the ln T for transmission-absorption spectroscopy; hence, 

the sample absorbance in IR-ATR spectra can be written in an adapted form of the Beer-Lambert 

law: 

 
edaCA N)( ≅λ  

 
Equation 2.10 

 

where Nde is the measurement pathlength comparable to l. 

 

2.1.2 IR-ATR Waveguides 

A variety IR transparent materials and waveguide geometries enable an array of high optical 

throughput configurations fulfilling the conditions of total internal reflection for IR-ATR 

spectroscopic measurements.8-12 IR transmitting optical fibers are typically made from 

chalcogenides, silver halides, and tellurium halides with diameters of 400 – 1000 μm.13, 14 Planar 

ATR crystals (typical thickness > 1 mm) are usually made from ZnSe, Ge, and Si.8-12 The 

effective measurement pathlength (respective to material refractive indices) can be tailored by 
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adjusting the number of internal reflections with waveguide geometry, thickness, length, and 

radiation coupling conditions. In this thesis, trapezoidal ZnSe waveguides and silver halide fibers 

(AgX) were utilized for IR-ATR measurements. The physical and transmission properties of 

ZnSe, silver halide fibers, and other waveguiding materials are commonly available from 

manufacturers/distributors and throughout the literature.8-12, 14 

 

2.1.3 Evanescent Field Sensing Strategies 

 2.1.3.1 Uncoated Waveguides 

The application of uncoated waveguides for sensing strategies is well-suited to evaluate major 

components of bulk samples through the direct interrogation of a sample matrix. Analyte 

sensitivity can range from parts per million15 (ppm volume-to-volume (v/v)) to low mass 

percentages (~2% as in Chapter 5 for carbonate analysis) depending on the absorption 

characteristics of targeted species and matrix interferences. This sensing strategy enables near 

real-time monitoring of a sample or measurement environment. If matrix components strongly 

interfere with analyte absorption features or analyte concentrations are below detection 

capabilities of this configuration, application of diffusion-based extraction membranes may be 

utilized to enhance measurement capabilities.16 Although only uncoated waveguides were the 

only measurement strategy implemented in this thesis, a brief overview of surface-modified 

waveguides is provided below. 

 2.1.3.2 Surface-Modified Waveguides 

Polymer or polymer-like films are often deposited onto the waveguide surface for enhancing 

analyte detection of small compounds.16-18 This strategy targets the extraction and enrichment of 

trace amounts of volatile organic compounds (VOCs) into the polymer(-like) matrix from 

aqueous media. The enrichment membrane additionally facilitates the suppression of background 

bulk matrix interferences as the film thickness is generally > dp. Furthermore, VOCs in general 

have a higher affinity for the membrane matrix than the bulk aqueous solution, which can lead to 
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enrichment factors from the low 100’s to over 10,000.16, 19 This significantly enhances the analyte 

content interrogated by the evanescent field enabling detection limits from single parts per billion 

(ppb) to low ppm concentrations on a v/v basis. The drawback to this strategy is the selection of a 

membrane material that exhibits high thermal, chemical, and physical stability while providing 

high analyte affinity with rapid, reversible diffusion characteristics. A wide variety of polymer, 

sol-gel, and, most recently, plasma-polymerized films have been utilized for detection of VOCs in 

the literature, including polystyrene-co-butadiene, Teflon AF 1600 and 2400, and ethylene-co-

propylene.16-20 

 

2.2 General Characteristics and Methods for Detecting Oceanic Gas Hydrates 

A continuously increasing number of oceanic gas hydrate occurrences are reported in the 

literature, with most findings along continental margins.21-25 In general, oceanic gas hydrate 

stability becomes favorable at pressures and temperatures corresponding to approx. 300 m below 

sea level.21, 26 In most oceanic environments, hydrate stability is typically greatest at the sediment-

water interface, and decreases with depth below the seafloor as a result of increasing temperatures 

from geothermal gradients.21 The following sub-sections aim to provide a general overview on 

the fundamental characteristics of oceanic gas hydrates and a brief summary of detection 

methods. More extensive reviews and treatments can be found in Sloan Jr., Hutchinson et al., 

Trehu et al., and references therein.21, 27, 28 

 

2.2.1 General Characteristics of Oceanic Gas Hydrates 

Several classification schemes are commonly implemented to describe and characterize the 

qualities (physical and chemical) of naturally occurring oceanic gas hydrates. Established 

classification parameters provide general proxies for differentiating the diversity of gas hydrate 

morphologies and gas compositions; however, they also provide direct insight into a variety 

geological factors (e.g., geophysical, geochemical, and biological) directly influencing the 
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physical and chemical characteristics of gas hydrates. The following sub-sections provide a 

general overview for the most common classifications used to generate basic descriptions of 

naturally occurring oceanic gas hydrates. 

 2.2.1.1 Biogenic and Thermogenic Gas Hydrates 

The classification of oceanic gas hydrates as either biogenic or thermogenic stems from the 

isotopic characteristics of methane carbon.21, 27, 28 The relative abundance of 13C provides insight 

into past physical and biological processes impacting the isotopic abundance prior to 

sequestration in gas hydrate structures.21, 27, 28 Carbon isotope data is presented as δ13C in parts per 

thousand (‰) relative to a Pee Dee Belemnite standard following:21 
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Equation 2.11 

 

Biogenic methane typically exhibits δ13C values ranging between -60 to -85‰; whereas, 

thermogenic methane ranges between -25 to -55‰.21 Hence, the isotopic composition of methane 

sequestered in gas hydrate correlates to methane origins and the resultant classification of gas 

hydrate as either biogenic or thermogenic. In addition, the concentration ratio, [C1/(C2 + C3)], 

facilitates characterization of biogenic (> 103) and thermogenic (< 102) gas hydrates.21 

 2.2.1.2 Gas Hydrate Morphologies 

Several models have been proposed to describe in situ hydrate formation and morphological 

relationships between gas flux (high versus low) and gas origins (biogenic versus thermogenic).21, 

28 Currently, only a general overview of hydrate morphology and terminology is provided herein. 

Four general morphological groups are utilized to describe naturally occurring gas hydrates: (1) 

disseminated, (2) nodular, (3) layered, and (4) massive.21 Disseminated gas hydrate describes 

small hydrate agglomerations, up to approx. 1 cm, widely distributed throughout the sediments. 
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Nodular hydrate formations include hydrate masses from approx. 1 cm to 5 cm in diameter. 

Layered gas hydrates are separated by thin sediment layers, and massive gas hydrates describe a 

wide variety of gas hydrate formations > 5 cm in size. Fracture filling gas hydrates in carbonate 

mounds and massive hydrate outcrops or mounds > 4 m have been observed in several locations, 

including the MC118 site (see Figures 1-4 and 1-7).21, 29 

 2.2.1.3 Gas Hydrate Structures 

Oceanic gas hydrates are most frequently observed to be sI or sII (see Section 4.1.1.2); however, 

sH has also been recovered in the GoM.21, 28, 30 Gas hydrate structure is generally inferred from 

the gas composition of dissociated hydrate, which is typically analyzed by gas chromatography 

(GC) and/or GC-mass spectrometry.21 As a general rule, hydrates with gas compositions 

containing < 1% C3 – C5 are classified as sI, and sII when the C3 – C5 content is > 1%.21 Gas 

compositions vary widely between gas hydrate locations, as well as the presence of sI and/or sII 

formations.21 At MC118, the gas composition is reflective of sII.29 Furthermore, the relative 

percentages of C1 – C4 sequestered within hydrate are substantially enriched in C2 – C4, 

particularly in propane, compared to the composition of thermogenic supply gases.29 Recently, 

Raman spectroscopy has been extended from laboratory characterization of gas hydrate structures 

for deep-sea investigations at the Hydrate Ridge site (~ 780 m) off the coast of Oregon.31 The 

authors demonstrated the capability for in situ classification of hydrate structure (sI). This was 

achieved using methane signatures to determine cage-occupancy ratios characteristic of sI hydrate 

previously observed in laboratory measurements.31 

 

2.2.2 Detection, Indication, and Characterization of Oceanic Gas Hydrates 

A variety of investigative methods and analysis techniques have been implemented for detecting 

and/or inferring the presence of oceanic gas hydrates.21, 27, 28 A general overview of sampling 

methods, geophysical and geochemical indicators of gas hydrates, and common and state-of-the-

art methods for detection and characterization (on-ship and in situ) is provided below. 
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 2.2.2.1 Visual Observation and Hydrate Sampling Methods 

The value of visual observations of gas hydrates (either in situ or ex situ) cannot be 

underestimated in oceanic gas hydrate research. Geochemical and geophysical anomalies, 

discussed in Sections 2.2.2.2 and 2.2.2.3, provide strong inferential evidence to the presence of 

gas hydrate; however, ground truthing by visual observation remains the quintessential direct 

confirmation of oceanic gas hydrate occurrences.21, 27, 28 In situ visual observations and sample 

recoveries (i.e., push cores) are often facilitated by manned submersibles or ROVs (typically 

stimulated investigations following the collection of inferential evidence), recovery of hydrate 

samples from ship coring operations (gravity and piston cores), and/or continued investigations of 

previously documented gas hydrate sites (e.g., MC118).21, 27, 28 

Although gas hydrates may be recovered by sediment core sampling, they are prone to rapid and 

potentially full dissociation, primarily disseminated and small nodules, following extraction from 

thermodynamically stabile conditions prior to on-ship visual investigations.21, 27, 28 As a result, 

several pressure core systems have been developed to maintain sediments at in situ hydrostatic 

pressures during core recovery, thereby preserving equilibrium conditions of free gas, dissolved 

gas, and gas hydrate for improved characterization of hydrate-bearing sediments.27, 32 Yun et al. 

developed an instrumented pressure test chamber enabling sample transfer from Fugro pressure 

cores with multiple access ports for measuring seismic velocities (i.e., compression (P) and shear 

(S)-wave), electrical conductivity, and sediment strength at in situ pressures.32 In addition, track-

mounted IR cameras have been recently implemented for systematic thermal imaging of all 

Ocean Drilling Project cores sampling within the gas hydrate stability zone.27 Thermal imaging 

facilitates rapid characterization of gas hydrate structuring and layering within sediments by 

identifying anomalous cold spots resulting from endothermic hydrate dissociation. This method 

has also been utilized to aid focused, on-ship sub-sampling of recovered cores for land-based 

laboratory studies (e.g., pore water chemistry).27 
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 2.2.2.2 Seismo-Acoustic Detection of Gas Hydrates 

In addition to core sampling and submersible investigations, the occurrence of oceanic gas 

hydrates are most frequently indicated by hydrate-related acoustic reflections within sediments 

known as Bottom Simulating Reflectors (BSRs).21, 28 A variety of seismo-acoustic methods (data 

collection and treatment) have been reported (e.g., shallow source deep receiver (SSDR)); 

however, only a brief discussion is provided herein.21, 28 In general, a source (e.g., air gun) directs 

sound waves towards the sediment while a receiver (e.g., geophone) records reflected waves 

versus time.21 Hydrate-related BSRs are indicated by a concomitant sharp decrease in P-wave 

velocity and increase in S-wave velocity.21, 28 Seismo-acoustic sediment profiles are frequently 

collected in straight lines running N – S or E – W. 

Seismo-acoustic methods are often implemented for aerial reconnaissance in the search for 

oceanic gas hydrate occurrences.21, 28 In addition, several data treatments have also been 

developed for quantifying gas hydrate volumes from BSR data.21, 28 However, BSRs are not 

reliable indicators for conclusive determination to the occurrence or lack of gas hydrates in 

oceanic environments.21, 28 Gas hydrates have been recovered in locations without identifiable 

BSRs, and BSRs have been identified without gas hydrate recovery in core samples.21, 28 

 2.2.2.3 Geochemical Indicators of Gas Hydrates 

In addition to the characterization of gas hydrates by analyzing gas composition and carbon 

isotopes, two additional geochemical factors evidence the presence of gas hydrate.21, 28 Ions are 

not incorporated into gas hydrate structures; hence, recent hydrate formation leads to increased 

salinity/chlorinity in surrounding pore waters.21, 28 Conversely, hydrate dissociation in sediments 

can be inferred from depleted values relative to baseline measurements from non-hydrate-bearing 

sediment fractions recovered in the same core.21, 28 Lastly, H2
18O is preferentially incorporated 

into gas hydrate moieties; albeit in only small fractions such that an α value of approx. 1.0026 

can be measured where:21 
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2.3 General Overview of Classical Characterization Methods for Marine Carbonates 

Marine carbonates comprise a complex and diverse array of skeletal and non-skeletal 

formations.33 Four general branches of characterization are implemented by geologists to 

facilitate a thorough description carbonate rocks and sediments: (1) texture, (2) petrography, (3) 

mineralogy, and (4) chemical composition.33 For sediment analysis, texture simply refers to 

particle size evaluation. Particle size characterization of three size fractions is frequently 

sufficient for analysis; silt and clay (< 62 μm, termed mud), sand (62 – 2000 μm), and gravel 

(> 2000 μm).33 Petrography is the characterization of mineral content in relationship to texture 

aided by visual and chemical analyses. A more thorough treatment of petrographic analysis is 

beyond the scope of this thesis; however, the compositional relationship of particle sizes and 

carbonate content has significant implications regarding IR-ATR analysis of carbonate minerals 

in seafloor sediments. Additional considerations of these relationships are provided in context to 

the studies described throughout Chapters 5 and 6. 

Carbonate minerals are commonly classified upon visual inspection following various staining 

procedures utilized in petrographic analysis.33 Reviews of common staining procedures can be 

found in Friedman as well as Milliman.33, 34 Powder x-ray diffraction (XRD) is also a common 

method for carbonate classification via the evaluation of diffraction patterns characteristic to each 

mineral species.33, 35, 36 In addition, XRD data is amenable for quantitative evaluation of carbonate 

constituents (i.e., calcite and dolomite) and the quantification of Mg2+ content in magnesian 

calcites.33, 35, 36 This can be achieved with peak height and/or peak area data evaluation strategies. 

The quantitative accuracy of XRD typically ranges from 1 – 5%.33, 35, 36 
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Additional analytical methods have been developed for quantifying calcium carbonate 

composition (calcite and aragonite) including gasometry, acid-leaching, EDTA, and atomic 

absorption.33 Selection of a quantification method is primarily dependant upon user needs. 

Elemental and isotopic analyses are also used for a thorough assessment of carbonate 

composition. Elemental analysis can be facilitated by x-ray fluorescence, flame atomic emission, 

and atomic absorption spectroscopies, whereas various mass spectrometric configurations can be 

utilized for isotopic characterization of C and O content relative to a standard sample.33 

In this thesis, the general characterization of seafloor sediments has facilitated the collection of a 

multitude of evidence supporting IR data interpretations presented in Chapters 5 and 6. In 

addition to IR analyses presented in this work, carbonate carbon isotope analyses for several key 

samples were performed by external laboratories with mass spectrometry. Measurement 

procedures and results for isotopic analysis can be found in Appendix A-1. Specific discussions 

regarding carbonate mineralogy and oceanic hydrate ecosystems and the application of IR 

spectroscopy for carbonate analysis are provided in Chapters 5 and 6. 
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CHAPTER 3 
 

EXPERIMENTAL DESIGN AND APPARATUS 
 
 
 

The goal of this chapter is to provide detailed technical descriptions of the two primary 

experimental setups, including commercially available equipment, design and construction of 

custom-built apparatus, and control and monitoring systems, utilized throughout the course of 

described studies. In addition to facilitating the flow of content throughout this thesis, the reader 

has the option to gain a general overview of the experimental configurations by referring to 

Figures 3-8, 3-10, 3-11, 3-12, and 3-14. A mixture of International System of Units (SI) and 

English units are used throughout this chapter. The usage of English units facilitates easy 

identification of “off-the-shelf” components without requiring unit conversion. Where 

appropriate, units from both systems are provided side-by-side. 

 

3.1 Experimental Setup for IR Spectroscopic Monitoring of Gas Hydrates 

Experimental chambers for laboratory growth of gas hydrates have evolved substantially since the 

initial discovery of clathrate hydrates.1 In principle, hydrate growth chambers must be capable of 

attaining and sustaining conditions at or beyond hydrate phase equilibria, while providing the 

means for manipulating and monitoring system parameters (i.e., temperature and pressure). 

Today, experimental designs typically integrate the capability for water agitation via rocking, 

stirring, and/or sonication, mass flowmeters for quantification of gas incorporation into hydrate 

structures, optical ports for visual inspection, and access ports for the interrogation of gas 

hydrates with additional analytical strategies.1 A detailed overview of significant milestones in 

the design of experimental apparatus, methods, and measurements of gas hydrates are provided in 

Clathrate Hydrates of Natural Gases by E. Dendy Sloan Jr. and references within.1 

The hydrate growth chamber developed for IR fiber-optic measurements of gas hydrates via 

evanescent field absorption spectroscopy was initially designed and described by N.A. 
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Pennington for studying MIR sensor concepts for assessing dissolved methane in oceanic hydrate 

environments.2 To facilitate hydrate growth in a non-agitated system with visual and fiber-optic 

access in this thesis, several design modifications were required. In addition to a description of 

the pressure chamber, specifications for the cooling, imaging, and pressure and temperature 

monitoring sub-systems are provided. Furthermore, a complete assembly description of the 

hydrate chamber with identification and function of individual components is presented. 

 

3.1.1 Initial Pressure Chamber Design 

The high pressure chamber was constructed from 304 stainless steel (SS) with a sample volume 

of approx. 500 mL.2 The main body (Figure 3-1) was fabricated from a solid piece of SS material 

with 6 1/4” female national pipe thread (FNPT) access ports. The cylindrical sample volume of 

the main body is sealed with an AS568A Dash No. 237 Viton o-ring and a 4.5” od. × 0.5” th. (od. 

is outer diameter, th. is thickness) circular detachable face plate secured by 12 1/4”-20 × 5/8” 

hexagonal (hex) head cap screws. The initial cover plate was designed to accommodate a 

50 mm × 20 mm × 2 mm planar ATR waveguide allowing operation up to a pressure of approx. 

300 pounds per square inch gauge (psig), 2.1 megapascal (MPa), at room temperature. Threaded 

anchor points at each corner on the underside of the main body enable the attachment of standard 

0.5” diameter (dia.) optical posts with 1/4”-20 screw extensions. 

 

 
 
Figure 3-1: Construction drawings for the initial status of the main body for the pressure chamber. 
(Drawings adapted from N.A. Pennington).2 
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3.1.2 Construction Modifications to Main Body of Pressure Chamber 

To facilitate growth and spectroscopic monitoring of gas hydrates with the pressure chamber 

described in Section 3.1.1, two primary construction modifications were required to incorporate 

temperature control and spectroscopic access to the internal sample volume. Two complementary 

pairs of 1/8” FNPT access ports were added to the main body for fiber-optic coupling and for 

integrating an internal cooling coil. In addition, one 1/4” FNPT port was added to assist fluid 

drainage from the underbody of the sample chamber. Figure 3-2 displays updated construction 

drawings for the described main body modifications (original form depicted in Figure 3-1). 

Construction modifications were performed by the Georgia Tech College of Science Machine 

Shop (GTCoSMS). 

 

 
 
Figure 3-2: Construction drawings for modifications to the pressure chamber main body: (1) 
fiber-optic coupling ports, (2) liquid drain, and (3) internal cooling coil ports. 
 

 
3.1.3 High Pressure Optical Viewport Design, Construction, and Specifications 

Design and construction of a high pressure optical viewport provided visual access for monitoring 

the interior of the sample chamber during hydrate measurements. In addition, a new detachable 

face plate was designed and constructed for mounting and coupling the modular viewport 

accessory to the existing high pressure apparatus without further modification to the main body. 

Conceptual drawings with a cross-sectional view and three-dimensional (3-D) computer-aided 

design (CAD) rendering of the optical viewport are provided in Figure 3-3. 
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Figure 3-3: Conceptual drawings of the high pressure optical viewport with sapphire window. (a.) 
Cross-sectional view with labeled components, and (b.) CAD 3-D rendering of the viewport. 
 

The viewport was designed to provide versatility, safety, and functionality. The modular 

construction allows detachment of the viewport from the chamber with the pressure seal 

maintained around the optical window, which facilitates multi-application usage for future 

modifications to the experimental apparatus and/or construction of a new pressure chamber. A 

1/16” oversized inset, for sandwiching a 1” dia. sapphire window between the face and base 

components, was designed to prevent metal-sapphire contact that could result in catastrophic 

failure when pressurized. As a result, a thin polytetrafluoroethylene (PTFE) sleeve was 

manufactured to center, prevent slippage, and ensure an even crush when sealing the sapphire 

window with PTFE o-rings. Detailed construction drawings are provided in Figure 3-4. 
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Figure 3-4: Construction drawings for the custom-designed high pressure optical viewport 
components. 
 

The 1” dia. × 0.235” th. sapphire window (Meller Optics, Inc., Providence, RI) is pressure rated 

to 850 pounds per square inch (psi), 5.9 MPa, with a built-in 3-fold manufacturer safety factor. 

12 mounting points were incorporated into the design with an alternating assembly configuration. 

Prior to mounting the viewport on the custom-designed detachable face plate, 6 6-32 × 1/2” hex 

screws were used to secure and seal the sapphire window between the face and base components 

with the aid of 2 AS568A Dash No. 118 PTFE o-rings. An additional 6 6-32 × 7/8” hex screws 

and 1 AS568A Dash No. 122 Viton o-ring lubricated with inert ultra high vacuum grease 

(Apiezon, Manchester, UK) ensured leak-free attachment to the face plate. Optical viewport face 

and base components were manufactured from 304 SS by the GTCoSMS. The PTFE sleeve was 
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fabricated from 1” dia. virgin electrical grade PTFE rod stock on a Minitech computer numerical 

control (CNC) Mini-Lathe/1 (Minitech Machinery Corporation, Norcross, Georgia). 

A detachable face plate for mounting the optical viewport was designed with the same 

4.5” od. × 0.5” th. form factor as the original cover plate. To add versatility to a limited 0.75” 

effective viewing dia., the central viewing axis was off-set by 0.625” from the face plate center. 

Thus, by rotating the face plate when attaching to the main body, different areas of the sample 

volume become visually accessible. The newly designed face plate was fabricated from 304 SS 

by the GTCoSMS. Figure 3-5 provides construction drawings for the viewport face plate and an 

optical image of the viewport–face plate assembly attached to the modified main body of the 

hydrate pressure chamber. 

 

  
 
Figure 3-5: (a.) Construction drawings for the detachable viewport face plate, and (b.) optical 
image displaying the viewport and detachable face plate assembly attached to the main body of 
the pressure chamber. A cell thermostating copper coil is additionally indicated for later 
reference. 
 

 
3.1.4 Fiber-optic Integration for IR Spectroscopic Access 

To couple a 300 mm l. × 700 μm dia. (l. is length) solid-core silver halide (AgX, X = Cl0.3 –

 0.4Br0.7 – 0.6) fiber for spectroscopic access through a cross-section of the hydrate chamber, a fiber 

coupling system with custom-made PTFE ferrules and Swagelok components (Swagelok, Solon, 

OH) was devised. PTFE ferrules were fashioned from 0.5” dia. virgin electrical grade PTFE rod 
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stock with an angle of approx. 30° to form a crimp seal around a AgX fiber with the aid of SS 

1/8” Swagelok tube fitting (STF) – 1/8” male national pipe thread (MNPT) bored-through 

connectors. PTFE ferrules were manufactured using a Minitech CNC Mini-Lathe/1. First, a fiber-

optic feedthrough was drilled into the center of PTFE rod stock with a 0.280” (#70) drill bit. 

Then, a CAD Drawing Interchange Format (.DXF) template file was loaded into the Mini-Lathe/1 

control software to form a tool path (scaled-up by a factor of 5 for appropriate dimensioning). 

The tool path was traced under computer control with 0.010” incremental depths of cut with an 

oversized rear support to ensure material stability during ferrule fabrication. Once the dia. of the 

forward support was reduced to 1/8”, the rear support was manually reduced until a 1/8” dia. was 

achieved. Figure 3-6 provides a dimensionless and mirrored representation of the custom ferrule 

design and dimensioned tool path used for fabrication. 

 

  
 
Figure 3-6: (a.) Mirrored and dimensionless representation of the custom PTFE fiber-optic 
coupling ferrules, and (b.) the dimensioned tool path utilized for CNC fabrication. 
 

To date, the fiber-optic coupling system has provided leak-free IR spectroscopic access to the 

sample volume of the hydrate chamber throughout a wide variety of experiments with operational 

pressures > 750 psig (5.2 MPa) during some trials. A maximum operational pressure rating for 

this configuration has not been determined. Additionally, the fiber remains unsupported inside the 

pressure chamber beyond the two anchoring points provided by the PTFE ferrules. Figure 3-7 

contains graphical representations of the custom ferrule and Swagelok fiber-optic coupling 

system and assembly. 
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Figure 3-7: (a.) Labeled optical image of the PTFE ferrule and Swagelok fiber-optic coupling 
system with a 700 μm dia. test section of solid-core AgX fiber. (b. and c.) Additional images 
displaying assembly of the high pressure fiber feedthrough. 
 

 
3.1.5 Imaging System for Hydrate Chamber 

The imaging system for the hydrate growth chamber utilized an Intel PC Camera (Model CS110, 

Intel Corporation, Santa Clara, CA) with universal serial bus (USB) interface. The camera was 

interfaced with a desktop personal computer (PC) and controlled with Dorgem open source 

webcam capture software.3 This simple imaging system enables continuous video collection 

and/or capturing of image sequences at discrete user-defined time intervals. In addition, the date 

and time of capture can be digitally embedded into the image. Due to the extended length of 

many hydrate growth and dissociation experiments (up to 28 days), webcam images were 

typically collected at 30 s intervals to minimize storage space requirements. 

To collect optical images inside the hydrate growth chamber, the PC camera height was 

positioned within several cm of the optical viewport. A fiber light (Fiber-Lite Model 190, Dolan-

Jenner Industries, Lawrence, MA) was positioned rearward of the camera and adjusted for 

coupling light into the chamber through the viewport with minimal glare. Once the hydrate 

chamber was filled with water, the PC camera was manually focused to ensure optimum image 



 40

quality. After hydrate nucleation, the PC camera was occasionally manipulated to re-focus or 

adjust the viewing angle. During initial studies, the imaging system was operated almost 

continuously throughout measurement series. However, spectral quality declined due to reduced 

IR transmission through the AgX fiber from photo-induced darkening with continuous light 

exposure from the visible blue to ultraviolet (UV) spectral regions.4 Hence, usage of the imaging 

system was significantly reduced to intermittent visual inspections of the pressure chamber 

contents following initial hydrate experiments. In addition, a UV filter was placed in front of the 

fiber light to reduce transmission of short wavelength radiation into the hydrate chamber. Figure 

3-8 details the typical imaging system setup utilized during a hydrate growth monitoring 

experiment. 

 

 
 
Figure 3-8: Optical image displaying labeled components of the hydrate imaging system. 
 

 
3.1.6 Cooling System for Hydrate Growth Chamber 

Primary cooling of the sample volume is facilitated by a tightly wrapped 

1/8” od. × 0.016” wall th. 304 SS coil. The internal cooling coil, providing approx. 9 continuous 
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loops with 1.5” effective coil length, was formed by hand-wrapping a straight section of 304 SS 

tubing around a 1.0” od. rod. Loops towards the central section were splayed slightly to allow 

fiber-optic passage and prevent metal-fiber contact. Extended straight sections for cooling coil 

terminations provided pressure sealing and tubing attachment points for coolant cycling. The 

internal cooling coil was pressure sealed by two pairs of Swagelok 1/8” SS ferrules and 1/8” od. –

 1/8” MNPT SS bored-through connectors. The semi-permanent cooling fixture was thoroughly 

cleaned by baking in a vacuum furnace at approx.15 mTorr and 250 °C for a period of 12 hrs. 

prior to sealing inside the hydrate chamber. Figure 3-9 provides a representative image, collected 

by the external imaging system, of the internal cooling coil submersed in water inside the hydrate 

sample chamber. 

 

 
 
Figure 3-9: Optical image of the internal cooling coil inside the sample chamber as visualized 
through the optical viewport and captured by the hydrate imaging system. 
 

In addition to the internal cooling coil, 2 1/4" od. copper thermostating coils were fitted around 

the main body of the hydrate chamber to aid in cooling (see Figure 3-5). During initial hydrate 

measurements, insulation was not applied to the main body or rubber tubing used for coolant 

cycling. However, following initial measurements, 2 layers of 7/16” th. adhesive rubber foam 

(Thermwell Products Co., Inc., Mahwah, NJ) were applied to the main body to insulate and 

optimize cooling performance, minimize internal temperature gradients, and prevent moisture 

condensation on the external surfaces of the pressure cell. Additionally, 0.5” th. un-slit Buna-



 42

N/PVC elastomeric foam rubber tubing insulation was added to most portions of silicone rubber 

tubing used for cycling coolant to improve cooling efficiency. 

The external thermostating coils and the internal cooling coil were operated on individual closed-

loop coolant cycles; however, each cycle utilized coolant from the same thermoregulated stock. 

Zip ties were used to secure silicone rubber tubing onto the terminations of both the internal 

cooling and thermostating coils to prevent detachment due to backpressure. During initial trials, 

the cooling system was driven by two submersible aquarium pumps (Models MN404 and 

MN606, Aquarium Systems Inc., Mentor, OH) for cycling a super-cooled salt water mixture from 

a manually prepared ice bath contained in a large sump tank. While several measurement series 

discussed in this thesis were performed with this arrangement, this strategy required continuous 

attention to sustain adequate system cooling for maintaining hydrate phase equilibrium conditions 

with respect to the system pressure and host gas supply. Currently, a low-temperature thermostat 

(Ecoline RE112, LAUDA, Lauda-Königshofen, Germany) with built-in recirculation pump (max. 

flow 17 L/min.) and a submersible, magnetic drive utility pump (Model 02527, max. flow 

~43 L/min., Danner Mfg. Inc., Islandia, NY) supply a solution of an approx. 50:50 mixture of 

ethlyene glycol and deionized water to the copper thermostating coils and internal cooling coil, 

respectively. Both pumps were operated continuously to ensure reliable thermoregulated 

measurement conditions throughout an entire hydrate measurement cycle. 

 

3.1.7 Pressure and Temperature Monitoring System 

The pressure and temperature logging system was initially developed using a VERSA1 

programmable microcontroller development kit (Goal Semiconductor Inc., Montreal, Quebec, 

now Ramtron International, Colorado Springs, CO) with a Windows based user interface 

programmed using Microsoft Visual C++ (Dr. Frank Vogt, Applied Sensors Laboratory (ASL)). 

The user interface and logging capabilities of the C++ program were later upgraded to record the 
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temperature probe resistance and enable a user-defined time interval for logging system 

temperature and pressure (Peter Boezerooij, ASL). 

The internal temperature of the hydrate system was monitored with a Model THX-400-NPT-72 

1/4" MNPT pipe-plug thermistor probe with a 2252 ohm resistance at 25 °C (Omega Engineering 

Inc., Stamford, CT). The temperature probe was calibrated for operation in the range of 0 -

100 °C. Curve fitting parameters from a dual exponential decay fit of the temperature calibration 

data were integrated into the pressure and temperature logging program. The implemented 

temperature monitoring system is accurate within ±0.5 °C over the calibration range. 

Pressure monitoring of the hydrate chamber sample volume was facilitated by a Sensor System 

Solutions, Inc. (3S, Inc., Irvine, CA) Model 5100 amplified media isolated silicon pressure 

transducer (Part No. 5100-B2-1000-A-P1) for operation in harsh environments up to 1000 psi 

(6.9 MPa). The pressure and temperature logging hardware and software contained a built-in 

pressure calibration for an Advanced Custom Sensors, Inc. (ACSI, now merged with 3S, Inc.) 

Model 8030-100 pressure transducer. The 3S pressure transducer was implemented due to 

inadequate operation of the ACSI pressure transducer. As a result, incorrect and systematically 

biased output pressure values were logged by the C++ program. Hence, a manual pressure 

calibration was performed for each hydrate measurement series during system pressurization with 

the supply gas. A minimum of 5 pressure readings were obtained from the outlet pressure gauge 

on the gas regulator of the supply gas tank and the respective pressure output readings calculated, 

recorded, and displayed by the Windows based logging program. Thereby, accurate calculations 

of the system pressure could be made during a hydrate trial and pressure logs could be converted 

to the correct pressure values following completion of a hydrate measurement series. This 

calibration procedure provided accuracy within ±5 psi (35 killopascal, kPa). The obtained 

pressure and temperature accuracies were sufficient to ensure measurement conditions were 

achieved and sustained within hydrate phase stability for each hydrate experiment performed in 
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this thesis; however, the pressure and temperature monitoring system should be improved for 

high-precision and high-accuracy pressure and temperature monitoring during future studies. 

 

3.1.8 Assembly of the Pressure Chamber 

In addition to the face plate, 11 access ports enable the integration of various components for 

pressure and temperature monitoring, gas and liquid input, liquid drainage, and pressure relief 

valves to depressurize and prevent over-pressurization of the pressure chamber. Unless otherwise 

specified, all commercial components described with a SS prefix in the part number are Swagelok 

components made from 316 SS. Figure 3-10 provides labeled optical images referencing all types 

of access ports on the main body of the pressure cell. 

 

 
 
Figure 3-10: Optical images referencing each type of access port on the main body of the pressure 
chamber for (a.) the rear and sides of the chamber and (b.) the underside of the main body. Zip 
ties were used to secure silicone rubber tubing onto the inlet and outlet extensions of the internal 
cooling coil. 
 

The following list describes the assembly and product numbers of components attached to the 

hydrate chamber for achieving system control and functionality with respect to numbering and 

labeling in Figure 3-10. All male threaded components except for the Swagelok tube fitting for 

the liquid inlet were wrapped with 2 layers of PTFE tape made for sealing threaded gas lines. 

 1. Pressure Relief: Multiple pressure relief ports are provided by a SS cross (SS-4-CS) 

with 4 1/4" FNPT adapters attached to the top of the hydrate chamber with a 1/4” MNPT –
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 1/4" MNPT hex nipple (SS-4-N). Redundant 1/4" MNPT manual bleed valves (SS-BVM4) 

enable gas venting while filling and draining solution from the sample chamber, system 

depressurization backups, and additional liquid filling ports if needed. At the SS cross apex, a 

proportional pressure relief valve (SS-4R3A5) is used to set the upper pressure limit of the 

hydrate chamber from approx. 10 – 1000 psig (69 – 6,900 kPa). If the system pressure exceeds 

the manually set spring tensioned pressure limit on the relief valve, excess gas is vented until 

pressure is reduced and the spring tension automatically reseats the bleed valve. This ensures 

safety by preventing over-pressurization and potential failure of the hydrate chamber. 

A realistic and potentially hazardous scenario exists if the cooling system was to fail (i.e., power 

outage) and the internal temperature increased ≥ 8.4 °C during a methane hydrate trial. Cooling 

failure would result in hydrate dissociation. The phase equilibrium pressures for methane hydrate 

at temperatures ≥ 8.4 °C are ≥ 6.06 MPa,1 thereby exceeding the pressure rating for the sapphire 

window (5.9 MPa). Hence, the maximum allowable system pressure of 1000 psig (6.9 MPa), 

based on specifications for a properly functioning proportional relief valve, facilitates removal of 

outgassing methane from the hydrate chamber while maintaining a 2.5-fold safety factor of the 

sapphire window. 

The proportional relief valve was also utilized to initiate hydrate dissociation by gradually and 

manually depressurizing the hydrate chamber below hydrate phase stability. To guide gas from 

dissociating hydrate away from the optical setup and into a fume hood, a section of 3/8” id. 

rubber tubing was attached to the vent port of the proportional relief valve with a 3/8” od. male 

tube adapter (SS-6-TA-1-4). In addition, silicone rubber tubing extensions were attached to the 

bleed valve stems for guiding hydrate supply gas away from the hydrate setup from an initial 

sample chamber purge. Tubing extensions also facilitated leak monitoring of these high duty 

cycle components. 

 2. Gas Inlet: The hydrate chamber was brought to pressure by regulating the outlet 

pressure at the supply gas cylinder with the diaphragm valve of a single-stage high-purity gas 
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regulator. The supply gas flow rate was roughly adjusted with a needle valve at the gas outlet 

port. Gas was introduced into the chamber through 1/4" od. SS tubing coupled to the hydrate 

chamber with a 1/4" nut and ferrule system (SS-400-NFSET). The gas inlet contains a 

1/4" MNPT – 1/4" MNPT check valve (SS-4CP2-1) with a 1 psi cracking pressure directly 

attached to the main body of the hydrate chamber. This allows gas flow into the sample chamber, 

and prevents depressurization if failure occurs along the gas line. A 1/4" FNPT – 1/4" FNPT hex 

coupling (SS-4-HCG) was attached to the check valve followed by a 1/4" MNPT – 1/4" STF 

bored-through connector (SS-400-1-4BT) for coupling to the gas supply tubing. 

 3. Accessory Port: A 1/4" FNPT port was machined during the initial pressure chamber 

construction to facilitate system stirring.2 This access port was not utilized during hydrate 

measurements; therefore, this port was sealed with a 1/4" MNPT pipe plug (SS-4-P). 

 4. Fiber Feedthrough: A detailed description of the fiber-optic coupling system was 

provided in Section 3.1.4. In addition to two custom PTFE ferrules, the Swagelok components 

used for fiber feedthroughs were a pair of 1/8” STF – 1/8” MNPT bored-through connectors (SS-

200-1-2BT) with 2 1/8” SS nuts (SS-202-1). 

 5. Liquid Inlet: The liquid inlet components and assembly were modeled after the gas 

inlet; however, a 1/4" MNPT – 1/16" STF bored-through connector (SS-100-1-4BT) was utilized 

for connecting 1/16” od. SS tubing with a 1/16” nut and ferrule (SS-102-1 and SS-100-SET) in 

replacement of the 1/4" tubing and respective adapter. Aqueous sample solutions were pumped 

into the pressure chamber through the liquid inlet using a Shimadzu LC-10AD high performance 

liquid chromatography (HPLC) pump (Shimadzu Scientific Instruments, Columbia, MD). 

 6. Temperature Probe: The THX-400-NPT-72 temperature probe was connected to the 

pressure chamber by a 1/4" MNPT fitting. 

 7. Pressure Transducer: The pressure transducer (Model 5100-B2-1000-A-P1) was 

attached to the hydrate chamber with a 1/4" MNPT fitting. 
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 8. Liquid Drain: Liquid drainage was facilitated by a manual 1/4" MNPT bleed valve 

(SS-BVM4) attached to the underbody of the pressure chamber. Drainage was enhanced by 

opening a similar bleed valve on the pressure relief system for introducing dry air from a 

compressed air supply. Silicone rubber tubing was attached to the valve stem for guiding solution 

away from the hydrate setup. 

 9) Inlet and Outlet for Internal Cooling Coil: The internal cooling coil was integrated into 

the hydrate chamber via a pair of 1/8” STF – 1/8” MNPT bored-through connectors (SS-200-1-

2BT), and sealed with 1/8” SS nuts and ferrules (SS-202-1 and SS-200-SET). The coolant inlet 

was selected as the port nearest to the cooling source, which was the coil extension closest to the 

liquid and gas inlets for all spectroscopic hydrate monitoring measurements described in this 

thesis. 

 

3.1.9 Optics Layout for Hydrate Measurements 

The optical setup for in situ spectroscopic monitoring of gas hydrate formation and dissociation 

was built around a Bruker IFS/66 Fourier transform-infrared (FT-IR) spectrometer (Bruker Optics 

Inc., Billerica, MA). Radiation modulated by the interferometer was guided outside of the 

spectrometer through a 45 mm od. optical port fitted with an IR transparent ZnSe window with 

anti-reflective coating (MacroOptica, Moscow, Russia), and then focused onto a polished in-

coupling facet of a 700 μm dia. solid-core AgX fiber-optic waveguide by a 2” dia. gold-coated 

off-axis parabolic mirror with a 3” focal length (Janos Technology, Keene, NH). IR radiation was 

guided via total internal reflection inside the AgX fiber through a cross-section of the hydrate 

chamber until reaching the polished out-coupling facet. The emanating divergent cone of 

radiation was collimated with another 2” dia. off-axis parabolic mirror, and then focused onto a 

Stirling-cooled mercury-cadmium-telluride (MCT) detector element (Model K508, Infrared 

Associates, Stuart, FL) with a third 2” dia. off-axis parabaloid. The detected signal was processed 

with an impedance matched MCT-1000 pre-amplifier (Infrared Associates, Stuart, FL) and 
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connected to an external input channel at the FT-IR spectrometer. Only commercially available 

optical mounting components were used for the hydrate setup, which included various posts, 

bases, clamps, 2 optical breadboards, 5 single-axis translation stages with 25 mm of travel 

distance, a compact lab jack, and a pair of fiber chucks with fiber-optic positioners. Figure 3-11 

highlights the radiation path through the optical setup utilized for all fiber-optic hydrate 

monitoring studies reported in this thesis. 

 

 
 
Figure 3-11: Optical image depicting the setup utilized for all IR fiber-optic spectroscopic 
measurements for monitoring gas hydrate growth and dissociation. The AgX fiber probes a cross-
section of the pressure chamber via evanescent field absorption spectroscopy. The dashed 
(yellow) line indicates the radiation path. 
 

 
3.1.10 Additional Features of the Hydrate Experimental Setup 

Two main features of the most current hydrate setup were incorporated over the course of 

experimental studies for improving signal stability and the spectral quality. Firstly, a 

polycarbonate box was constructed to isolate and enable purging of the optical path with 

compressed dry air for reducing spectral interferences from environmental fluctuations in 
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humidity and carbon dioxide. The enclosure was constructed from 3/16” th. polycarbonate sheets 

with 1/2” th. x 1” w. polycarbonate reinforcement members around the edges of each side section. 

The purge box incorporated various electrical and tubing feedthroughs. In addition, an oversized 

non-reinforced lid was fitted with tubing adapters for introducing dry air. The encased hydrate 

setup was purged as to provide a slight positive pressure environment. Although this was not a 

perfectly sealed enclosure, manual regulation of air flow into the system enabled dynamic 

compensation for minimizing the spectral impact of environmental interferants. Secondly, the 

purge box was covered with custom-cut black nylon fabric coverings (0.015” th.) to minimize 

photo-induced degradation of the AgX fiber from exposure to overhead lighting. Figure 3-12 

displays the most current configuration of the experimental hydrate setup without drapery. 

 

 
 
Figure 3-12: Most current configuration of the experimental gas hydrate setup. Two PCs were 
used during hydrate measurement trials. One PC was utilized for controlling the FT-IR 
spectrometer and collecting IR spectra. A second PC was used for controlling and collecting data 
from the imaging and pressure and temperature logging systems. 
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3.1.11 Concluding Remarks on the Hydrate Monitoring Apparatus 

The primary function of the experimental setup developed in this thesis was to provide 

thermodynamically favorable conditions for gas hydrate formation, while enabling in situ 

spectroscopic monitoring of hydrate growth dynamics with IR fiber-optic evanescent field 

spectroscopy for the first time. As much of the hydrate work described in this thesis focuses on 

establishing first principles, some limitations were encountered for controlling and monitoring 

system pressure and temperature. However, this had minimal impact on the results presented in 

this thesis, and has been factored into data analysis and interpretation when appropriate in 

Chapter 4. 

Although this setup was continuously improved and served well for many experiments, additional 

modifications can be envisioned to improve and enhance the system capabilities. Suggested areas 

for improving the experimental setup in continuation of studies at simulated deep-sea conditions 

include; (1) integrating a mass flowmeter to monitor gas incorporation into hydrate structures, (2) 

improving cooling efficiency and capacity by upgrading the cooling coil to larger diameter tubing 

with more coils, which would increase the advective surface area, improve pump efficiency, and 

minimize thermal gradients within the sample volume, and (3) upgrade the temperature and 

pressure logging hardware and software to improve accuracy for controlling and monitoring the 

sample chamber and enable close examination of hydrate phase equilibria. 

 

3.2 Horizontal Attenuated Total Reflection Accessories and Optical Configuration 

In addition to the application of fiber-optic waveguides for monitoring gas hydrate growth via 

evanescent field absorption spectroscopy, a significant number of experiments throughout this 

thesis have utilized planar internal reflection elements for IR-ATR spectroscopic measurements 

in a configuration commonly referred to as horizontal ATR (HATR). A variety of planar 

waveguide geometries and IR transparent materials are commercially available, thus enabling a 

wide array of experimental optical configurations.5-8 This section provides a general overview and 
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description of the equipment and configuration frequently used for the HATR experiments 

described in subsequent chapters. 

In this thesis, only polycrystalline trapezoidal ZnSe (nD = 2.43 at λ = 5 µm) waveguides with 

dimensions of 72 mm × 10 mm × 6 mm (l. × w. × th.), 45° beveled radiation coupling facets, and 

6 effective reflection regions along the measurement surface were used. ZnSe waveguides were 

mounted in commercially available HATR accessories allowing samples to be deposited onto the 

longer waveguide surface for spectroscopic evaluation. Figure 3-13 provides a scaled CAD 3-D 

rendering of radiation propagation through a typical trapezoidal waveguide displaying discrete 

‘active’ sensing regions along the measurement surface with respect to areas of evanescent field 

generation resulting from internally reflected radiation. 

 

 
 
Figure 3-13: Scaled CAD 3-D rendering of a 72 × 10 × 6 mm ZnSe waveguide showing radiation 
focused onto the in-coupling facet and transmitted by total internal reflection until exiting the 
waveguide. ‘Active’ sensing regions are generated at each area of internal reflection where 
sample molecules interact with the evanescent field at the waveguide surface. Chapter 7 provides 
a combined experimental and simulation approach for characterizing sensing regions along planar 
waveguide surfaces. (Figure adapted from Dobbs and Mizaikoff).9 
 

Two equivalent Specac Gateway in-compartment HATR optics base units (Specac Inc., 

Woodstock, GA) were utilized for HATR measurements described in this thesis. One optics unit 

was aligned for use with a Bruker Equinox 55 FT-IR spectrometer (Bruker Optics, Billerica, 

MA), and the second base unit was aligned for use with a Bruker IFS 66/S FT-IR spectrometer. 
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The most commonly used crystal mounting accessory was a Specac Gateway trough top-plate 

(Specac Inc., Woodstock, GA). The Specac HATR accessories and Bruker Equinox 55 FT-IR 

spectrometer were utilized for all HATR measurements described in Chapters 5 and 6. For 

HATR measurements outlined in Chapter 7, a Bruker IFS 66/S FT-IR spectrometer with the 

respective HATR optics were used. In addition, an equivalent crystal mounting accessory was 

implemented for Chapter 7 measurements by removing a fluids-coupling plate from a custom 

flow-cell. Figure 3-14 contains optical images of the HATR accessories mounted in the Equinox 

55 and IFS 66/S FT-IR spectrometers, and includes a schematic diagram of the radiation path 

through the optics unit with a mounted HATR crystal. 

 

 
 
Figure 3-14: (a.) Optical image of HATR accessories placed inside the sample compartments of a 
Bruker Equinox 55 FT-IR spectrometer with trough-top plate assembly mounted onto the optics 
base unit and sample deposited onto a ZnSe crystal. (b.) Optical image displaying HATR 
components inside a Bruker IFS 66/S FT-IR spectrometer. (c.) Schematic diagram depicting 
sample placement onto a HATR waveguide with the radiation path traced through the optics base 
unit and HATR crystal. 
 

HATR optical components and configurations displayed in Figure 3-14 (a.) and (b.) were used 

for the majority of all non-hydrate spectroscopic measurements described in the following 
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chapters of this thesis. Whenever an alternative configuration was used, this is indicated, and a 

more thorough experimental description is provided. Furthermore, specific experimental details 

are provided with respect to the various experiments performed throughout this thesis. 
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CHAPTER 4 
 

FIBER-OPTIC MID-IR SPECTROSCOPY FOR MONITORING GAS HYDRATES 
 
 
 

This chapter summarizes the development and application of fiber-optic MIR sensing strategies 

for monitoring gas hydrate formation and dissociation grown from solution in laboratory 

experiments. First, a general introduction to the significance of naturally occurring gas hydrates 

in addition to an overview of the molecular characteristics, thermodynamics, and models 

describing the nucleation and growth of gas hydrates is provided. Previous applications of IR 

spectroscopy for investigation of different water phases, including liquid, ice, and gas hydrate, are 

also discussed. Detailed descriptions of data evaluation strategies, data interpretation, and data 

transformations for spectroscopic monitoring of gas hydrate dynamics are discussed throughout 

this chapter. In addition, initial feasibility assessments address various aspects regarding the 

potential extension of the developed monitoring strategies into oceanic environments. Finally, an 

expanded version of the reaction kinetics model for describing gas hydrate growth mechanisms 

will be introduced from considerations to published literature. 

 

4.1 Motivation 

Throughout this work, the underlying motivation for developing spectroscopic sensing strategies 

to monitor gas hydrate growth dynamics has centered on potential applications for the 

deployment of deep-sea MIR chemical sensing platforms. Due to the harsh, isolated environments 

in which oceanic gas hydrate deposits exist, there is a standing need to develop sensor 

technologies that will facilitate long-term accessibility to monitor and improve current 

assessments as to the occurrence, prevalence, and dynamics of gas hydrates. Currently, there is 

particular interest regarding the stability and dynamics of disseminated gas hydrate formations 

within sediment pore spaces, which are particularly susceptible to minor fluctuations in 

environmental conditions (i.e., hydrostatic pressure and temperature).1 Throughout the GoM, 
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seasonal changes and/or sustained sub-surface loop currents or eddies can raise bottom water 

temperatures several °C.1 A rise in seawater temperature has the potential to significantly alter 

hydrate stability, which can lead to widespread catastrophic dissociation of gas hydrate deposits 

throughout sediment fractions. Such events are of particular concern for seafloor stability as well 

as the potential for enabling the rapid escape of large quantities of methane, a primary greenhouse 

gas, into Earth’s atmosphere. 

The initial project goal consisted of the development and demonstration of IR spectroscopy as a 

sensing strategy for monitoring the growth and dissociation of gas hydrate structures through 

phase-dependent transformation in IR absorption signatures of water. From this, three primary 

foci are addressed within this thesis: (1) demonstrate the application of IR spectroscopy to 

monitor gas hydrate growth from solution within a controlled laboratory setting at relevant 

temperatures and pressures for oceanic gas hydrate occurrences, (2) establish robust data 

evaluation routines, and (3) assess the potential for extending the developed spectroscopic 

sensing strategy into oceanic environments. 

 

4.1.1 Clathrate Hydrates of Natural Gases 

Clathrate hydrates of natural gases (gas hydrates) describe a diverse classification of structures 

primarily composed of water molecules oriented in solid, cage structures that are filled by small, 

guest molecules (i.e., methane, ethane, and carbon dioxide).2 The initial discovery of gas hydrate 

structures is credited to Sir Humphrey Davy for the initial description of chlorine hydrate in 

1810.2 Since then, an extensive amount of research has addressed many aspects of gas hydrates 

including the molecular characteristics, physical properties, thermodynamics, natural occurrences, 

and growth mechanisms.2 The following sub-sections introduce the most important aspects of gas 

hydrate research relevant to the studies described in this thesis. 
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 4.1.1.1 Naturally Occurring Gas Hydrates 

Naturally occurring gas hydrates are of significance for three primary reasons: (1) as geohazards, 

(2) potential alternative energy sources, and (3) impact on regulation of global climate.1-8 A wide 

range of estimates have been generated to quantify the amount of methane carbon sequestered in 

naturally occurring gas hydrates with a medial estimate of ~10 ×1018 g as reviewed by 

Kvenvolden in 2002.2, 3, 5, 8 The immensity of this value becomes readily significant when 

contextualized; it is more than twice the amount of carbon contained in all known world-wide 

reservoirs of coal, oil, and natural gas, combined.2, 3 

Kvenvolden provides an in-depth consideration regarding the three primary issues surrounding 

oceanic gas hydrates.4 Currently, the greatest concern regarding oceanic gas hydrates is the 

potential impact as a geohazard from disruption to seafloor stability resulting from dissociation. 

In light of global warming trends, the significant methane quantities sequestered within gas 

hydrates has generated research interests focusing on assessing the relevance, significance, and 

potential influence of oceanic hydrates on global climate.1, 3, 5, 7 Recent studies have revealed the 

capability of methane released from rapid gas hydrate eruptions to enter the atmosphere, which 

has significant implications concerning the role of oceanic hydrates in the global carbon cycle and 

the natural regulation of global climate.1-5, 7, 9-18 Considerable research efforts are also focused on 

developing economically viable technologies for extraction of gas hydrates as an alternative 

energy resource.2, 4, 6 Advances have been made on that front; although, realization of harvesting 

naturally occurring gas hydrates as a sustainable and economically feasible energy supply is 

likely years away.2, 4, 6 

 4.1.1.2 General Molecular Characteristics of Gas Hydrate Structures 

There are currently three well-known forms of gas hydrate structures; structure-I (sI), structure-II 

(sII), and structure-H (sH), all of which have been found to occur naturally within the GoM.2, 18, 19 

However, sI and sII hydrates are the most commonly observed structures found in oceanic 

environments.2, 8, 18 Water is the primary molecular component of gas hydrates, and each structure 
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is composed of different cages.2 sI and sII hydrates have two cages (small and large), whereas sH 

has three cages (small, medium, and large).2 Each cage is constructed of either square, 

pentagonal, and/or hexagonal faces formed by networks of hydrogen-bonded (H-bonded) water.2 

A widely adopted nomenclature for cage structures follows the description; ni
mi, where ni is the 

number of sides for face type “i” and mi is the number of faces with ni sides.2 For example, the 

small cage for sI hydrate has 12 pentagonal faces represented as 512. Table 4-1 contains the 

general structural characteristics for the cage units respective to each hydrate classification as 

summarized by Sloan.2 

 
Table 4-1: Cage characteristics for the three known clathrate hydrate structures of natural gases. 
Table adapted from Sloan.2 
 

 sI sII sH 
Cavity Small Large Small Large Small Medium Large 

Cavity Faces 512 51262 512 51264 512 435663 51268 

Number per Unit Cell 2 6 16 8 3 2 1 
Average Cavity Radius, Å 3.95 4.33 3.91 4.73 3.91 4.06 5.71 

 

From Table 4-1, the molecular structuring of cages and unit cell composition for the three types 

of gas hydrate are provided. Structurally, each hydrate classification is characteristically different 

from the most common form of solid water, ice Ih.2 In ice Ih, one water molecule is H-bonded to 

four others with tetrahedral angles in lattice networks of puckered hexagonal rings (O-O-O lattice 

angles of 109.5°).2 Methane hydrate can potentially store up to 164 times the quantity of an 

equivalent volume of methane gas at standard temperature and pressure.2 However, gas 

incorporation into hydrate structures is non-stoichiometric, and as a general rule, > 95 % of small 

cages and > 50 % of large cages will be occupied by a guest molecule.2 In this thesis, only sI and 

sII hydrates were studied; thus, only sI and sII will be considered from here on. Additionally, 

Sloan provides a thorough overview regarding well-established and state-of-the-art advances with 

respect to many aspects of gas hydrate research including; structural, molecular, and physical 

characteristics/properties, analytical methodologies, and naturally occurring gas hydrates.2 
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 4.1.1.3 General Characteristics of Methane, Ethane, and Propane Hydrates 

In this thesis, only simple gas hydrates (hydrates with one type of guest molecule) of methane, 

ethane, and propane were evaluated. The simple hydrates of methane, ethane, and propane have 

been extensively studied.2 It has been generally well-established that the guest molecule size and 

the supply composition of guest molecules influence the gas hydrate structure (i.e., sI or sII).2 The 

gas hydrate structure for simple hydrates of methane and ethane is sI; whereas, sII is the 

corresponding structure of simple propane hydrates.2 In simple hydrates, methane fills both large 

and small sI cages, ethane fills only the large sI cage, and propane fills only the large sII cage.2 In 

oceanic environments, sI hydrate is often found when methane, ethane, and other sI forming 

gases of simple hydrates (i.e., CO2) are in abundance, typically > 99 %.2 However, sII hydrate is 

often found when propane and/or other larger sII forming gases (i.e., isobutane) are present and 

account for as little as ~1 % of the supply gas composition.2 

Gas hydrate stability is greatly influenced by pressure, temperature, and gas composition.2 

Extensive and multiple studies have resulted in generation of fundamental phase equilibria for 

methane, ethane, and propane hydrates grown from solution with deionized water, which have 

been reviewed in Sloan.2 In this work, gas hydrates were grown from solution with either 

deionized water or surfactant solutions prepared with 380 ppm (mg/L) sodium dodecyl sulfate 

(SDS). SDS acts as a low entropy hydrate nucleation catalyst, and is currently not known to 

influence the thermodynamic stability of gas hydrates.20 

Throughout this work, gas hydrates were typically grown at temperatures ranging between ~0 °C 

and ~4 °C. Figure 4-1 provides published values (reviewed in Sloan) for liquid water (Lw)-

hydrate (H)-vapor (V) phase boundaries respective to the simple hydrates of methane, ethane, and 

propane grown from deionized water.2 
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Figure 4-1: Liquid water (Lw)-hydrate (H)-vapor (V) phase boundaries for simple methane, 
ethane, and propane hydrates in deionized water as reviewed by Sloan.2 In this work, gas hydrates 
were grown between ~0 °C and ~4 °C. Dashed lines represent ceiling operational pressures for 
hydrate trials with respect to each guest gas. 
 

Targeted experimental conditions for the growth of gas hydrates in this work are indicated in 

Figure 4-1 with ceiling temperature (dotted line) and pressure limits (dashed lines). Pressure 

limits were established prior to experiments for two reasons; to prevent liquefaction of ethane and 

propane gases and maintain safe operation during methane hydrate trials, which was dictated by 

the pressure rating of the sapphire viewing port (850 psi, 5.86 MPa). Temperatures were 

maintained below 4 °C to ensure favorable hydrate growth conditions during measurement trials. 

Although gas hydrates grown from natural gas mixtures (i.e., methane, ethane, and propane 

mixtures) were not examined in this work, the Lw-H-V phase boundary of simple methane 

hydrate requires greater pressures for hydrate stability than that required to form mixed gas 

hydrates with natural gas mixtures. In context to the MC118 gas hydrate ecosystem, a comparable 

water depth of approx. 890 m cannot be achieved with the current experimental setup due to 

pressure limitations. However, the experimental setup enables simulation of oceanic depths to 
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approx. 600 m, which exceeds environmentally relevant pressures for documented occurrences of 

oceanic gas hydrates at other sites within the GoM (i.e., at approx. 440 m).1 

 4.1.1.4 Cluster Nucleation and Kinetic Growth Models for Gas Hydrates 

There is an extensive body of literature reviewed by Sloan addressing many aspects of gas 

hydrate growth and dissociation. A few examples include evaluation of factors influencing 

hydrate growth in natural environments (i.e., influence of biosurfactants and sediment pore 

spacing),2, 21, 22 the promotion of hydrate growth in the laboratory (i.e., hydrate storage),20 and 

inhibition of gas hydrate growth (i.e., preventing blockage in oil pipelines).23-25 Despite numerous 

specific interests throughout the literature, two general models have been proposed to describe the 

processes of gas hydrate nucleation and growth mechanisms governing the kinetics of gas hydrate 

formation in solution.2, 26-28 Each model will be introduced in this section to facilitate a general 

overview of current hypotheses and establish common terminology used throughout this chapter. 

In addition, an expansion of the described reaction kinetic model of Lekvam and Ruoff is 

proposed in Section 4.4.26, 27 

 The Cluster Nucleation Hypothesis for Gas Hydrates: 

In gas hydrate experiments, once thermodynamic conditions amenable to hydrate stability have 

been achieved, a latent time period (induction time) precedes hydrate nucleation. Recently, Sloan 

and colleagues proposed the cluster nucleation hypothesis, which describes the nucleation of gas 

hydrate through the agglomeration of labile hydrate clusters until a critical cluster size has formed 

to initiate bulk nucleation and continued growth of gas hydrate.2, 28 This model facilitates a 

generalized mechanism for hydrate nucleation whereby nucleation clusters may be formed at any 

location (not just the liquid-vapor interface) within a reaction vessel provided the required 

molecular components are present.2, 28 Figure 4-2 includes an adapted graphical representation of 

the cluster nucleation model. 
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Figure 4-2: The cluster nucleation hypothesis proposed by Christiansen and Sloan.28 Upon 
entering hydrate conditions with no gas in solution (1), gas is readily solvated by liquid water 
coupled with the formation of higher-order liquid water structures including labile hydrate cages 
(2), labile clusters agglomerate through sharing of hydrate-like faces and increase solution 
entropy (3), agglomeration continues until a critical cluster size initiates primary nucleation 
followed by rapid hydrate growth (4). Figure adapted from Christiansen and Sloan.2, 28 
 

Following primary nucleation in laboratory experiments, hydrate growth usually ensues very 

rapidly (catastrophic growth) for a period of several hours. Hydrate growth eventually slows as 

the majority of liquid water has transformed into hydrate structures. The slow conversion of 

trapped water (interstitial water) can continue for many days as observed in current work. 

 Reaction Kinetic Model for Gas Hydrate Formation in Liquid Water: 

Extensive considerations have addressed various factors influencing the rate of gas hydrate 

nucleation and formation with an in-depth overview provided by Sloan.2 In 1993, Lekvam and 

Ruoff proposed a reaction kinetic (RK) mechanism characterizing the growth of methane hydrate 

from liquid water and methane gas.26, 27 The RK model is comprised of five pseudoelementary 

processes describing the primary mechanisms governing the nucleation and rate of gas hydrate 

growth. The pseudoelementary elements contain fundamental components similar to those 

described by the cluster nucleation hypothesis; hence, Figure 4-3 contains a graphical 

representation of the RK model with incorporation of graphical elements from the cluster 

nucleation hypothesis. 
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Figure 4-3: The reaction kinetic (RK) model for gas hydrates grown from liquid water as 
proposed by Lekvam and Ruoff with graphical representations following the cluster nucleation 
hypothesis.2, 26-28 (k1 ↔ k-1) dissolution of gas by water in hydrate conditions with formation of 
oligomeric precursors (N), (k2 ↔ k-2) uncatalyzed formation of hydrate from N precursors, (→ k-

3) primary nucleation of gas hydrate, which results in autocatalysis of the growth mechanisms 
indicated with (k4 ↔ k-4) and (k5 ↔ k-5). 
 

The RK model, with integrated cluster nucleation hypothesis (Figure 4-3) illustrates primary 

hydrate growth mechanisms with respective microscopically reversible rate constant designations, 

which enables generation of finite mathematical solutions.2, 26-28 As described by Lekvam and 

Ruoff; after dissolution of gas in water (k1), oligomeric precursors (N) form and hydrate (H) 

grows in an uncatalyzed process (illustrated as k2) until a critical nucleus forms, which initiates 

primary nucleation (k3).26, 27 Once primary nucleation occurs, two autocatalytic growth 

mechanisms are activated (indicated as dashed arrows in Figure 4-3) accounting for the 

continued formation of gas hydrate.26, 27 The predominant growth mechanism following primary 

nucleation is the rapid conversion of previously formed N precursors (k4).26, 27 This is illustrated 

in Figure 4-3 to include both incomplete hydrate-like precursors and sub-critical hydrate nuclei 

through incorporation of cluster nucleation hypothesis descriptions.2, 26-28 In addition, the reaction 

of liquid water and gas facilitates the secondary growth mechanism, which becomes rate limiting 
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for the conversion of trapped, interstitial waters following the initial rapid growth.26, 27 Additional 

considerations and proposed expansions to this model are addressed in Section 4.4. 

 

4.1.2 IR Spectroscopy and Water 

With several exceptions, the application of IR spectroscopy has been historically limited in gas 

hydrate research, which is likely results from the strong IR absorption of liquid water encountered 

during conventional transmission-absorption meaurements.2, 29-36 However, transmission-

absorption configurations have been utilized to investigate clathrate hydrate films grown from 

vapor deposition and epitaxial growth on highly reflective surfaces in vacuum chambers.29-36 

Formation of gas hydrates in these conditions has restricted the growth of simple hydrates for 

many of the natural gases, such as methane.29-36 

Recently, an IR-ATR study compared the spectral profiles of CO2(gas) and CO2(aqueous) with 

that of CO2(hydrate) for simple, sI CO2 hydrates grown from aqueous solution.37 Although the 

phase-dependent transformation of water absorption features were not reported; a significant 

advance was realized by validating the capability of ATR techniques to spectroscopically 

interrogate gas hydrates grown from solution by circumventing sample thickness limitations of 

conventional transmission-absorption methods. This is achieved by confining the interaction of 

light and sample to the evanescent field penetration depth (typically < 2.5 μm). Despite this 

achievement, a detailed description of the spectroscopic setup was not provided (i.e., waveguide 

material, geometry, pressure coupling, etc.). 

In 2004, Zhang and Ewing reported a detailed evaluation of IR-ATR spectra for simple, sI SO2 

hydrates.38 Hydrates were grown from a liquid water film condensed on the measurement surface 

of a cooled, single-bounce germanium prism. The range of pressure and temperature conditions 

for investigating SO2 hydrate formation were from -20 °C – 10 °C and 5 – 900 kPa (0.7 – 13 psi). 

In addition to a thorough treatment of SO2 absorption features, the authors compared the IR 
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absorptions of water for ice (Ih) and the respective sI hydrate. Examination of the water features 

revealed only minor differences in the bandwidth for O-H stretch (νOH) features.38 

 4.1.2.1 The IR Absorption of Liquid Water 

In this work, little or no absorption features characteristic to guest molecule occupancy in gas 

hydrate structures were observed in IR spectra. Hence, the focus of hydrate monitoring is 

centered on evaluation of the strong, phase-dependent IR absorption signatures of water. The IR 

spectrum of water, liquid or solid, is very complex. Many IR studies have documented the 

correlation of spectral changes and structuring of water with respect to temperature and phase 

transitioning from liquid to solid.38-65 Various molecular level interpretations and treatments 

concerning the IR absorption features of water have been proposed in the literature. Molecular- 

descriptions respective to each absorption feature, spectral changes observed during the phase 

transitioning of water from liquid to solid (ice or hydrate), and a detailed account of data 

evaluation strategies developed for monitoring gas hydrate growth and dissociation in the 

presented studies are discussed in Section 4.3. In this section, only general band assignments and 

qualitative physical descriptions of the IR spectrum for liquid water are presented. Figure 4-4 

contains a representative fiber-optic IR-ATR spectrum for liquid water collected during this work 

for point of reference. 
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Figure 4-4: The IR spectrum of liquid water as collected with a silver halide fiber-optic 
waveguide in this work. Conventional vibrational mode assignments are provided, indicating the 
four major absorption features of water. Minor atmospheric CO2 (~2350 cm-1) and PTFE  features 
(from fiber feedthroughs at ~1150 cm-1)are observed as negative absorption bands relative to a 
reference spectrum of air at room temperature. The detector cut-off occurs at ~680 cm-1. This 
spectrum is an average of 250 sample scans collected at 0.5 cm-1 resolution. (Lib. = Libration). 
 

The four primary IR absorption features of liquid water can be visualized in Figure 4-4. A very 

intense, broad absorption feature is observed from 3750 – 2750 cm-1 respective to O-H stretch 

(νOH) features. The second and lowest intensity absorption from approx. 2375 – 1875 cm-1 is 

labeled as the 3rd libration overtone (3νL); however, it has also been designated as the 

combination band from the H-O-H bend and libration bands (ν2 + νL). In this thesis, the 3νL 

assignment is adopted for consistency. The strongly absorbing H-O-H bend mode (ν2) occurs 

from 1750 – 1500 cm-1, and the libration (νL) or frustrated rotation feature exhibits an intense 

absorption feature < 1000 cm-1. The νL peak maximum (~675 cm-1)62 cannot be fully resolved for 

liquid water as a result of the detector cut-off frequency. 

 4.1.2.2 Influences on the IR Absorption of Liquid Water 

The IR absorption features of water are readily influenced by changes in temperature (i.e., 3νL 

blue shifts approx. 1 cm-1/°C with decreasing temperature), and have been a topic addressed 

within numerous studies.39-41, 48, 50, 51, 54, 57, 60-65 Temperature influences are addressed more 
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specifically in the ensuing discussions. In addition to temperature, salinity, and alkalinity (or pH) 

are also known to perturb the IR absorption behavior of water.66-74 In this work, only deionized 

water and dilute surfactant solutions were utilized for the growth of gas hydrates; hence, further 

considerations to the spectral impact of relevant environmental constituents are expected to 

enable enhanced data evaluation and interpretation upon extension of the described IR monitoring 

strategies into oceanic environments. Pressure has also been demonstrated to impart spectral 

deviations in the O-H stretch region; generally > 10 MPa.75 In current studies, only a slight 

increase in the absorption intensity of water was observed during initial system pressurization. 

This has been attributed to the pressure seating of PTFE ferrules, whereby water was pushed into 

void spaces around the PTFE-fiber seal. No other discernable pressure related influences in the IR 

absorption behavior of water were observed throughout this work. The maximum operational 

pressure for the utilized experimental setup is < 5.9 MPa; therefore, the impact of pressure was 

not considered an influential factor in described studies. Furthermore, pressure is anticipated to 

have minimal spectral impact for monitoring oceanic hydrates occurring < ~1000 m of water 

depth (e.g., water depth at MC118 of ~ 890 m corresponds to 8.9 MPa). 

Minor IR absorption features characteristic of SDS were observed following hydrate nucleation 

during trials with surfactant solutions (SDS features can be observed in the propane hydrate 

spectrum from 3000 – 2800 cm-1 provided for later discussion in Figure 4-15); however, the 

presence of surfactant in respective hydrate measurements had no discernable influence on the IR 

absorption characteristics of bulk water phases or data evaluation strategies. This was expected as 

SDS only serves as a low-concentration nucleation catalyst.20 Hence, data generated from gas 

hydrate trials with deionized water and surfactant solutions are presented for discussion in this 

chapter. Although supportive evidence for the role of SDS as a low entropy nucleation catalyst 

(surface-surfactant-gas) was generated throughout work presented in this chapter, only results 

regarding the application of IR sensing strategies for monitoring gas hydrate growth dynamics are 

considered in this thesis. 
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4.2 Laboratory Growth of Simple Gas Hydrates from Solution 

Simple gas hydrates for methane, ethane, and propane were investigated throughout this thesis. 

This section provides a general summary of typical measurement procedures performed for 

spectroscopic monitoring of gas hydrate growth dynamics. In addition, an overview of 

representative experimental data collected throughout hydrate trials are presented with exception 

of spectroscopic monitoring data, which is presented in Section 4.3. 

 

4.2.1 Chemicals for Growth of Gas Hydrates from Solution 

Aqueous solutions of 380 ± 2 ppm (mg/L) of SDS (Sigma-Aldrich, Reagent Grade, St. Louis, 

MO) in deionized (DI) water (R=18.2 MΩ⋅cm at 25 °C) or DI water with no additives were 

utilized to facilitate hydrate growth. SDS served as a hydrate nucleation catalyst in the respective 

experiments. The concentration was selected based upon the work of Zhong and Rogers, who 

demonstrated that ethane hydrate induction times decreased with increasing SDS concentration.20 

Induction times were reduced from approx. 600 min with 80 ppm SDS until leveling off at 

approx. 40 min for concentrations ≥ 242 ppm.20 Methane (Chemically Pure, > 99.0%), ethane 

(Chemically Pure, > 99.0%), and propane (Instrument Grade, > 99.5%) were purchased from Air 

Gas (Decatur, GA). 

 

4.2.2 General Experimental Procedures for IR Monitoring of Gas Hydrates 

A full description of the experimental setup for spectroscopic monitoring of gas hydrates is 

provided in Chapter 3. Once the hydrate setup was assembled (Figure 3-12), the sample 

chamber was initially purged with a copious amount of supply gas. Following, the enclosed 

environment surrounding the setup was purged with dry air to stabilize atmospheric humidity and 

CO2 within the open radiation path. After stabilization, a reference spectrum was collected 

(Figure 4-5). Then, continuous spectroscopic measurements were started, and the pressure cell 

was filled with approx. 315 mL of aqueous solution, submersing the internal cooling coil. Once 
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filled, the chamber was pressurized with the supply gas followed by initiation of the cooling sub-

system. Pressure and temperature data were logged throughout the entire measurement series. The 

hydrate setup was operated in a ‘semi-closed’ pressure environment; meaning hydrate growth was 

not under isobaric conditions. The supply gas was intermittently introduced to replace gas 

incorporated into hydrate lattices during hydrate growth. Hydrate dissociation was typically 

initiated by reducing the chamber pressure below the hydrate phase equilibrium with respect to 

the system temperature and supply gas. 

 

 
 
Figure 4-5: Representative IR transmittance profile from a reference spectrum (average of 250 
sample scans at 0.5 cm-1 resolution) for a PTFE mounted AgX fiber. All reference spectra for 
hydrate monitoring trials were collected with an empty chamber at room temperature and 
atmospheric pressure. 
 

 
4.2.3 Non-spectroscopic Indications of Hydrate Nucleation and Growth 

Classical indicators for the nucleation of gas hydrates grown from aqueous solution include visual 

observation and marked pressure and temperature changes. The nucleation of gas hydrate in a 

closed or ‘semi-closed’ system is generally indicated by a rapid decrease in system pressure from 

the incorporation of dissolved gas into hydrate structures. In addition, a sharp increase and/or 

sporadic fluctuations in recorded solution temperatures are usually observed as a result from the 
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latent heat of fusion during the phase transitioning of water. Figure 4-6 provides an example of 

pressure and temperature traces from an ethane hydrate trial (with SDS) indicating abrupt 

changes in the data logs characteristic of hydrate nucleation and growth in this work. 

 

 
 
Figure 4-6: Pressure and temperature traces from an ethane hydrate trial (with SDS) indicating a 
rapid drop in pressure and increase in temperature at hydrate nucleation. Pressure fluctuations 
reflect intermittent introduction of ethane into the sample chamber. Temperature spikes likely 
result from localized hydrate growth in close proximity to the submersed temperature probe as 
opposed to bulk solution temperature changes. 
 

At the onset of nucleation, a period of rapid hydrate growth ensues following the conversion and 

agglomeration of sub-critical hydrate clusters and oligomeric precursors as described by cluster 

nucleation theory and the RK model discussed in Section 4.1.1.4. Figure 4-7 provides sequential 

optical images collected during a 2.5 min period covering the nucleation and initial expeditious 

primary growth of ethane hydrate (with SDS). 
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Figure 4-7: Image captures displaying the sample chamber contents from (a.) pre-hydrate 
nucleation, (b.) catastrophic hydrate nucleation with spindling growths, and (c. – f.) primary 
growth of ethane hydrate over a period of 2 mins. In images (a. – c.), the liquid water level is 
above the viewport, appears at the mid-line in capture (d.), and drops below the viewing region in 
capture (e.). 
 

 
4.2.4 Visualizing Hydrate Dissociation and Comparisons with Ice 

As expected, copious gas bubbles were observed during hydrate dissociation in all experiments. 

The addition of surfactant as a catalyst for hydrate nucleation also promoted visualization of 

bubble formations during hydrate dissociation. Figure 4-8 contains three image captures 

collected at 2 min intervals during ethane hydrate dissociation with indication to the growth of 

large ethane bubbles in surfactant foam resulting from abundant outgassing during dissociation. 

 

 
 
Figure 4-8: White surfactant foam formed inside the hydrate chamber from outgassing ethane 
during hydrate dissociation. Arrows accentuate growing ethane bubbles in sequential images 
collected at 2 min intervals. 
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Distinct cues, such as bubbles, facilitate visual differentiation of gas hydrate and ice. In addition 

to the growth of gas hydrates, ice was also grown from surfactant solution during this work. 

Image captures from pre-nucleation, growth, and the complete melting of ice (Figure 4-9) and 

dissociation of methane hydrate (Figure 4-10) exhibit distinct characteristics respective to each 

type of solid water formation. 

 

 
 
Figure 4-9: Image series displaying visual cues inside the pressure chamber throughout an ice 
trial with SDS solution. Chamber contents with liquid water (a.) prior to nucleation. The initial 
minutes of ice growth following nucleation (b.) with continued growth (c.) until completion (d.) 
while maintaining a clear viewing of the internal cooling coil. Melting of ice (e. – h.) with few 
bubble formations until finally returning to initial conditions (i.) with no surfactant foaming. 
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Figure 4-10: Image series depicting the sample chamber contents throughout a methane hydrate 
trial with SDS. Viewing of liquid water (a.) followed by hydrate nucleation (b.) and growth (c. –
 e). Final viewing of methane hydrate (f.) prior to initial stages of pressure induced dissociation 
(g.). Continuing dissociation (h.) with formation of surfactant foam until returning to initial 
conditions with methane bubbles attached to the sapphire viewport. 
 

Figure 4-9 and Figure 4-10 illustrate the distinctive visual differences observed during the 

growth and dissociation of ice and gas hydrate throughout this thesis, respectively. 

 

4.2.5 Inspection of Gas Hydrates Extracted from the Pressure Chamber 

In addition to monitoring of the internal sampling chamber, portions of methane, ethane, and 

propane gas hydrates were harvested from select experiments for closer inspection. Figure 4-11 

provides webcam images for a mass of extracted ethane hydrate. 
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Figure 4-11: Optical images of an extracted portion of ethane hydrate from the pressure cell. 
 

Samples for each of the harvested hydrates (each grown from a 380 ppm SDS solution) were 

rough to the touch as many pores formed from the outgassing of hydrocarbons during 

dissociation. To verify incorporation of the respective guest gases into hydrate structures, a 

portion of each sample was placed into the internal sample compartment of an FT-IR 

spectrometer for open-path IR transmission-absorption spectroscopic evaluation of outgassing 

constituents. 

Figures 4-12 (a.), (c.), and (e.) provide representative IR spectra from evaluation of dissociating 

methane, ethane, and propane hydrate; each exhibiting characteristic IR absorption features for 

the respective guest gas molecules.76 Methane spectra were collected with a Bruker IFS/66 FT-IR 

spectrometer (average of 100 sample scans at 4 cm-1 resolution) and deuterated triglycerine 

sulfate (DTGS) detector. Ethane and propane spectra were obtained from a Bruker 55 FT-IR 

spectrometer and MCT detector (average of 10 sample scans at 4 cm-1 resolution and average of 

100 scans at 2 cm-1 resolution, respectively). IR spectra were collected for at least 36 mins after 

collection of a reference spectrum (empty sample compartment) and introduction of a beaker with 

dissociating gas hydrate samples. IR spectra from each measurement series were evaluated by 

integrating the area under C-H stretching absorption features for the respective gases. Figures 4-

12 (b.), (d.), and (f.) graphically display absorption intensity, as integrated peak areas versus time 

for the expulsion of guest gases during hydrate dissociation inside the sample compartment (peak 

integration criteria for each species included in the respective graph). 
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Figure 4-12: IR transmission-absorption results from the interrogation of outgassing constituents 
from extracted gas hydrate structures for (a. and b.) methane hydrate, (c. and d.) ethane hydrate, 
and (e. and f.) propane hydrate. All graphs on the left side represent selected transmission-
absorption spectra from each experiment. All graphs on the right side illustrate absorption 
intensity for the expulsion of guest gases versus time for each measurement series (≥ 36 mins) as 
the peak area respective to C-H stretching features for each hydrocarbon species. Peak integration 
criteria are provided in the respective graphs (b.), (d.), and (f.). 
 

Spectroscopic evaluations provided in Figure 4-12 confirm the release of hydrocarbon gases 

during the dissociation of respective gas hydrate structures. The obtained IR spectra of outgassing 

methane (C-H stretch region displayed in Figure 4-12 (a.)) was comparatively weaker than gas 

signatures from dissociating ethane and propane hydrates, including a significant baseline shift 
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due to incidental obstruction of the beam path from beaker placement inside the sample chamber. 

In addition, a substantially larger portion of ethane hydrate was utilized compared to methane and 

propane experiments; hence, stronger IR absorption intensities were observed. Overall, 

absorption intensities subsided with time as the hydrate mass was reduced during dissociation (or 

the result of removal from the sample compartment in the case of ethane hydrate) and the 

influence of continuous purging of spectrometer sample compartments with dry air, which 

prevented the build-up of discharging gases. In addition to spectroscopic evaluation, the 

flammability of gases expelled from dissociation of extracted gas hydrates was tested, as shown 

in Figure 4-13. 

 

 
 
Figure 4-13: Series of image captures at 1 s time intervals demonstrating the combustion of 
propane expulsion from gas hydrate. In capture (a.), a white foam of propane filled surfactant 
bubbles is observed; obstructing the view of hydrate mass contained within the 250 mL glass jar. 
 

 
4.3 Fiber-optic IR-ATR Spectroscopic Monitoring of Gas Hydrates 

This section contains a detailed account of fiber-optic IR-ATR spectroscopic measurements for 

monitoring gas hydrate formation and dissociation of simple methane, ethane, and propane gas 

hydrates grown from DI water (with and without SDS). First, a general discussion regarding 

spectral mixing during the phase transition of water from liquid to solid is provided. Following, 

each of the four primary water absorption features is addressed in dedicated sub-sections that 

include molecular level descriptions resulting in spectroscopic changes during the phase 

transition, explanation of data evaluation strategies, and representative results. Selected 

experimental results from various hydrate trials are displayed interchangeably throughout this 
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discussion to illustrate spectral similarities of different hydrate structures and the versatility of 

data evaluation strategies. A thorough analysis for a representative propane hydrate trial is then 

provided to emphasize the value of collective data evaluation from multiple water absorption 

features to assess hydrate growth dynamics. Figure 4-14 provides representative fiber-optic IR-

ATR spectra for (a.) liquid water and methane hydrate and (b.) methane, ethane, and propane 

hydrates to facilitate side-by-side visual comparisons. 

 

 
 

 
 
Figure 4-14: Fiber-optic IR-ATR spectra for (a.) liquid water and methane hydrate with labeled 
absorption features for water and indication to spectral changes during the formation of gas 
hydrate and (b.) methane (sI), ethane (sI), and propane (sII) hydrates illustrating the similarity in 
spectral shifts observed for each clathrate hydrate structure. 
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4.3.1 Results and Discussion 

 4.3.1.1 IR Spectral Mixing During the Phase Transitioning of Water 

Fiber-optic IR-ATR spectra collected throughout the liquid-to-solid (and vice versa) phase 

transitioning of water is the sum result of spectral contributions from all sub-structures of water 

interacting with the evanescent field. For example, Rahman and Stillinger showed that in liquid 

water, ordered sub-networks of H-bonded water spontaneously form over a wide range of 

temperatures (primarily pentamer rings followed by hexamer and square structures); hence, the 

IR spectra of liquid water is a reflection of all spectral contributions from the various ordered 

networks (see Sloan for a review of water structuring and additional references)2.77 The cluster 

nucleation and RK models indicate that incomplete hydrate cages or oligomeric precursors form 

as intermediates prior to the nucleation of bulk hydrate growth. For simplicity, the IR spectrum of 

water (W) obtained during the formation of gas hydrate can be treated as the sum of reversible, 

non-interacting, state-specific absorption contributions from a binary phase mixture of liquid 

water (Liquid) and gas hydrate (Hydrate), where liquid-like water sub-structures contribute to the 

Liquid portion of the IR spectrum and hydrate-like structures contribute the Hydrate portion of 

the IR spectrum. Thus, W can be described following the Beer-Lambert law as the equation: 

 

HydrateLiquid AAW +=  

Equation 4.1 
 

where A = a × C × l; A is the absorbance, a is absorptivity, C is the concentration (defined as 

mass-to-volume (m/v) in this work), and l is the measurement pathlength. The effective 

measurement pathlength, l, for fiber-optic ATR waveguides is the sum volume interrogated by 

the evanescent field by N number of reflections with an effective penetration depth, de, over the 

entire fiber measurement surface and length. Hence, l, can be defined as an effective 

measurement volume, where Nde = Vl. By treating Liquid and Hydrate as non-interacting species 
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contributing to W, concentration values can be rewritten with the respect to the density of each 

phase. Thus, during the state transformation of water, W varies with respect to density and the 

proportional volume of each phase within Vl, which can be expressed in the following form: 
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Equation 4.2 

 

where aLiquid and aHydrate are phase-dependant absorptivities, ρLiquid and ρHydrate are respective phase 

densities, and VLiquid and VHydrate are the volumes of each phase within Vl, the effective 

measurement volume, such that: 

 

lVVV HydrateLiquid ≤+  
 

Equation 4.3 
 

In addition, Equation 4.2 enables absorbance corrections for dependencies a and ρ with respect 

to temperature (T), pressure (P), and any additional factors, gi and hj (e.g., salinity and pH), that 

can influence the spectral absorption of Liquid or Hydrate, respectively. The number of factors is 

given as n – 2 since pressure and temperature are already indicated. Hence, under given 

conditions, the proportional volume of Liquid:Hydrate interacting with the evanescent field 

directly influences the absorption characteristics of W. Furthermore, Vl can be canceled out in the 

formulation of AWater and AHydrate in Equation 4.2 as VWater and VHydrate are the effective 

measurement volumes respective to each phase interacting with the evanescent field and 

concentration units accounted by the phase densities. The consequences of this formulation are 

discussed in context throughout the following evaluations of spectral data obtained from hydrate 

monitoring series. 
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 4.3.1.2 The O-H Stretches 

The O-H stretch (νOH) region of liquid water is complex and comprised of multiple peak 

contributions with classical band assignments of two absorption features relating to symmetric 

(ν1) and asymmetric (ν2) vibrations.39, 57 Recently, the νOH region has been further interpreted as 

the combination of three Gaussian modal contributions with respect to H-bonding.62, 64 For this 

thesis, the H-bonding modal description is adopted. The three Gaussian populations for liquid 

water typically occur at approx. 3603 cm-1, 3465 cm-1, and 3330 cm-1 at 25 °C.62 Poorly H-bonded 

water molecules, termed “multimer water” (i.e., dimers and trimers), are responsible for the high 

frequency component at 3603 cm-1 and account for approx. 10% of the νOH intensity.62 The 

3330 cm-1 population results from networked water with strongly H-bonded water species 

exhibiting coordination close to four, and are responsible for approx. 56 % of the summed νOH 

band intensities.62 Finally, “intermediate water” contributes approx. 34 % to νOH absorption at 

3465 cm-1 from medially H-bonded moieties with coordination greater than multimer water but 

less than networked water.62 

The population dynamics for the three groups of liquid water are significantly influenced by 

temperature. With decreasing temperature, an increase in absorption intensity is observed for 

networked water, while decreased intensities are observed for intermediate and poorly networked 

water.62 Overall, the O-H stretch region absorption intensity increases slightly with decreasing 

temperature, which has been primarily attributed to increased water density.62 In addition, a red 

shift in the networked water band is observed upon cooling. Further red shifting and enhancement 

of the strongly H-bonded population with diminished populations of medially bonded and 

multimer water occur during the liquid-to-solid phase transitioning (formation of rigid H-bonded 

lattices from ice or hydrate structures), resulting in drastically altered peak shapes, positions, and 

intensities.38, 62, 64, 65 Phase related absorption changes in the O-H stretch region are readily 
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observed in the fiber-optic IR-ATR spectra of liquid water and gas hydrates (sI and sII) provided 

in Figure 4-14. 

In this study, final peak positions observed for highly networked O-H stretches from gas hydrate 

structures (sI or sII) typically occurred at approx. 3210 cm-1, which corresponds to a red shift of 

approx. 120 cm-1 with respect to reported values from the deconvoluted O-H stretches for the 

liquid water spectrum at 25 °C.62 To date, monitoring the liquid-to-solid transitioning of water 

through band deconvolution of the O-H stretch region has not been demonstrated in the literature. 

Due to the complexity of phase mixing and computation intensity of band deconvolution 

techniques, the implemented O-H stretch evaluation strategy for monitoring gas hydrate 

formation and dissociation was based on peak integration. Millo et al. reported a frequency 

dependent method for monitoring intensity changes due to population shifts in the O-H stretch 

modal contributions during the ice-to-liquid transitioning of water when referenced against the 

liquid water spectrum at 6 °C using fiber-optic IR-ATR spectra.65 However, for potential 

environmental monitoring applications, a generic strategy was selected to monitor a summed 

intensity effect by evaluating the prominence of the low frequency, highly networked O-H stretch 

character in the νOH profile from 3310 – 3099 cm-1, thus providing a singular value reflective of 

gas hydrate composition and growth dynamics. Peak integration provides a straight forward data 

evaluation strategy with minimal computation time, and is very amenable for automated, in situ 

data analysis. Figure 4-15 contains peak integration results from a propane hydrate trial with gas 

hydrate grown from DI water without surfactant and highlights key features of interest. 
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Figure 4-15: (a.) Peak integration results from spectroscopic monitoring of propane gas hydrate 
formation and dissociation in DI water by evaluating the population dynamics of the highly H-
bonded O-H stretch feature. (b.) Fiber-optic IR-ATR spectra displaying comparable shifts in H-
bonded populations during propane hydrate growth in a trial with surfactant solution (380 ppm 
SDS). (IR spectra were collected at 360 s intervals (a.) with an average of 250 sample scans at 
0.5 cm-1 resolution (a. and b.). 
 

In Figure 14-5 (a.), initial rapid intensity gains are observed from filling of the hydrate chamber 

with liquid water followed by temperature induced H-bonding population reorganization. Once 

hydrate conditions were achieved, a stable signal is visualized until a gap in experimental data 

occurs from day 13 to day 18 due to failure of the air drying unit, which is required to drive the 

interferometer for collection of FT-IR spectra. During that time, temperature in the cell was raised 

out of hydrate conditions until remedied. Afterwards, an IR spectrum was collected and visually 
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inspected with no discernable negative impact; hence, data collection was continued and the cell 

returned to hydrate conditions. On day 21, hydrate nucleation occurred as indicated by a rapid 

increase in peak area from concomitant enhancement of the strongly H-bonded population and 

reduction of intermediately H-bonded water species. Figure 4-15 (b.) depicts typical O-H stretch 

absorption dynamics in the IR spectrum throughout the liquid-to-hydrate phase transition during a 

measurement series examining propane hydrates grown from a surfactant solution with 380 ppm 

of SDS. Indicators are also provided in Figure 4-15 (b.) to illustrate the peak integration region. 

Once hydrate nucleation occurred, propane hydrate was allowed to grow for approx. 6 days until 

pressure induced dissociation, which is marked by a decrease in peak area. The hydrate series was 

completed following full dissociation of hydrate and returning to initial system conditions. 

Additional subtleties regarding hydrate growth dynamics can be visualized from evaluation of the 

O-H stretch region in Figure 4-15 (a.). A thorough, collective evaluation of all spectral changes 

in water absorption features during a hydrate growth trial facilitates a more coherent physical 

interpretation; hence, an in-depth evaluation of all water absorption features for this 

representative hydrate trial is provided in Section 4.3.2. 

 4.3.1.3 The H-O-H Bend 

The H-O-H bend mode (ν3) occurs at approx. 1640 cm-1 for liquid water at room temperature. 

The intensity of this band has been demonstrated to decrease slightly with decreasing 

temperatures with little or no observable frequency shifts.62, 64, 65 In addition, both single-Gaussian 

(Brubach et al.)62 and dual-Gaussian (Freda et al.)64 evaluation methods of the H-O-H bend have 

been described in the literature. The dual-Gaussian method describes two sub-peaks at 1670 cm-1 

and 1646 cm-1 for tetrahedrally arranged H-bonded (networked water) and non-H-bonded 

(irregularly networked) water, respectively.64 Despite the molecular level interpretations of this 

vibrational mode, the overall absorption intensity becomes significantly quenched upon the phase 

transition and formation of rigid lattice networks of ice or gas hydrate. 
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The decreased ν3 intensity results from a loss in the induced transition dipole moment from the 

bending motion with increased coordination in H-bonded lattices.62 Multi-mode interpretation of 

the ν3 region has been supported in the literature as this typically symmetric absorption feature 

becomes increasingly asymmetric throughout phase transformation.65 However, as the primary 

spectral change in the ν3 absorption during formation of solid water phases is a substantial 

reduction in absorption intensity, a peak integration method was utilized for evaluating phase-

related amplitude fluctuations throughout hydrate formation and dissociation in this study. 

Figure 4-16 (a.) contains measured ν3 intensity values as integrated peak areas throughout 

formation and dissociation of ethane hydrate grown from a solution of SDS. An initial increase in 

peak area results from system pressurization, and is followed by a drop in intensity resulting from 

decreased humidity relative to environmental conditions during collection of the reference 

spectrum (this trial prior to incorporation of purge box). Hydrate nucleation is indicated by a 

sharp decrease in the peak area approx. 24 hrs after start of data collection. A relatively stable 

signal is observed following the conversion of liquid water into gas hydrate. Band intensity 

increases with progression of pressure induced dissociation starting at approx. 2.75 days. 
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Figure 4-16: (a.) Peak integration analysis from spectroscopic monitoring of ethane hydrate 
formation and dissociation in 380 ppm SDS solution. (b.) IR-ATR spectra from a separate ethane 
hydrate trial (grown from a 380 ppm SDS solution) depicting spectral changes in the H-O-H bend 
throughout the liquid-to-hydrate phase transition. ((a.) IR spectra were an average of 1000 sample 
scans at 0.5 cm-1 resolution collected in 15 min intervals, and (b.) IR spectra are an average of 
250 sample scans at 0.5 cm-1 resolution). 
 

After gas hydrate has been formed around the fiber-optic waveguide, an asymmetric absorption 

profile can be observed with decreased H-O-H bend intensity (Figure 4-16 (b.)). Visual 

inspection of this region indicates contributions from a high frequency component around 

1670 cm-1 as well as a low frequency mode at approx. 1642 cm-1 without deconvolution. This 

observation is consistent with the two-Gaussian interpretation. However, a distinct shouldering 

feature was also observed at approx. 1603 cm-1. This absorption feature was observed in 
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experiments with and without surfactant, for methane, ethane, and propane hydrates, and an ice 

experiment grown from SDS solution. Hence, the origin of this vibrational mode may be assigned 

to water; however, a molecular level interpretation of this band remains unknown. 

The localized measurement volume interrogated by the evanescent field was accentuated in this 

measurement series. Although spectroscopic data at the beginning of day 3 are indicative to the 

presence of only liquid water, ethane hydrate was present in the sample chamber; albeit not in 

intimate contact with the AgX fiber. The remaining ethane hydrate from this trial was extracted 

for further examination (described in Section 4.2.4) following drainage of liquid water contents. 

In addition, absorption intensities obtained from peak integration of the ν3 region were strongly 

perturbed with environmental changes in humidity during this trial. Hence, a polycarbonate box 

was implemented for purging a restricted volume around the experimental setup following initial 

measurement trials for minimizing humidity induced amplitude variability. Figure 4-16 (b.) 

displays IR spectra collected throughout the formation of ethane hydrate following integration of 

the purge box; however, it was not possible to completely eliminate all humidity fluctuations 

throughout the entire course of a hydrate experiment, which could extend > 3 weeks. 

 4.3.1.4 The Libration Band 

The libration band (νL) arises from small amplitude oscillations from the whole water molecule 

respective to H-bonding lattices.62 In liquid water, this absorption feature has been shown to 

occur around 675 cm-1,62 and the peak position is strongly influenced by temperature and water 

phase such that decreasing temperatures and/or formation of solid water structures result in a 

significant blue shift (peak maximum observed at 850 cm-1 for ice at -20 °C by Brubach et al.62 

and 750 cm-1 for ice at -4 °C by Millo et al.65). 

For the current experimental setup, the peak maximum for νL is below the experimentally 

available frequency range. However, upon hydrate formation, a peak maximum for this feature 

becomes discernable in the IR spectrum as a result of blue shifting. Hence, two evaluation 
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strategies were initially implemented for evaluating the νL feature during formation and 

dissociation of gas hydrate. The first method is based upon peak fitting for elucidating the 

wavenumber respective to the libration peak maximum. This strategy only enables a semi-

continuous evaluation as hydrate growth must progress until the peak maximum has shifted above 

the detector cut-off. The second method is a peak integration method similar to that implemented 

for assessing the prominence of the strongly H-bonded population in the O-H stretch region. The 

spectral region from 925 – 700 cm-1 was integrated for evaluating amplitude changes resulting 

from νL peak shifts. This approach enabled a continuous monitoring capability as this region 

swells in response to temperature induced blue shifting and hydrate formation prior to the onset 

of a discernable peak maximum. 

Spectral monitoring of the peak maximum and peak area for the libration feature are 

demonstrated for a methane hydrate trial (with SDS solution) in Figures 4-17 (a.) and (b.), 

respectively. IR-ATR spectra (Figure 4-17 (c.)) display νL shifts throughout the formation of 

ethane hydrate grown in SDS solution. The νL peak maximum was determined by evaluating a 

predominately symmetric portion of the absorption feature with a Lorentzian local least squares 

minimization curve fitting function (provided in Bruker’s OPUS software package) for consistent, 

mathematical assessments. For the displayed measurement series, a fixed frequency range from 

820 – 678 cm-1 was used for peak fitting. The typical peak maximum of νL from all hydrate 

measurements, respective to the highest obtained hydrate composition, occurred at approx. 

740 ± 7 cm-1. A value of 675 cm-1 was assigned for spectra without a discernable peak 

maximum.62 Hydrate growth was detected with peak integration analysis two measurements 

(~30 min) prior to indication of a νL peak maximum. With exception of a delayed response to 

hydrate formation, evaluation of peak maximum or peak integration values reveal comparable 

information regarding hydrate growth dynamics within the sample chamber. Hence, the peak 
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integration method was selected as the νL evaluation strategy of choice for additional 

measurements. 

 

  
 

 
 
Figure 4-17: Spectroscopic results from a methane hydrate trial with SDS solution (380 ppm) for 
(a.) evaluation of the libration peak maximum and (b.) peak area of the libration region from 
925 – 700 cm-1. Representative fiber-optic IR-ATR spectra from an ethane hydrate trial (380 ppm 
SDS) display the shifting absorption behavior of the libration mode throughout formation of gas 
hydrate. ((a.) and (b.) were from analyses of IR spectra collected at 15 min intervals with an 
average of 1000 sample scans and 0.5 cm-1 resolution; (c.) IR spectra are an average of 250 
sample scans at 0.5 cm-1 resolution). 
 

The spectral region utilized for peak integration of νL is indicated (dotted lines) with IR-ATR 

spectra in Figure 4-17 (c.). Although the detector range limits full resolution of the νL absorption 

feature, the peak integration strategy saddles near the cut-off region to take advantage of 

temperature and phase induced spectral shifts. In methane hydrate data displayed in Figure 4-17 

(b.), intensity changes from temperature induced shifts are not identified; however, temperature 
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induced swelling of this region upon cooling has been detected in other measurement series for 

methane, ethane, and propane hydrates. From all water absorption features, the libration band has 

limited use for environmental monitoring applications in sediment matrices due to spectral 

interferences from major mineral components. This is addressed in greater detail with the 

comparison of each data evaluation strategy to sediment spectral signatures in Section 4.3.4. 

 4.3.1.5 The 3rd Libration Overtone 

The 3rd libration overtone (3νL) is a broad absorption feature occurring at approx. 2120 cm-1 

(room temperature). The peak maximum is strongly influenced by temperature and liquid-to-solid 

phase transitioning; consistent with observed changes in the libration mode.51, 62, 65 A blue shift of 

approx. 0.81 cm-1 per °C has been reported by Libnau et al.51 with peak maximum values for ice 

reported as 2190 cm-1 @ -6 °C,65 2222 cm-1 @ 0 °C,39 2235 cm-1 @ -175 °C,42 with other similar 

values reported throughout the literature.43, 44, 78 Intensity fluctuations have also been reported by 

Millo et al. during the ice-to-liquid phase transition.65 In this thesis, evaluation of the 3νL feature 

was carried out by monitoring the shift in peak maximum throughout hydrate formation and 

dissociation. Peak fitting strategies were similar to those utilized for evaluating the libration 

mode; however, the upper and lower frequency limits and frequency ranges were floated to 

maximize selection of the most symmetric portion of the absorption band respective to changing 

ratios of liquid:hydrate composition. Figure 4-18 provides representative results from monitoring 

the shift in peak maximum of 3νL during a propane hydrate trial with 380 ppm SDS. 
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Figure 4-18: (a.) Analysis of the peak maximum for the 3rd libration overtone from IR spectra 
during the formation and dissociation of propane hydrate in SDS solution (380 ppm). Fiber-optic 
IR-ATR spectra from a methane hydrate trial (DI water) exhibit shifts in the overtone absorption 
feature throughout formation of gas hydrate. ((a.) is from the analysis of IR spectra collected at 
6 min intervals with an average of 250 sample scans at 0.5 cm-1 resolution; IR spectra in (b.) were 
collected with an average of 250 sample scans at 0.5 cm-1 resolution). 
 

A strong temperature dependence of the 3νL peak maximum is readily observed during the first 4 

days of the trial displayed in Figure 4-18 (a.). In addition, a strong blue shift results upon hydrate 

nucleation until most liquid water interacting with the evanescent field has converted into gas 

hydrate. Reversibility in the peak position was observed following thermally induced 

dissociation, which resulted in a spiked feature at approx. 11 days due to hydrate slumping onto 

the unsupported fiber-optic waveguide. An additional spike was observed around 12 days from 
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the system temperature being warmed to approx. 40 °C before returning to room temperature. 

Figure 4-18 (b.) provides IR spectra from a methane hydrate trial with DI water, illustrating 

shifts in the peak maximum throughout hydrate formation. From all hydrate measurements, the 

observed peak maximum of 3νL was approx. 2210 ± 10 cm-1. The broad range of peak values is 

primarily attributed to variability in small volumes of trapped, unreacted interstitial water within 

the evanescent field. 

The temperature dependent shift of 3νL was compared between two propane hydrate 

measurement series; one with 380 ppm SDS and one with only DI water. The correlation between 

temperature and 3νL peak maximum is depicted in Figure 4-19. Figure 4-19 (c.) contains the 

average peak positions obtained from at least 35 consecutive measurements, and displays that the 

presence of surfactant has minimal impact upon the observed 3νL peak position. In addition, an 

approx. 1 cm-1 per °C shift was obtained from both measurement series comparable to literature 

values (a slightly higher value may result from thermal gradients within the hydrate chamber).51 

In Figure 4-19 (b.), a gradual decrease in peak position is seen despite a stable system 

temperature at approx. 21 °C. This behavior was observed during both propane hydrate trials with 

and without SDS until the temperature was reduced to < 20 °C. A possible explanation for this 

observation comes from the reorganization of water upon solvation of gas (system was 

pressurized) with coincident equilibration and decrease in system temperature.79, 80 However, 

further investigation is warranted to confirm the source of this behavior. 
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Figure 4-19: (a.) System temperature log recorded during a propane hydrate trial without SDS. 
(b.) Shifting peak maximum for the 3rd libration overtone in response to the corresponding 
temperature trace in (a.). (c.) Temperature dependent response of the 3rd libration overtone peak 
maximum for two propane hydrate trials; with 380 ppm SDS solution and DI water only (w/out 
SDS). Error bars are ± 1 standard deviation. (All spectral data were an average of 250 sample 
scans at 0.5 cm-1 resolution collected at 6 min intervals). 
 

 
4.3.2 Evaluation of all Water Features during a Hydrate Trial: Model with Propane Hydrate 

The collective evaluation of all major water absorption features provides the greatest amount of 

information regarding sample contents interacting with the evanescent field throughout the phase 

transitioning of water from liquid-to-hydrate and hydrate-to-liquid. Figure 4-20 provides spectral 

analyses respective to each of the water absorption features following the prescribed strategies in 

Section 4.3.1 for the following collective evaluation of a propane hydrate trial grown in DI water 

(previously discussed with regards to evaluation of O-H stretches in Section 4.3.1.2). 
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Figure 4-20: Analysis of fiber-optic evanescent field spectra with respect to each of the four 
absorption features of water for a propane hydrate trial grown from DI water. The data gap is the 
result of instrument down-time for servicing of the air dryer (see Section 4.3.1.2). 
 

A qualitative consideration of analytical results depicted in Figure 4-20 reveals comparable 

temporal information embedded within each of the four absorption features of water as the result 

of gas hydrate formation and dissociation. IR spectra collected during this measurement, as well 

as all hydrate measurements, provides a sum total of information regarding the influences of 

system temperature and hydrate content (%Hydrate) during phase transitioning resulting from 

changes in the absorption of water with respect to VHydrate + VLiquid interacting with the 

measurement volume of the evanescent field, Vl. 

In Figure 4-20, the impact of temperature on liquid water absorption features can be observed in 

analyses for the O-H stretch absorption intensity, libration absorption intensity, and peak 

maximum of the 3rd libration overtone during initial cooling stages starting on day 1 and 

concluding on day 3. In addition, temperature influences on the absorption behavior of liquid 
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water are observed on day 27 (~6 °C) and day 28 (~24 °C) following hydrate dissociation. No 

discernable temperature influences were indicated in the H-O-H bend absorption intensity. 

Occasional spikes in the H-O-H bend intensity result from fluctuations in environmental humidity 

relative to humidity during collection of the initial reference spectrum. 

Following previous discussions and depiction in Figure 4-20, intensity changes in the O-H 

stretch and libration modes provide information regarding the formation of gas hydrate, whereby 

increased peak areas indicate the propagation of hydrate growth. The absorption intensity of the 

H-O-H bend mode provides similar information; however, amplitude changes are inversely 

related to hydrate growth; decreased peak areas are the result of increasing hydrate content. 

Lastly, the peak maximum of 3νL provides an absolute intensity independent measure of hydrate 

content with a functional relationship to the %Hydrate directly interacting with the evanescent 

field. Hence, the intensity independent evaluation of chamber contents from 3νL coupled with 

inversely related amplitude responses from the respective νOH, νL, and ν2 features provide a 

powerful combination for monitoring the overall propagation of hydrate growth and identifying 

spectral changes resulting from variable water content within the evanescent field. 

Following hydrate nucleation for data presented in Figure 4-20, a gradual decrease in the 

absorption intensities from the O-H stretch, H-O-H bend, and libration features can be seen 

starting at approx. day 22 until completion of day 26. However, a subtle increase is observed in 

the peak maximum 3νL. Collective data evaluation is indicative of a decrease in the total water 

content within Vl resulting in a net proportional increase of VHydrate relative to VLiquid. 

This result, albeit subtle in this example, illustrates the significance of collective data evaluation 

for interpretation of spectroscopic data collected during hydrate monitoring studies. In this 

example, evaluation of only 3νL and/or the H-O-H bend can lead to two possible interpretations: 

(1) a net increase in %Hydrate within Vl and (2) increased VHydrate with conversion of water 

comprising VLiquid. Collective evaluation reveals that interpretation (1) is correct, whereas 
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interpretation (2) is incorrect. The concurrent decrease in O-H stretch intensity (very subtle) 

confirms increased %Hydrate in Vl is the result of a decrease in VLiquid due to the liquid water 

level within the hydrate chamber dropping below the transected portion of the pressure cell by the 

fiber-optic waveguide. Hence, a continuation of initial derivations from Section 4.3.1.1 is now 

provided to further depict mathematical relationships between the IR absorption of water (W) 

with respect to changes in hydrate content interacting with the evanescent field. 

 

4.3.3 Deriving the Quantification of Gas Hydrate from IR Spectra 

As described in Equation 4.1, the water spectrum (W) is the sum of water absorbance from both 

Hydrate (AHydrate) and Liquid (ALiquid) phases. In this work, Hydrate and Liquid are considered the 

only water phases contributing to W such that the mixed-phase absorption characteristics of W 

follow a proportional relationship to Liquid and Hydrate content in Vl: 
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Equation 4.4 

 

In Equation 4.4, VWater is the total water volume in Vl, and this relationship remains true in all 

described measurements although the value of VWater may not remain constant with respect to 

Equation 4.3 where VWater ≤ Vl. As two water phases are the only major contributors to W with 

respect to VWater, then a functional relationship of W can be derived with respect to %Hydrate in 

Vl following: 
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For intensity based evaluations, VWater is critical. If VWater remains equivalent to Vl throughout a 

measurement series, including the phase transition, then absorption intensity (I), as an integrated 

peak area in this thesis, for any vibrational mode has a conserved functional relationship to 

%Hydrate in Vl following the general description: 

 
( )

WaterVV%Hydrate
l

fI =  

 
Equation 4.6 

 

Thus, %Hydrate or Δ%Hydrate in Vl can be solved provided proper mathematical relationships 

have been determined for each absorption feature with respect to VWater under a given set of 

experimental conditions (i.e., temperature, Vl, etc.). In this work, %Hydrate in Vl was empirically 

unknown; therefore, an explicit relationship could not be determined. Furthermore, the 

dependence of I on VWater becomes significant during spectroscopic monitoring of hydrate growth 

dynamics if changes in VLiquid result in deviations to VWater: 

 
constantVVV WaterHydrateLiquid ≠∋≠ −

+
+

−  
 

Equation 4.7 
 

If VWater changes during a measurement series, as in the propane hydrate trial discussed in Section 

4.3.2, Equation 4.6 remains valid; however, a new mathematical relationship must be derived 

with respect to amplitude changes in VWater. 

Changes in VWater can be easily discerned from spectroscopic monitoring results when the 

temporal change in absorption intensities from the H-O-H bend feature are not inversely related 

to intensity changes in the O-H stretch and libration modes. For environmental applications, this 

is a positive feature of IR analysis for prevenitng misinterpretation of changes in water content as 

the conversion of Liquid into Hydrate. However, the strong dependence of I with respect to VWater 
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imposes a significant barrier for utilizing intensity-based evaluations for extracting values for 

%Hydrate in Vl. 

Alternatively, evaluation of the peak maximum for the 3rd libration overtone provides an absolute 

intensity independent strategy for assessing %Hydrate in Vl assuming negligible scattering losses 

arising from the formation of hydrate. This results as boundary conditions for the 3νL peak shift 

are defined by the pure phases, whereby 100% Hydrate yields the upper peak maximum limit, 

ωHydrate, and the 100% Liquid peak maximum, ωLiquid, defines the lower limit such that the phase-

mixed peak position, ω(Hydrate + Liquid), must follow: 

 

( ) LiquidLiquidHydrateHydrate ωωω >> +  
 

Equation 4.8 
 

Hence, ω(Hydrate + Liquid) in the described experiments varies in response to changes in %Hydrate 

within Vl following the description in Equation 4.5; however, shifts in peak position changes are 

independent of changes to VWater. As the peak position of the 3νL feature is highly sensitive to 

temperature (T), a general functional relationship can be derived: 

 
( ) ( )

Tl
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Equation 4.9 

 

The dimensionality of Equation 4.9 is simpler mathematically than Equation 4.6 as the 

boundary conditions of this relationship are independent of VWater. Assuming the Beer-Lambert 

law is valid from 0 - 100% Hydrate in the described measurements, the shift in ω(Hydrate + Liquid) 

follows a first order linear relationship with respect to changes in %Hydrate within Vl. Hence, a 

first mathematical approximation of the relationship between ω(Hydrate + Liquid) and %Hydrate in Vl 

can be made following additional consideration to experiments described in this thesis in addition 

to literature. 
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As discussed in Section 4.3.1.5, the reported peak maximum of 3νL for ice is minimally 

influenced over a fairly wide range of temperatures. In literature and this work, the peak 

maximum of 3νL for liquid water is strongly influenced by temperature, which has been related to 

the temperature dependent structuring of H-bonded networks. Thus, Equation 4.9 must be solved 

with respect to the peak position of 3νL corresponding to the bulk system temperature. Using the 

established relationship between ωLiquid and temperature in this thesis (Figure 4-19 (c.)), for 

T = 5 °C (approx. that observed at MC118), an initial ωLiquid (100% Liquid) value of 2129.3 cm-1 

is obtained. If an ωHydrate (100% Hydrate) value of 2215 cm-1 is implemented (slightly above the 

2210 cm-1 average reported in Section 4.3.1.5 to offset potential influence from unreacted 

interstitial water), the following mathematical relationship is derived: 
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Equation 4.10 

 

For an example calculation: if an ω(Hydrate + Liquid) value of 2176 cm-1 was measured at 5 °C, a 

%Hydrate value within Vl of approx. 54.5% is calculated using Equation 4.10. For continual 

assessment of %Hydrate in Vl during monitoring applications, Equation 4.9 must be solved and 

implemented with respect to variations in system temperature. However, if Equation 4.10 was 

implemented for temperature fluctuations of ± 4 °C (less than typical temperature changes 

observed at the seafloor in the GoM)1 resulting in maximal Δω(Hydrate + Liquid) values ± 4 cm-1, then 

%Hydrate values of 59.2% and 49.8% are calculated for the extremes, respectively. Thus, without 

correction of ωLiquid with respect to system temperature, the error in predicted %Hydrate would be 

< 5%. 

Equation 4.10 exhibits an explicit mathematical derivation for relating ω(Hydrate + Liquid) and 

%Hydrate assuming the Beer-Lambert law remains valid throughout the transition of Liquid to 
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Hydrate and first order linear changes in refractive index throughout the phase transition with 

negligible scattering losses. In this work, the boundary conditions for Liquid and Hydrate are 

fairly well described. As the 3νL peak maximum must traverse approx. 80 ± 10 cm-1 (defined by 

system temperature) over the full range of %Hydrate (0 – 100 %) during spectroscopic 

interrogation, implementation of the Beer-Labert law’s first order linear relationship with proper 

temperature correction is predicted to facilitate the semi-quantitative assessment of %Hydrate in 

Vl within ~10 – 15% of the true value provided no significant departure in the functional 

relationship. 

In this thesis, a multi-point calibration could not be generated to verify the first order linear 

derivation relating ω(Hydrate + Liquid) to %Hydrate remains valid from 0 – 100 %Hydrate due to the 

inability to directly control or assess the %Hydrate within Vl. Establishing an empirically derived 

functional form for Equation 4.9 during future investigations is expected to improve the and 

confidence level of this strategy for extrapolating accurate and precise %Hydrate information in 

both laboratory and harsh environment measurements with evanescent field spectroscopy. 

Fundamentally, quantification is confined to the localized sample volume interrogated by the 

evanescent field, which does not guarantee representation to bulk hydrate growth behavior. Thus, 

this method is particularly well-suited for monitoring small-scale hydrate dynamics. 

Figure 4-21 illustrates localized dynamics of methane hydrate (no SDS) as %Hydrate from 

evaluation of 3νL with an average pressure corresponding to approx. 475 ± 35 m of ocean depth 

and average temperature of 2 ± 1.5 °C from 1.5 days into the trial until approx. day 21. For this 

evaluation, ωLiquid was defined as 2136 cm-1 (average peak position for 50 measurements prior to 

nucleation), and ωHydrate was defined as 2215 cm-1. The derived fit equation (analogous to 

Equation 4.10) was utilized for data evaluation at all system temperatures (Tsystem); therefore, -

%Hydrate values correspond to 100% Liquid when Tsystem > T for the defined ωLiquid. From 
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Figure 4-21, the greatest %Hydrate valued observed in Vl during this trial was approx. 88%, 

which occurred around day 16. 

 

 
 
Figure 4-21: Plot of calculated %Hydrate within Vl during a methane hydrate trial (no SDS) 
following spectroscopic analysis of 3νL. This hydrate trial was carried out pressures comparable 
to oceanic environments in the GoM with documented hydrate occurrences.1 IR-ATR spectra 
were an average of 250 sample scans with 0.5 cm-1 resolution collected at 6 min intervals. (Lines 
are present to assist visualization). 
 

For quantitative applications in oceanic environments, additional factors influencing the 3νL peak 

maximum other than temperature should be considered for accurate %Hydrate assessments. 

Salinity and alkalinity (pH) can influence ωLiquid, and both can vary with time and location. 

However, temperature is anticipated to impart the greatest influence on  ωLiquid with respect to a 

ΔωLiquid of ~1 cm-1 per °C. As salt ions are not incorporated into hydrate lattices, ωHydrate should 

remain relatively constant over a wide range of environmental conditions for small volumes 

interrogated by evanescent field sensing strategies. As a result, initial applications with only 

temperature considerations to the peak maximum 3νL on ωLiquid should facilitate a reasonable first 

approximation for changes in %Hydrate content within Vl. If salinity and pH (assuming pH 

facilitates a suitable correction for the spectral impact of alkalinity) are collectively monitored 

during real-world deployment, %Hydrate values can be corrected following improved 
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mathematical derivations in the relationship between ω(Hydrate + Liquid) and %Hydrate with future 

investigations of the collective impact of the prominent factors that can influence the peak 

position of 3νL (i.e., salinity, pH vs. alkalinity, and pressure) over environmentally relevant 

variations in oceanic gas hydrate ecosystems. 

Overall, the significance for establishing this initial relationship is the potential application for 

scaling IR observations of Δ%Hydrate to ΔVHydrate across larger geographic areas, which could 

enable approximations to methane flux from dissociating hydrate. Many advances are necessary 

to realize the full potential of accurate IR monitoring strategies in oceanic gas hydrate 

ecosystems; however, the potential value of accurately quantifying changes in %Hydrate in 

oceanic gas hydrate ecosystems substantiates continued investigations to test and improve 

mathematical derivations for the described quantification strategies and the development of 

deployable MIR sensing platforms capable of operating in harsh, oceanic environments. 

 

4.3.4 Feasibility for Extending Hydrate Monitoring Strategies into Oceanic Sediment Matrices 

A primary objective of this work was to assess the initial feasibility for extending IR-ATR 

spectroscopic hydrate monitoring strategies into oceanic environments. A potential hydrate 

monitoring application for MIR chemical sensors could be the embedding of a sensing platform 

within hydrate-bearing sediments to monitor temporal hydrate dynamics. Such an application 

would provide valuable data for assessing hydrates in marginal stability regions (shallower depths 

or at the base of hydrate stability zones due to geothermal gradients), whereby minor temperature 

or pressure changes could stimulate wide-spread, rapid dissociation events.1 

To assess the real-world feasibility of such an application, it was essential to screen sediment 

matrices for potential spectral interferences that could prevent detection and/or monitoring of gas 

hydrates with future deep-sea MIR chemical sensors. To facilitate this evaluation, a number of 

shallow (< 30 cm) box core sediment samples were collected around the MC118 gas hydrate site 
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for spectral analysis of sediment signatures from a variety of settings surrounding the hydrate 

system. Sediment samples were evaluated in their “native” hydrated condition without 

manipulation beyond collection, transport, and storage procedures. Hence, this strategy facilitates 

a close approximation as to what sediment spectral signatures would be in the natural 

environment. In addition, sediments were allowed to dry, enabling a full evaluation of sediment 

absorption features with reduced water interferences. This section provides a brief overview of 

sediment absorption profiles with particular consideration to spectroscopic data evaluation 

procedures described for monitoring gas hydrate formation and dissociation in Section 4.3.1. A 

complete description of sample collection, sample locations, and experimental procedures for 

sediment analyses are provided in Section 5.3. 

Despite complex matrix compositions (e.g., quartz, clay, and carbonate), IR-ATR spectroscopic 

evaluation of native sediment matrices revealed accessibility to three water absorption features; 

the O-H stretch, the H-O-H bend, and the 3rd libration overtone. Figure 4-22 provides 

representative IR-ATR spectra for hydrated and dried sediments with generic labeling of major 

mineral component absorption features and select spectra illustrating the diversity of native 

sediment signatures obtained from MC118 samples. 
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Figure 4-22: (a.) IR-ATR spectrum of hydrated sediments from the BC12 location at MC118, (b.) 
IR-ATR spectrum of dried sediments from the BC7 location at MC118, and (c.) selected IR-ATR 
spectra of hydrated sediments from different sampling locations at MC118. (All spectra were the 
average of 100 sample scans collected at 1 cm-1 resolution). 
 

In Figure 4-22, the prominence of water signatures in native sediment matrices is readily 

apparent in (a.) and (c.). The IR-ATR spectra provided in Figure 4-22 enable a direct assessment 

of potential interferences and limitations of data analysis procedures described for monitoring 

water absorption features during gas hydrate formation and dissociation with respect to sediment 

matrix components. 

In the O-H stretch region, the intermittent observation of crude oil signatures, the omnipresent 

clay absorption feature, and variable water absorptions must be considered. The spectral 

absorbance of clay minerals decreases to background levels at approx. 3500 cm-1, whereas C-H 
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stretch features from crude oil and other potential organic interferences is primarily limited to 

< 3000 cm-1. Hence, the O-H stretch peak integration method from 3310 – 3099 cm-1 for 

monitoring hydrate growth should remain unaffected by either matrix components. However, the 

variable strength in the IR absorption of water reveals fluctuations in the sediment water content. 

Thus, the collective evaluation of multiple water absorption features should facilitate the in situ 

assessment of fluctuations in the water content of sediment fractions. Furthermore, the observed 

variability of water absorption magnitude in the investigated sediments support the potential for 

quantitative evaluation of gas hydrates via analysis of the 3νL peak position, as opposed to the 

peak areas from the O-H stretches and the H-O-H bend features. 

Strong IR absorptions from carbonate minerals have the greatest potential to influence the longer 

frequency (lower wavenumber) absorption of the H-O-H bend mode. Some minor convolution of 

the two absorptions is observed; however, the upper wavenumber boundary of carbonate 

absorption for dried sediments was found to occur at 1560 cm-1. As the H-O-H bend integration 

method spans from 1783.5 – 1573.2 cm-1, this evaluation strategy should be minimally affected 

by the presence of carbonate minerals. In practice, the lower wavenumber limit of the H-O-H 

bend integration method could be shifted to 1580 – 1590 cm-1 to minimize spectral overlap, 

whereby intensity changes from this evaluation procedure primarily reflect changes in either 

water content and/or hydrate growth. 

The spectral region of the 3rd libration overtone exhibits no significant spectral contributions from 

sediment matrix components; therefore, this feature should provide an excellent, uninterrupted 

assessment of hydrate dynamics within sediments in oceanic environments. The presence of 

multiple, strong absorption features from sediment components below 1000 cm-1 limits practical 

evaluation of the libration band for monitoring gas hydrates in sediment matrices. 

Overall, sediment evaluations further support the feasibility of extending IR hydrate monitoring 

strategies into oceanic environments. Although the libration band has limited usefulness, the three 

available absorption features, each of which respond differently to hydrate growth, should 
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facilitate the robust evaluation of hydrate dynamics in oceanic sediments. In addition to the 

screening of sediment constituents, unique variations in characteristic absorption features of 

carbonate minerals were observed in sediment spectral signatures. Chapter 5 and Chapter 6 

address additional developments for the application of IR-ATR chemical sensors for evaluating 

the complexity of carbonate mineralogy surrounding oceanic gas hydrate ecosystems. 

 

4.3.5 Power Limitations for Extending Hydrate Monitoring Strategies into Oceanic Settings 

Considering all potential limitations for extending MIR chemical sensing platforms into isolated, 

oceanic environments for monitoring gas hydrates, power is perhaps the most significant factor 

regarding the feasibility for application of a high-power instrument. The broadband FT-IR 

spectrometer slated for incorporation into the 2nd generation submersible sensing platform 

(described in Chapter 7) is anticipated to consume ≥ 140 W during operation. Hence, for stand-

alone, battery operated monitoring applications, power limitations restrict the usage of such an 

instrument to either short-term deployment with high temporal resolution or long-term 

deployment with low temporal resolution. 

With this consideration, spectroscopic data collected during the propane hydrate trial described in 

Section 4.3.2 is readdressed with respect to high and low temporal resolution. During that 

particular hydrate trial, fiber-optic IR-ATR spectra were collected at 6 min intervals (240 spectra 

per day). Over the 29 day measurement campaign, a total of approx. 5450 spectra were collected. 

In most oceanic environments, power limitations or the cost of power would likely restrict 

continuous operation of an FT-IR spectrometer over such an extended period of time. Therefore, 

the temporal resolution of the given hydrate trial was reduced to 1 spectrum for every 10 hr 

period of continuous data collection (55 spectra total). Figure 4-23 provides full and reduced data 

sets with respect to evaluation of 3νL. 
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Figure 4-23: Spectroscopic analysis of the 3rd libration overtone for a propane hydrate trial 
(discussed in Section 4.3.2) with (a.) spectra collected at 6 min intervals and (b.) the same trial 
with reduction of data points by a factor of 100 (1 point per 600 min time interval). 
 

From the propane hydrate data series displayed in Figure 4-23, expected information loss results 

from reduced temporal resolution throughout the hydrate series. However, the major events are 

still captured from this measurement series despite the reduction of temporal resolution by a 

factor of 100. If 20 mins were allowed for automated power-up, instrument stabilization, data 

collection, and shut-down (i.e., sleep mode), only 18.3 hrs of instrument operation time would be 

required to generate the respective 55 measurements, whereas approx. 565 hours (excluding 

instrument downtime) were necessary for continuous data collection of the 5450 spectra. 

One potentially significant use of MIR chemical sensors is to detect substantial shifts in hydrate 

composition from dissociation events resulting in rapid outgassing of methane. Such information 

is embedded within the data presented in Figure 4-23, and data transformation of the temporal 

shift in 3νL peak position (ΔPeak Max.) from measurement-to-measurement facilitates better 

assessment and visualization of rapid changes in hydrate composition. Figure 4-24 provides such 

a transformation of data presented in Figure 4-23. 
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Figure 4-24: Temporal analysis of the 3νL peak position with respect to measurement-to-
measurement changes in the peak maximum during a propane hydrate series with (a.) 6 min 
intervals between measurements and (b.) the same data reduced to one measurement point for 
600 min intervals. (Lines are present to assist visualization). 
 

In Figure 4-24, the prescribed data transformation visually accentuates rapid changes in hydrate 

content as spiking features ((+) for hydrate growth and (-) for hydrate dissociation). Although the 

temporal resolution was reduced by a factor of 100 in Figure 4-24 (b.), the sum shift in peak 

position over the time intervals of hydrate formation and dissociation are easily detected. In 

addition, the spike features are much stronger in the reduced data set. This is an expected result 

from the loss of temporal resolution; however, Figure 24 illustrates that low temporal resolution 

data collections should enable the detection of rapid hydrate dissociation events at time scales 

with potentially significant environmental consequences from the abundant outgassing of 

methane (i.e., migration to the atmosphere) and/or reduced seafloor stability from gas blowouts. 

For final consideration of this topic, a comparable first order relationship similar to Equation 

4.10 was derived to relate changes in ω(Hydrate + Liquid) to changes in %Hydrate in Vl for both high 

and low temporal resolution data sets for the same hydrate trial. Initial ω(Liquid) and final ω(Hydrate) 

values of 2138 cm-1 (obtained prior to hydrate nucleation) and 2115 cm-1 were used, respectively. 

Following calculation and data transformation, Figure 4-25 provides an overlay of the predicted 

measurement-to-measurement changes in %Hydrate within Vl from days 20 to 29. 
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Figure 4-25: Predicted measurement-to-measurement changes in the %Hydrate within Vl during a 
propane hydrate series with (a.) 6 min intervals between measurements and (b.) the same data 
reduced to one measurement point for a 600 min. Plot generated from the transformation of the 
3rd libration overtone peak position data displayed in Figure 4-24. (Lines are present to assist 
visualization). 
 

From the transformed high and low temporal resolution data sets in Figure 4-25, an average of 

92.6% of VWater within Vl is predicted to be gas hydrate within 2.2 days following hydrate 

nucleation. The sum of Δ%Hydrate values for low (5 measurements) and high (512 

measurements) temporal resolution data sets yield comparable values of 92.5% and 92.7%, 

respectively. Following initiation of hydrate dissociation, only liquid water was detected within 

Vl after approx. 3.1 hrs. The sum of Δ%Hydrate values throughout dissociation for low (1 

measurement) and high (31 measurements) resolution data sets revealed -98.7% and -99.8%, 

respectively. The highest predicted hydrate composition was 95.5%; hence, the dissociation 

values were slightly overestimated. This difference is reflective to an increased system 

temperature of approx. 5 °C for hastening hydrate dissociation in this particular measurement 

series. Additional temperature induced change can also be observed in the low resolution data set 

at approx. day 28 from return of the hydrate chamber to room temperature. Overall, the low 

temporal resolution data set coupled with evaluation of %Hydrate throughout the propane hydrate 
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series demonstrates the attractiveness of IR sensing strategies for investigating the temporal 

dynamics of hydrate-bearing sediments in oceanic environments. 

 

4.4 Hybridized Reaction Kinetic-Thermodynamic Model for Gas Hydrate Formation 

In Section 4.1.1.4, two general models, the cluster nucleation hypothesis and reaction kinetic 

model, were described for nucleation and primary growth mechanisms of gas hydrates.2, 26-28 

Recently, it has been acknowledged that a breakthrough is needed to generate a unified hydrate 

kinetics model, which, to date, has been hindered as a result of stochastic nucleation.24 Sloan 

provides a detailed review of nucleation theory and discusses five primary factors that influence 

hydrate nucleation from water: (1) displacement from thermodynamic equilibrium of hydrate 

stability, (2) water state and history, (3) gas composition, (4) extent of water agitation and/or 

turbulence, and (5) system geometry and surface area.2 

From the aforementioned list, the multi-dimensionality required for describing and accounting for 

all possible influences dictating the kinetics of hydrate nucleation and growth becomes clearly 

evident. In Figure 4-3, a combination of the fundamental elements from the cluster nucleation 

hypothesis and RK model were depicted. Lekvam and Ruoff demonstrated the use of their 

proposed RK model to mathematically solve reaction rates for five microscopically reversible 

processes influencing the overall kinetics of methane hydrate growth in aqueous solution.26, 27 As 

a result, the fundamental RK model framework provides an initial starting point for expansion 

and incorporation of additional elements involved in hydrate nucleation and growth processes. 

This section proposes an expansion of the RK model in light of current and previous works. The 

proposed expansion with designation of the Reaction Kinetic-Thermodynamic model (RK-T 

model) is depicted graphically in Figure 4-26 for reference throughout the ensuing discussion. 
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Figure 4-26: Proposed Reaction Kinetic-Thermodynamic Model expanded from the cluster 
nucleation hypothesis of Christiansen and Sloan and the RK model of Lekvam and Ruoff.2, 26-28 
 

The primary limitations identified from expanding the cluster nucleation and RK models into a 

more universal framework is the restricted dimensionality; although, the established frameworks 

are fundamentally sound and amenable for expansion, as depicted in Figure 4-26 with 

comparison to Figure 4-2 and Figure 4-3. 

The first proposed alteration to the RK model is the accountability for the “state” of water 

depicted as k1(T,P,x) ↔ k-1(T,P,x) in Figure 4-26. This enables dimensional corrections with 

respect to temperature (T), pressure (P), and the sum of all other experimental factors (x) for n-2 

variables as P and T have already been accounted. With respect to factors influencing hydrate 

nucleation, P and T are primary compensators of the water state respective to displacement from 

hydrate equilibrium; whereas, the factor labeled x provides the capability for further dimensional 

correction with respect to salinity, history of previous hydrate growth, etc. Although the 

significance of water structuring with temperature and the influence on hydrate stability and 

nucleation has been recognized, the context of this work in light of previous investigations and 

molecular level interpretations of temperature and phase influences on the IR spectrum of water 



 110

illustrate the need to incorporate these factors into the RK model. The kinetics of water 

structuring in this step is not anticipated to be a rate limiting factor to nucleation or overall 

hydrate growth kinetics; however, this enables dimensional correction for the structuring of 

water, thermal gradients, and cooling efficiency, which can influence nucleation and alter overall 

hydrate growth kinetics. 

The second amendment, depicted as k2(T,P,x) ↔ k-2(T,P,x) in Figure 4-26, illustrates 

accountability for water vapor dynamics. In laboratory experimental setups, headspace volume is 

necessary to facilitate gas exchange and water expansion upon hydrate formation. Hydrate 

nucleation is often observed at the liquid-water interface; hence, the rate and extent of water 

evaporation-condensation could alter water structuring at the interface and influence hydrate 

nucleation.2 Furthermore, gas hydrate was often formed in the recessed portion of the viewport 

during this thesis. In the following days after primary growth, gas hydrate accumulations in the 

viewport ledge diminished from apparent dissociation, evaporation, and recondensation within 

the hydrate chamber. This observation is attributed to decreased thermodynamic stability of 

hydrate at that particular location due to thermal gradients. Hence, condensation of water vapor 

and conversion into gas hydrate within higher stability regions in the sample chamber appear to 

be an active tertiary growth process. In Figure 4-26, a kinetic step for this growth process was 

not specifically indicated as the reversible stages required for this mechanism are already 

depicted between the vapor phase and bulk hydrate. The overall impact on bulk hydrate growth 

kinetics is currently unknown; however, it is possible that this process could kinetically inhibit 

gas transport necessary for the conversion of trapped, interstitial water. Hence, this mechanism 

has been included, but further investigation is necessary to determine the significance on hydrate 

growth kinetics. 

The third addition to the RK model, k3(T,P,x) ↔ k-3(T,P,x), expands depiction for the dissolution 

of gas, which has been well-acknowledged as a two-step process: surface adsorption followed by 

solvation.80 The RK model accounts for both steps with one kinetic variable, which likely serves 
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well in practical application. However, isolation of each step enables consideration of 

experimental factors influencing the kinetics of surface adsorption (i.e., surface area), solvation, 

and mass transport (i.e., temperature and volume) within the respective context. Furthermore, 

isolation of surface adsorption and solvation of gas coupled with the first expansion to the RK 

model inherently incorporates the influence of gas solubility and concentration throughout the 

overall model without requiring special treatment. 

In practice, a reduced consideration of only the primary pseudoelementary processes described by 

Lekvam and Ruoff for the RK model is perhaps more suited for practical application; however, 

integration of P, T, and additional x factors at every kinetic step facilitates a universal 

dimensioning of experimental conditions to all individual elements in the RK-T model. This 

incorporation should not influence mathematical considerations of individual rate constants 

proposed by Lekvam and Ruoff; this merely places calculated values into experimental context.26, 

27 The RK-T model framework improves upon the RK model, and it is also amenable for further 

expansion through incorporation of additional hydrate nucleation and growth mechanisms (i.e., 

nucleation from ice).2 In conclusion, the stochastic behavior of nucleation processes inherently 

inhibits the predictability of any proposed kinetics model; however, the inclusion and 

consideration of additional experimental factors influencing kinetics of nucleation and hydrate 

growth may facilitate a more compatible framework for experimental data considerations. 

 

4.5 Conclusions 

This chapter presented a variety of studies demonstrating the development, application, and 

assessment of fiber-optic IR-ATR spectroscopic sensing strategies for monitoring gas hydrate 

formation and dissociation in aqueous environments. Collectively, the extensive history of gas 

hydrate research and application of IR techniques specifically addressing the spectral absorption 

behavior of water have provided generally well-established frameworks facilitating the logical 
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extension of fiber-optic evanescent field sensing strategies in this work, with particular emphasis 

towards the monitoring gas hydrate dynamics in oceanic ecosystems. 

The IR absorption behavior of water in response to temperature and phase transitioning has been 

well documented in the literature. Consistent and comparable observations were generated during 

this thesis. In addition, five data evaluation strategies were implemented for extracting 

temperature and phase related information from each of the four primary water absorption 

features, enabling continuous spectroscopic monitoring of gas hydrate dynamics in a controlled 

laboratory environment. Examination of IR spectral profiles from sediment matrices collected 

around the MC118 gas hydrate system revealed limited use of data evaluation strategies designed 

to interrogate the libration absorption mode. However, sediment components are anticipated to 

have minimal impact upon data evaluation strategies tailored for examination of the O-H stretch, 

H-O-H bend, and 3rd libration overtone features. Furthermore, it was demonstrated that collective 

evaluation of the unique responses from these absorption features to the phase transformation of 

water provides a powerful combination for assessing hydrate dynamics and delineating the 

differences between changes in %Hydrate due to reduced liquid water content versus the 

conversion of liquid water into gas hydrate. 

In this thesis, a major achievement was demonstrating the use of evanescent field sensing 

strategies to monitor methane hydrate growth at pressures comparable to documented occurrences 

of oceanic gas hydrates in the GoM; experimental pressures up to an equivalent of ~510 m of 

ocean depth with naturally occurring hydrates reported at ~440 m. Several hydrate trials 

extending > 21 days demonstrated considerable long-term stability of this measurement strategy, 

which substantiates the potential for long-term deployments of submersible MIR chemical 

sensing platforms for environmental hydrate monitoring applications. Long-term deployment 

feasibility was further exemplified through the comparison of information extracted from data 

generated every 6 mins throughout a hydrate trial extending over a 29 day period to the same data 

and an imposed reduction of temporal resolution by a factor of 100. Although fine-scale temporal 
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resolution was diminished, the major formation and dissociation events were still captured during 

the experimental trial. The capability to detect major growth and dissociation events with limited 

instrument operation over long periods of time is particularly attractive for evaluating the 

temporal dynamics of hydrate-bearing sediments in marginal hydrate stability environments. 

With consideration to literature and this thesis, the IR absorption profiles for ice (Ih), sI hydrate, 

and sII hydrate are strikingly similar. In 2004, Zhang and Ewing interpreted the spectral 

similarities of sI hydrate and ice (Ih) to be consistent with a reported enthalpy change of 

1 kJ/mole from the reconfiguration of ice into empty, sI clathrate cage structures.38 However, 

there is an underlying indication for the potential capability to differentiate the solid phases of 

water using IR spectral profiles resulting from the diverse configurations water molecules can 

occupy within different clathrate cages, the different cages respective to gas hydrate structures 

(sI, sII, and sH), and the dissimilarities of hydrate structures to the ice lattice. In this work, no 

indicators were readily identified that might facilitate phase identification using IR spectroscopy. 

This is attributed to several key factors: (1) phase-mixing during hydrate formation, (2) extent of 

hydrate formation, (3) broad absorption features of water, (4) temperature dependence, and (5) 

weak or no IR signatures from guest molecules. All five factors collectively contribute to the 

current assessment for limited practical usage for phase identification. The unique structural 

characteristics of each phase may perhaps enable identification from pure hydrate samples; 

however, without viable assessment as to the volume % of gas hydrate, the sensitivity of IR 

absorption to liquid water limits phase dependent assignments of peak positions, absorption 

intensities, and/or bandwidths. Furthermore, the potential for phase identification in oceanic 

environments is expected to be further limited due to the high probability of encountering phase 

mixtures of liquid and hydrate, whereby a “pure” gas hydrate spectrum would not be generated to 

facilitate phase identification. A currently unexplored avenue for phase identification may be 

through the assessment and comparison of isosbestic points in the O-H stretch region. Several 

reports (i.e., Millo et al.)65 have documented isosbestic points during the liquid-to-solid and solid-
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to-liquid phase transformations of liquid water and ice (Ih). Perhaps, close inspection of the O-H 

stretch region during the liquid-to-hydrate phase transformation will reveal unique differences 

with respect to each solid phase of water. In the current experimental setup, hydrate growth 

dynamics within the sample chamber and minor baseline shifts from gas hydrate mechanically 

pushing on the unsupported fiber-optic waveguide limit accurate characterization of isosbestic 

points. 

Extended consideration of experimental results with simple derivations respective to the spectral 

influences of phase-mixing during hydrate growth has enabled a first approximation for relating 

spectral shifts in the peak position of 3νL to %Hydrate interacting with the evanescent field. The 

derived first order linear relationship is hypothesized to facilitate quantification to within ~10 –

 15% of the true value assuming adherence to the Beer-Lambert law throughout the complete 

phase transitioning of liquid water to gas hydrate; however, further investigation is warranted to 

verify the accuracy of this simple functional relationship. Although, with well-characterized 

boundary conditions dictated with respect to each phase and an approx. 80 cm-1 shift in 3νL from 

0 to 100% Hydrate, even minor deviations in the functional relationship should limit the total 

error of this derivation to < 15%. A quantification capability within this range substantiates 

practical use for initial evaluation and quantitative approximation to the variability of hydrate 

dynamics in harsh, oceanic environments. Caution should be exercised for applications 

demanding high levels of accuracy; however, continued investigations facilitating an appropriate 

functional derivation (i.e., more than two points and consideration of potential scattering losses) 

should enhance the precision, accuracy, and confidence level for this evaluation strategy. 

Furthermore, improved characterization for correction of spectral influences from variations in 

temperature, salinity, and pH for environmentally relevant conditions coupled with continuous, 

floating quantitative analysis should expand the versatility and robustness for environmental 

applications. The necessity for continuous dimensional corrections with respect to temperature, 
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salinity, and pH should remain independent of the functional relationship. Although pressure was 

not a primary influence on the water spectrum in this thesis, extension of this measurement 

strategy to pressures > 15 MPa warrants additional consideration to pressure influences. 

Lastly, a proposed integration of the cluster nucleation hypothesis and reaction kinetic hydrate 

growth model and expansions to the RK model framework were also presented. The primary 

significance of the proposed Reaction Kinetic-Thermodynamic model is providing accountability 

for the influence of water structuring with respect to temperature and pressure (displacement from 

phase stability). The expanded complexity of the RK-T model may have limited practical usage 

for laboratory applications; however, it seems fitting to establish a multi-dimensional model 

incorporating the extensive knowledge of multiple experimental factors directly influencing 

hydrate nucleation and growth kinetics. Even without practical application, the proposed model 

enhances visualization to the complexity of gas hydrate growth processes. Ultimately, this model 

should facilitate broader multi-dimensional considerations that will advance this field towards a 

more unified hydrate kinetics model. 

 

4.6 Outlook 

Considering the rich history of IR spectroscopy and extensive investigations into the spectral 

behavior of water, it is surprising that IR techniques have had limited application in gas hydrate 

research. In addition to the studies performed throughout this thesis, only two additional reports 

demonstrate the application of IR-ATR techniques for investigating gas hydrate structures; both 

within the past four years. The described limitations regarding structural identification and 

minimal absorption contributions from methane, ethane, and propane will likely reduce the 

attractiveness of incorporating IR methodologies in many arenas of gas hydrate research. 

However, there are many potential avenues for integrating IR sensing strategies into gas hydrate 

research. 
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Although the experiments described in this thesis were restricted to well-controlled laboratory 

conditions, a strong emphasis was placed on assessing the feasibility for extending IR-ATR 

sensing platforms into oceanic environments for gas hydrate monitoring with the developed data 

evaluation strategies. Experimental results substantiate the potential insight that can be gained 

with the application of MIR chemical sensors for long-term monitoring of gas hydrate dynamics 

within oceanic hydrate ecosystems. Submersible fiber-optic IR-ATR sensors have been 

previously realized; however, limited operational depths and the known susceptibility of AgX 

fibers to Cl- in aqueous solution restricts current sensing capabilities with such an instrument.81-84 

Hence, focused research efforts are necessary to realize the practical development of sensing 

platforms with more robust waveguiding materials (i.e., ZnSe) to access the full potential of IR-

ATR sensing strategies in harsh, deep-sea environments. 

In addition to engineering requirements to realize environmental applications, more thorough 

investigations of environmental factors known to influence the IR absorption behaviors of water 

are needed. Focused investigations on the spectral signature of liquid water in sediment matrices 

with variable temperature, salinity, and alkalinity versus pH in the laboratory should facilitate the 

development of multi-dimensional models for dynamic mathematical correction and extraction of 

%Hydrate values from the 3νL peak position. Furthermore, controlled laboratory experiments are 

necessary to establish an empirical functional relationship between 3νL peak position and 

%Hydrate interacting with the measurement sample volume. Improved assessment is anticipated 

to validate the capability of IR methods to quantify %Hydrate with an error of < 5%. 

Unique insights into the role of SDS as a hydrate nucleation catalyst was revealed in data 

collected throughout investigations to establish and assess hydrate monitoring strategies. 

Although that work is not specifically addressed in this thesis, IR-ATR spectroscopic techniques 

display significant potential for evaluating different classifications of surfactants to elucidate 

molecular level mechanisms involved in catalyzing hydrate nucleation. Furthermore, there is 
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substantial interest for developing hydrate growth and nucleation inhibitors to prevent hydrate 

formation and blockage of oil pipelines. Various types of kinetic and thermodynamic inhibitors 

have been reported in the literature.2, 23, 24 For example, sodium chloride is a well-known 

thermodynamic hydrate inhibitor due to the influence on water structuring.24 The effect of salts on 

water structuring can be observed by shifts the IR spectrum of water; hence, IR techniques may 

facilitate rapid screening of potential thermodynamic inhibitors of gas hydrate formation and 

enable the prediction of concentration dependent impact on thermodynamic stability.66, 69, 70, 72 

In conclusion, there are many potential avenues for improving and extending the application of 

IR spectroscopy in gas hydrate research. A particular emphasis has been placed on future 

environmental applications within this thesis, and all indications suggest a significant potential 

for the viable application of MIR chemical sensors in the exploration of oceanic gas hydrate 

ecusystems, including evaluation of spatial distributions, temporal dynamics, and directed 

investigations of acoustic anomalies generated in seismo-accoustic datasets without requiring 

destructive drilling of boreholes for manual inspection and validation of data interpretations. 

Overall, the greatest potential for in situ monitoring and assessment of oceanic gas hydrates 

follows the concurrent deployment of multiple sensor technologies, including optical sensors (IR-

ATR and Raman), mass spectrometers, temperature, salinity, oxygen, accelerometers, acoustics, 

etc. 
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CHAPTER 5 
 

IR-ATR EVALUATION OF CARBONATE MINERALS IN SEAFLOOR SEDIMENTS 
 
 
 

In this chapter, the application of IR-ATR spectroscopy for evaluating carbonate minerals in 

seafloor sediments is presented along with a background on the general application of IR 

spectroscopy for carbonate mineralogy. The primary focuses of this chapter are direct qualitative 

characterization of carbonate minerals and the semi-quantitative evaluation of calcite and 

dolomite compositions in marine sediment samples without pre-treatment. To establish the 

context for presented studies, the scope and complexity of carbonate mineralogy with respect to 

gas hydrate ecosystems in the GoM will be described following a general introduction to 

carbonate mineral classification. 

 

5.1 Motivation 

The application of IR spectroscopy for analyzing carbonate minerals is an enduring research topic 

with roots extending back to the early 1950’s with establishment of spectral databases for a wide 

range of naturally occurring minerals.1-3 In the mid-1960’s, the capability of IR methods to 

quantify carbonate minerals in marine sediments was demonstrated and acknowledged for the 

potential value as an on-ship research tool.4, 5 Recently, the application of IR spectroscopy for 

carbonate mineralogy has gained relevance in areas ranging from the characterization of synthetic 

formation of magnesian calcite (Mg-calcite) to evaluating Sr and Mg concentrations in biogenic 

calcites.6, 7 

IR-ATR spectroscopic evaluation of seafloor sediments for this thesis was initiated as a next-step 

to assess the potential of MIR chemical sensors for monitoring hydrate dynamics in oceanic 

environments (see Chapter 4). Preliminary sediment analyses were performed with samples 

collected from MC118 in October 2005 as provided by Dr. Carol Lutken of the University of 

Mississippi. Following initial screenings, significant spectral variations observed in the IR 
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absorption profiles of carbonate minerals stimulated a breadth of studies to further address and 

understand the nature and spectral differences of carbonate minerals in context to oceanic gas 

hydrate ecosystems in the GoM. 

 

5.1.1 Introduction to the Classification of Carbonate Minerals 

Carbonate minerals are a diverse group of naturally occurring rock formations containing the 

carbonate ion, CO3
2-.The most common anhydrous carbonate minerals in the primary Dana 

classification 14 were predominately studied in this work.8, 9 Within Dana 14, the anhydrous 

carbonate minerals are subdivided by general chemical formula, crystal system, and final 

classification based on specific chemical formula.8, 9 Table 5-1 summarizes the Dana 

classifications for carbonate minerals examined in this thesis. 

 
Table 5-1: Dana classification of carbonate minerals addressed with IR-ATR spectroscopy in this 
thesis. 
 

Dana Classification of Carbonate Minerals 
14 Anhydrous Carbonate Minerals 

14.1 Anhydrous Carbonates with Simple Formula A+ CO3 
14.1.1 Calcite Group (Trigonal – Hexagonal Scalenohedral) 

14.1.1.1 Calcite, CaCO3 
14.1.1.2 Magnesite, MgCO3 

14.1.1.3 Siderite, Fe++CO3 
14.1.1.4 Rhodochrosite, MnCO3 

 

14.1.1.6 Smithsonite, ZnCO3 
14.1.3 Aragonite Group (Orthorhombic – Dipyramidal) 

14.1.3.1 Aragonite, CaCO3 
14.1.3.2 Witherite, BaCO3 
14.1.3.3 Strontianite, SrCO3 

 

 

14.1.3.4 Cerussite, PbCO3 
14.2 Anhydrous Carbonates with Compound Formula A+ B++ (CO3)2 

14.2.1 Dolomite Group (Trigonal – Rhombohedral) 

 
  14.2.1.1 Dolomite, CaMg(CO3)2 
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In addition to the carbonate species listed in Table 5-1, the anhydrous carbonate phase of Mg-

calcite will be discussed throughout this body of work. Mg-calcite is not classified in the Dana 

scheme; however, it is a common carbonate phase often encountered in marine environments, 

including oceanic gas hydrate ecosystems.10-12 Mg-calcite will be described and discussed in more 

detail when relevant within ensuing sections. 

 

5.1.2 Carbonate Mineralogy of Oceanic Gas Hydrate Ecosystems in the GoM 

Carbonate minerals are ubiquitous throughout many marine environments, and are extremely 

diverse and complex with respect to origin, composition, diagenesis, and distribution.10 While the 

focus of carbonate mineralogy throughout this thesis primarily targets gas hydrate ecosystems in 

the GoM, it is prudent to address more generalized regional, even global, characteristics of the 

origins and distributions of carbonates throughout marine environments. This aspect is 

particularly important for disseminating and contextualizing the findings presented in this chapter 

and Chapter 6. The following sub-sections provide a fundamental and descriptive background to 

the scope, complexity, and diversity of carbonate minerals throughout the GoM along with the 

relevance to gas hydrate ecosystems. 

 5.1.2.1 Authigenic Carbonate Production 

The term authigenic refers to minerals formed in-place as opposed to being transported into a 

geologic system from an external source. Roberts and Aharon have described three basic 

categories for carbonate buildups on the northern shelf edges and continental slopes in the GoM: 

(1) reefs, (2) bioherms, and (3) lithoherms.11 Reef formations consist of biogenic and 

inorganically cemented carbonates containing frame-building organisms (i.e., coralline algae) 

typically found in the photic zone of warm, tropical to sub-tropical waters. Bioherm mounds are 

much less geographically restricted, and are primarily comprised of biogenic carbonates from 

organisms such as mussels and clams, which are not frame-building species. Lithoherms form by 

submarine lithification (i.e., compaction and cementation) in deepwater environments, and may 
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contain some biogenic carbonate. Recently, the term chemoherm has been introduced to 

differentiate formations resulting from authigenic carbonate precipitation driven by 

chemosynthetic processes surrounding hydrocarbon vents.11 

In the GoM, authigenic chemoherms can greatly modify the seafloor surrounding cold 

hydrocarbon seeps (i.e., at or near ambient seawater temperatures), and are frequently coincident 

with gas hydrate occurrences.11, 13-16 Chemoherms are strongly linked to the microbial oxidation 

of exuding hydrocarbons as evidenced by strong depletions in 13C, which typically range from 

approx. -14 ‰ to -55 ‰ PDB (per mille relative to a sample standard such as the Chicago 

Belemnite Standard).11, 15, 17 Chemosynthetic mediated authigenic carbonate formation 

surrounding seep environments is driven by the concomitant production of CO2 from the 

anaerobic oxidation of methane and other hydrocarbons (i.e., crude oil) and enhanced sulfate 

reduction resulting in pore water saturation of bicarbonate and hydrogen sulfide.15, 16, 18-23 In these 

circumstances, pore water chemistry strongly favors inorganic (i.e., abiotic) authigenic carbonate 

precipitation following the generalized formula:16 

 

223
22

3 COOHMg)CO(Ca,)Mg,(Ca2HCO ++→+ ++−  
 

Equation 5.1 
 

Roberts and Aharon provide an extensive overview on authigenic carbonate formations found 

throughout the full depth range of the northern GoM slope.11 The importance of microbially 

driven chemoherm accumulations is two-fold: (1) massive carbonate accumulations greatly 

modify seafloor morphology,11, 12, 15, 23 and (2) the magnitude of carbon/carbonate cycling and 

sequestration of greenhouse gases within these environments are significant for consideration at a 

global scale, and in effect, buffer the migration of seeping greenhouse gases into the 

atmosphere.23-27 Furthermore, the significance of chemoherms are not exclusive to the GoM.12, 19, 

20, 28 
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In highly-active areas of carbonate precipitation, diverse morphological authigenic formations, 

including large mounds, isolated slabs, hardgrounds, nodules, and microcrystals, can be found.11, 

20, 23 Occasionally, massive carbonate buildups can extend 10 – 20 m in relief of the surrounding 

environment, and can be easily detected in seismic profiles as a result of their high acoustic 

density.11 However, as the distance increases away from a seep system, the seafloor morphology 

typically tapers off to a comparatively barren landscape with a significant decrease in biodiversity 

(i.e., the MC118 gas hydrate site).23 

The most common marine carbonate minerals, including those found within GoM hydrate 

ecosystems, are calcite, dolomite, aragonite, and Mg-calcite.10, 11, 14, 16, 20, 29 However, the 

mineralogy, genesis, and diagenesis of marine carbonates can be highly variable and complex.10, 

12, 30 In deep-sea environments, many geophysical and biogeochemical factors such as pore water 

chemistry (i.e., alkalinity, [Ca2+], and [Mg2+]), pCO2, temperature, etc. can greatly affect the 

kinetics and thermodynamics of inorganically precipitated carbonate minerals.10, 12, 20, 30-32 Berner 

described that general carbonate phase stability within marine environments follows the order: 

dolomite > calcite > Mg-calcite (< 8.5 mole% MgCO3) > aragonite > high Mg-calcite 

(> 8.5 mole% MgCO3).31 

In addition to older, larger authigenic carbonate accumulations, ranging from small nodule 

formations of several millimeters up to massive mound-like formations, incipient authigenic 

carbonate formation occurs throughout fine grained sediment fractions surrounding hydrate 

locations in the GoM, whereby background biogenic carbonate content can be > 75% by mass.11, 

14, 15, 23, 29, 30 In this thesis, IR-ATR spectroscopy has been applied to gain insight into the 

distribution and variance of carbonate minerals and their origins within sediments and nodule 

formations surrounding the gas hydrate system at MC118. Results presented throughout this 

chapter and Chapter 6 are relevant for evaluating carbon cycling and sequestration within 

hydrate ecosystems and display the potential utility of IR-ATR spectroscopy for guiding more 
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detailed investigations into the complexity and buffering capabilities of chemosynthetic 

communities associated with cold hydrocarbon seeps. 

 5.1.2.2 Dolomitization 

Dolomitization is the diagenetic conversion of calcium carbonate into dolomite within Mg-rich 

environments. Experimental evidence supports the fact that dolomitization processes occur in 

variety of marine settings, including intertidal, supratidal, and deep-sea environments.10 In deep-

sea environments, dolomitization is typically considered a gradual process occurring over 

geologic time (i.e., burial dolomitization), which can greatly alter the calcite-dolomite 

composition of sediments.10, 30 However, as dolomite can also form as a primary precipitate in 

marine environments, the capability to characterize and/or differentiate dolomites as the product 

of primary precipitation or diagenetic conversion is frequently enigmatic.10, 30, 33 

The occurrence of dolomite has been documented within cold seep environments in the GoM; 

however, the processes of authigenic/sedimentary dolomite formation are yet to be fully 

understood.11, 15, 30 Botz et al. have reported at least two generations of calcite and dolomite 

formations in GoM sediments from several coring locations, including one core near gas hydrate 

occurrence in Green Canyon Block 183.30 Multiple formation generations are evidenced by 

carbon isotope ratios (δ13C) ranging from “normal-marine” values of 0 ‰ to “microbially altered” 

carbonates with depleted 13C values of -14.6 ‰ PDB. Within this work, dolomite was observed in 

shallow (< 30 cm) sediments, deep (> 30 cm) sediments, and several nodule formations. The 

capabilities, limitations, and potential application of IR-ATR spectroscopy as a characterization 

tool for marine dolomites will be further discussed in Section 5.5.2.5. 

 5.1.2.3 Biological Sources of Carbonates 

Milliman provides an extensive overview of skeletal and non-skeletal biological sources 

(biogenic) of marine carbonates.10 Despite the diversity of biogenic sources, the primary 

contributors to carbonates in deep-sea sediments originate from planktonic foraminifera, 

coccolithophores, and pteropods. Regional distributions and characteristics of calcium carbonate 
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composition in sediments throughout the GoM were mapped by Balsam and Beeson from 186 

core samples.29 In general, the northern (Texas-Louisiana) and western (East Mexico) continental 

shelf regions (shelf water depths < 200 m) typically contained < 10% carbonate by mass, and a 

continuous region extending from the eastern shelf (West Florida) onto the southern shelf 

(Campeche-Yucatan) exhibited > 75% carbonate. In the northern and western GoM provinces, 

carbonate composition increased from 10 – 25% on the upper slopes and rises to 25 – 50% 

entering into the plain regions of the GoM basin (Sigsbee and East Gulf Plains). The eastern and 

southern shelves exhibited the greatest diversity of biogenic carbonates, which included non-

skeletal (lithoclasts, pelletoids, and ooids) and skeletal (mollusks, foraminifera, algae, echinoids, 

corals, and bryozoans) components. However, the diversity of biogenic carbonate sources 

decreased down slope from the continental shelves into the GoM basin. In these settings, 

planktonic foraminifera and coccolithophores were the primary contributors to biogenic carbonate 

formations found within the seafloor sediments.29, 34 

Planktonic foraminifera and coccolithophores are widely distributed organisms that thrive in 

photic waters throughout Earth’s oceans and seas.10, 35, 36 Foraminifera are single-celled protists 

that commonly produce calcareous shells, referred to as tests, above the thermocline.10 

Foraminiferal tests contribute primarily to the sand sized sediment fractions (62.5 μm – 2 mm on 

the Wentworth Scale).10, 36 Coccolithophores are single-celled photosynthetic organisms that 

produce calcite “shields”, termed coccoliths, with diverse, complex, and exotic morphologies that 

generally range from 2 – 20 μm.10, 35-37 Coccoliths are the dominant biogenic carbonate structures 

in sediment fractions < 6 μm.10, 36 As in the GoM, carbonate generated from foraminifera and 

coccolithophores are frequently coincident.10, 29 It is significant to note the ubiquitous, regional 

presence of foraminiferal tests and coccolith formations throughout GoM sediments, including 

settings that are conducive for gas hydrate formation (water depths > 300 m).15, 29, 34 In addition, 

considerably smaller coccolith formations have greater potential for contributing to sediment IR-
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ATR spectral signatures than foraminiferal tests. This results as coccoliths in the very fine 

sediment fractions provide a better particle size match for interaction with the evanescent field 

(penetration depth ~750 nm @ 1335 cm-1 with n1 = 2.42 and n2 = 1.3; < 2.5 μm) throughout the 

evaluated spectral region with the implemented ATR configuration in this thesis. The spectral 

impact of coccolith calcite is only briefly discussed in this chapter; however, a more thorough 

treatment of this significant carbonate source for detecting authigenic carbonate precipitation with 

IR-ATR spectroscopy is discussed in Chapter 6. 

In addition to the abundant sedimentation of biogenic carbonates from foraminifera and 

coccolithophores, additional sources of biogenic carbonates surrounding gas hydrate systems in 

the GoM arise from the accumulation of fossil shell material (predominately aragonite).11, 15, 17, 23 

Aragonite shells originate from large chemosynthetic organisms including mussels and clams. At 

MC118, shell material litters the seafloor and often contributes to chemoherm formations (see 

Figure 1-7).23 The size of shell material (commonly whole pieces or fragments > 1 mm) 

inhibits the potential for significant interaction with the evanescent field during IR-ATR 

evaluation. The lack of significant spectral contributions from these particular carbonate sources 

is addressed throughout this chapter. 

 5.1.2.4 Mg-Calcite 

In Section 5.1.1, Mg-calcite was introduced as an anhydrous carbonate phase not classified in the 

Dana system. Mg-calcite is of particular relevance, since: (1) Mg-calcite (authigenic and 

biogenic) is commonly found in low-temperature marine environments, such as hydrate systems 

in the GoM,10-12, 14-16, 20, 23, 30, 38 and (2) Mg2+ incorporation into calcite lattices imparts finite 

changes in the characteristic IR spectrum of calcite with increasing Mg2+ content,39 as discussed 

in Section 5.2.2. 

In 1975, Berner investigated the role of Mg2+ in seeded precipitation of inorganic calcite and 

aragonite in seawater to establish an explanation for the impact of Mg2+ on inorganic carbonate 
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formation in marine environments.31 Under consideration of previously published literature, the 

author formulated several generalizations including the finding that aragonite growth in seawater 

is essentially unaffected by the presence of dissolved Mg2+; however, Mg2+ is incorporated into 

calcite crystals following surface adsorption resulting in significant perturbation of crystal 

growth. In addition, Mg-calcite precipitation can be seeded by Mg-free calcite. The most 

thermodynamically stable forms of magnesian calcite were also predicted to contain between 2 

and 7 mole% MgCO3, and Mg-calcite containing greater than 8.5 mole% MgCO3 are unstable 

relative to aragonite at the average Mg/Ca ratio commonly found in seawater. 

Within gas hydrate ecosystems in the GoM, authigenic formation of Mg-calcite is intimately 

connected with microbial activity.11, 14-16, 30 In addition, authigenic carbonate in sediments and 

nodule formations in these ecosystems can exhibit diverse carbonate mineralogy, morphology, 

and geologic history, even within single rock formations.11, 12, 15, 40 Chapter 6 presents the IR-

ATR spectroscopic evaluation of nodule formations collected from the MC118 hydrate site, and 

exemplify the complexity and diversity of carbonates encountered within a single gas hydrate 

ecosystem. 

 

5.1.3 IR Spectroscopy and Carbonate Mineralogy 

The feasibility of IR spectroscopic techniques for classifying and differentiating anhydrous 

carbonate minerals was recognized over 50 years ago.1-3, 41 One of the earliest thorough reports on 

the IR spectra of carbonate minerals was by Hunt et al. in 1950 with the presentation of 

transmission-absorption spectra for calcite, dolomite, magnesite, aragonite, rhodochrosite, 

siderite, and smithsonite.2 Sample preparation required grinding, isolation of particulates with an 

average particle size < 5 μm via sedimentation and centrifugation procedures, sample drying, and 

the application of a thin particulate film onto NaCl windows from approx. 0.2 g of powdered 

sample. IR transmission-absorption spectra were then recorded with a dual-beam, grating 

spectrophotometer. In addition to reporting the IR spectra, the authors acknowledged the 
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capability to discriminate each carbonate species based on unique vibrational frequencies for a 

carbonate absorption band occurring between 752 and 714 cm-1. Since then, IR spectroscopy has 

gained recognition as a powerful tool for carbonate research. Resulting, a variety of IR 

spectroscopic methodologies, sample preparation procedures, and data evaluation strategies have 

been implemented to take advantage of the molecular specific nature of this analytical 

technique.4, 7, 39, 42-46 The following sub-sections provide a detailed overview on the application of 

IR spectroscopy for evaluating carbonate minerals with particular emphasis on topics relevant to 

this thesis. 

 5.1.3.1 Classification of Carbonate Minerals with IR Spectroscopy 

IR spectra of anhydrous carbonate minerals exhibit several absorption features characteristic to 

fundamental vibrational modes of the carbonate ion, which collectively provide discriminatory 

signatures with respect to the crystal system and molecular composition.5, 47-50 Chester and 

Elderfield extensively discussed the utility of carbonate spectral features from transmission-

absorption measurements for identifying common anhydrous carbonate minerals.5 In practice, the 

collective use of fundamental absorption features, with exception of the ν3 mode (see Figure 5-

1), typically enables the unambiguous identification of these minerals. This section provides a 

generic description for the practical usage of IR absorption features to identify and discriminate 

carbonate minerals. Furthermore, a summary of carbonate identification utilizing an IR-ATR 

spectral database generated for this thesis is provided (experimental details in Section 5.2). As a 

first guideline, Figure 5-1 contains a representative IR-ATR spectrum for witherite (BaCO3), 

which is classified in the aragonite group. 
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Figure 5-1: IR-ATR spectrum of witherite (BaCO3) mined from Illinois, USA with carbonate 
vibrational mode assignments. The spectrum is an average of 100 sample scans collected at a 
spectral resolution of 1 cm-1. This representative spectrum was collected for the IR-ATR spectral 
database described in Section 5.2. (Abbreviations are assym = asymmetric, sym. = symmetric, 
and oop = out-of-plane). 
 

Four fundamental absorption modes are IR active for carbonate minerals with the conventional 

band assignments provided in Figure 5-1. However, the ν1 symmetric C-O stretch is typically 

only observed for anhydrous carbonates in the aragonite group.5, 49, 50 Hence, observation of this 

spectral feature is generally indicative of the presence of aragonite group mineral(s). The ν1 

vibration resonates between 1085 and 1050 cm-1, and its fundamental frequency is unique to each 

aragonite group species (aragonite, witherite, strontianite, and cerussite). Therefore, this 

absorption feature is frequently applied for identifying the four aragonite group minerals 

classified under Dana 14.1.3. 

For all anhydrous carbonates investigated in this thesis, a major and minor ν2 absorption feature 

can be observed. The minor ν2 absorption occurs in the range of 860 – 820 cm-1 as a weak 

protrusion shouldering at the longer frequency flank of the major ν2 peak. The minor band is not 

commonly utilized for carbonate species identification; however, this feature may assist the 
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classification process.5 Using IR-ATR spectra and the requirement for a spectral separation of at 

least 3 cm-1 to facilitate unambiguous species identification, calcite and cerussite can be clearly 

distinguished, and the remaining minerals narrowed to three sub-groups: (1) siderite and 

rhodochrosite, (2) aragonite, witherite, strontianite, and smithsonite, and (3) dolomite and 

magnesite. Despite the prominence of the major ν2 band compared to the minor feature, it also 

has limited capability for unambiguous carbonate identification. Transmission-absorption spectra 

indicate that mineral speciation using this feature is restricted to magnesite, smithsonite, 

rhodochrosite, and cerussite.5 However, from the collected IR-ATR spectra and the 3 cm-1 

criterion, it was found that classification with the major ν2 band produces similar results from 

evaluation of the minor feature. Consequently, cerussite and calcite can be discriminated with 

formation of three remaining sub-groups: (1) aragonite, witherite, and strontianite, (2) 

rhodochrosite, siderite, and smithsonite, and (3) dolomite and magnesite. 

The ν3 asymmetric carbonate stretch region (1550 – 1350 cm-1) is the strongest carbonate 

absorption feature active in all hexagonal and rhombohedral carbonates, and it is comprised of 

multiple vibrational contributions.5 This absorption region is not typically used for species 

classification due to the broad spectral characteristics and similar frequencies of peak maxima for 

several carbonate minerals.5 However, ν3 peak absorption frequencies in the 1400 cm-1 regime are 

frequently reported in literature for confirming the presence of carbonate mineral(s) and/or 

quantitative analysis.4-6, 39, 42, 46, 50, 51 

The fundamental ν4 planar bending vibration (750 – 695 cm-1) is the most utilized absorption 

feature for identifying carbonate minerals. From the IR-ATR spectral database in this thesis, the 

3 cm-1 criterion enables unambiguous classification of all evaluated carbonate species except 

calcite and aragonite. The differentiation of calcite and aragonite, as well as dolomite and 

rhodochrosite, is limited with evaluation of the ν4 band in transmission-absorption spectra.5 

Hence, collective evaluation of the ν1, ν2, and ν4 absorption features facilitates the qualitative 
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diagnosis to the sole presence or potential co-occurrence of calcite and aragonite. Furthermore, 

each aragonite group mineral is expected to exhibit two ν4 absorption features;50 however, two 

absorption bands are typically only observed for aragonite and strontianite (also within current 

studies).5, 50 

In addition to the four fundamental carbonate absorption features, two combination bands, 

(ν1 + ν3) and (ν1 + ν4), can be observed at approx. 2525 cm-1 and 1800 cm-1, respectively.39 

Although the combination bands have previously been found to contain mineral specific 

information with use for quantitative analysis, these absorption features are comparatively very 

weak.39, 45 As unambiguous identification of the investigated anhydrous carbonates can be 

achieved from the other more prominent absorption bands, including the species frequently 

encountered in GoM gas hydrate ecosystems, only the four fundamental and the minor ν2 

absorption bands will be addressed throughout the remainder of this thesis. 

 5.1.3.2 Quantification of Carbonate Minerals with Infrared Spectroscopy 

In addition to utilizing IR spectroscopy for identification of carbonate minerals, a variety of 

quantitative evaluation strategies have been developed using both transmission-absorption and 

ATR techniques.4, 5, 41, 44-46, 51-56 Two quantitative approaches demonstrated in the literature 

relevant to this thesis include the quantification of calcite and dolomite as percentages of the total 

carbonate composition within a sample and the quantification of total carbonate mass percent 

within in a sample.4, 5, 46, 52 Quantitative evaluation of calcite and dolomite as partial percentages 

of the total carbonate content involves evaluation of the ν4 bands via ratioing the respective peak 

heights.5 In contrast, essentially every carbonate IR absorption feature, including the weak 

combination bands, has been utilized to demonstrate the capability of quantifying total carbonate 

composition in either natural or synthetic samples.4, 41, 44-46, 51-56 

Reported accuracies for the quantitative evaluation of carbonate minerals with IR spectroscopy 

range from < 1% up to approx. 10%.4, 5, 41, 46, 51-54, 56 Hence, IR analyses compare favorably with 
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powder XRD as the widely accepted quantitative reference technique providing typical accuracies 

in the range of 1 – 5%.10, 57, 58 For both transmission-absorption and ATR techniques, control of 

the particle size is essential for facilitating accurate quantitative analysis.4, 5, 46, 59 Particle size is 

particularly important to ensure representative assessment of the sample composition for both 

techniques and to minimize scattering effects during transmission-absorption measurements.4, 5, 59 

Therefore, sample grinding and/or physical separation are frequent preparatory procedures 

implemented prior to sample analysis.4, 5, 41, 45, 46, 52, 54, 56 Average particle sizes < 2 μm typically 

enable accurate quantification for the various types of samples analyzed with IR techniques and 

validated via XRD analysis.4, 5, 41, 45, 46, 52, 54, 56 

An abundance of literature demonstrates the capabilities of IR spectroscopy for characterizing 

and quantifying marine carbonates.4-7, 39, 41, 42, 44, 46, 52, 60-62 However, only a few of those reports are 

directed towards evaluation of carbonate minerals in marine sediment or rock formations.4, 46, 52 

Chester and Elderfield demonstrated accurate quantification of the total carbonate mass in various 

types of calcareous marine sediments and terrestrial sedimentary rocks (i.e., calcareous oozes, 

dolomite limestone, etc.) via ratiometric comparison of peak amplitudes from the ν3 carbonate 

absorption band and “clay” features between 1100 – 900 cm-1 obtained in transmission-absorption 

spectra.4 In 1992, Herbet et al. used transmission-absorption spectra and similar evaluation 

methods to quantify the major components of deep-sea sediments (clays, quartz, and 

carbonates).52 Mecozzi et al. utilized the ν3 peak area derived from IR-ATR spectra to quantify 

total carbonate mass percentages in various marine solid samples; however, the authors only 

examined sodium carbonate added to samples following an acid pretreatment to decarbonate the 

natural sample matrices.46 

 5.1.3.3 IR Spectral Characteristics of Mg-Calcite 

Mg-calcite is frequently present in both biogenic and authigenic marine carbonates as discussed 

in Section 5.1.2.4. The random occlusion of Mg2+ into biogenic or authigenic/inorganic 
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precipitated magnesian calcite formations introduces positional disorder of CO3
2- in the crystal 

matrix, which results in unit-cell contraction of the calcite lattice as the M2+-O bond length 

decreases with increasing Mg2+ substitution.63, 64 Disruption of the calcite lattice with Mg2+ 

substitution leads to a blue shift in characteristic calcite absorption bands.6, 7, 39, 60 In 1997, 

Bottcher et al. used transmission-absorption IR spectroscopy to analyze 57 biogenic and 

inorganic magnesian calcite samples with previously quantified Mg2+ mole fractions (XMg).39 It 

was found that the ν4 vibrational mode increased linearly with respect to increased Mg2+ content 

following; ν4(cm-1) = 39.40 × XMg +712.20, where 0 < XMg < 0.23.39 Furthermore, it was observed 

that the derived linear trend predicted the endmember ν4 absorption frequencies for calcite 

(712 cm-1), dolomite (729 cm-1), and magnesite (748 cm-1) with Mg2+ mole fractions of 0, 0.5, and 

1, respectively.39 Hence, for homogeneous Mg-calcite samples, it is possible to determine the 

mole fraction of Mg2+ using IR spectroscopy via calibration with the three endmember ν4 

frequencies for calcite, dolomite, and magnesite. 

Recently, it has been shown that Mg-calcite can form via an amorphous calcium carbonate (ACC) 

precursor phase during laboratory synthesis with significant implications to the modality of 

biologically produced Mg-calcites.65-67 Shortly thereafter, Politi et al. confirmed that sea urchin 

spine calcite forms after initial precipitation of amorphous calcium carbonate with identification 

of ACC aided by IR spectroscopy.62 In addition, IR-ATR spectroscopy has been utilized to assess 

the role of Mg2+ on the stability of precipitated ACC, which has a strong influence on calcite 

morphologies precipitated under various Mg2+ concentrations.6, 68-71 Next to the importance of 

understanding biomineralization processes, several of the previously referenced articles further 

demonstrate the capability of detecting Mg-calcite with IR spectroscopic techniques. 
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5.2 IR-ATR Spectral Database for Identifying Carbonate Minerals 

Since the pioneering studies of the 1950’s and 60’s utilizing transmission-absorption IR 

spectroscopy for identifying the most common anhydrous carbonate minerals, a variety of IR-

ATR applications for evaluating carbonate minerals have been reported in the literature.1-3, 5, 43, 46, 

49-51, 72 However, the generation of a comparable spectral database for carbonate identification via 

IR-ATR methods has yet to be reported. Consequently, research grade carbonate minerals were 

obtained to facilitate the establishment of an IR-ATR spectral library for ten of the most common 

anhydrous normal carbonate minerals within this thesis. The following sub-sections describe the 

applied measurement strategies and provide a side-by-side comparison of carbonate absorption 

features useful for identifying the carbonate minerals. IR-ATR spectra for the examined 

carbonate specimens are provided in Appendix A-2. 

 

5.2.1 Experimental 

 5.2.1.1 Materials 

Naturally occurring carbonate mineral specimens were obtained from several suppliers. Research 

grade calcite, aragonite, dolomite, magnesite, rhodochrosite, siderite, smithsonite, and strontianite 

were purchased from WARD’S Natural Science (Rochester, NY). A cerussite sample was 

purchased from World-Wide Minerals, a WWW-based mineral supplier 

(http://www.wmtn.biz/wwm.html, location unknown). A witherite specimen was purchased from 

FREDROCK Rock Shop (www.fredrockonline.com, Waterford, MI). Although mineral purity is 

not available for each of the specimens, the collected IR spectra revealed that each sample was 

generally of high quality with slight to non-detectable contaminations. As small variations in the 

fundamental absorption frequencies have been reported in literature,5 Table 5-2 provides the 

source locations for each species as provided by the suppliers along with indication of potential 

contaminations. 
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Table 5-2: Source locations and qualitative contamination assessments for carbonate specimens 
examined for IR-ATR spectral database. The qualitative purity assessment follows from highest 
to lowest as: No Identifiable Contamination > Very Minor Contamination > Slight 
Contamination. 
 

Mineral Source Location Spectral Quality 
Calcite Unknown No Identifiable Contamination 

Magnesite Brumado, Bahia, Brazil Very Minor Dolomite Contamination 
Siderite Ivigtut, Greenland Slight Unidentified Contamination 

Rhodochrosite Sweet Home Mine in Alma, CO Very Minor Unidentified Contamination 
Smithsonite Bingham, NM No Identifiable Contamination 
Aragonite Minglanilla, Cuenca, Spain Slight Unidentified Contamination 
Witherite Illinois No Identifiable Contamination 

Strontianite Mathilde Mine, Westphalia 
in Asheberg, Germany Very Minor Dolomite Contamination 

Cerussite Mibladen, Morocco Slight Unidentified Contamination 
Dolomite Butte, Montana No Identifiable Contamination 

 

 5.2.1.2 IR-ATR Instrumentation 

The IR-ATR spectra of all carbonate minerals were recorded from 4000 - 400 cm-1 using a Bruker 

Equinox 55 FT-IR spectrometer (Bruker Optics Inc., Billerica, MA) equipped with a liquid 

nitrogen (LN2) cooled MCT detector (Infrared Associates, Stuart, FL) and a Specac Gateway in-

compartment horizontal ATR unit (Specac Inc., Woodstock, GA). Each sample was directly 

deposited onto a trapezoidal ZnSe (nD = 2.43 at λ = 5 µm) ATR crystal (MacroOptica, Moscow, 

Russia) with 6 effective reflection regions (72 × 10 × 6 mm; 45 °). A 3/16” th. polycarbonate 

sheet was custom cut and used to replace the spectrometer sample compartment cover. The 

custom cover was modified to allow direct purging of the sample compartment with dry air in 

order to stabilize atmospheric humidity and CO2 as well as expedite sample drying times. 

Additional details on the experimental setup are provided in Section 3.2. 

 5.2.1.3 IR-ATR Measurement Procedures 

Each carbonate specimen was first hand ground into a fine powder with a ceramic mortar and 

pestle. Deionized water (R = 18.2 MΩ⋅cm at 25 °C) was then added (approx. 1 mL per 600 mg of 

sample) to form a suspension for application to the waveguide surface. Prior to sample 
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deposition, the sample chamber was purged with dry air for at least 10 mins for reducing 

atmospheric CO2 and water vapor interferences followed by collection of a reference spectrum 

with a clean, dry ZnSe crystal. After collection of the reference spectrum, approx. 1 mL of the 

sample suspension was pipetted onto the waveguide to fully cover the surface. Spectra were 

recorded at either 90 s or 120 s intervals throughout the drying process until a stable spectral 

signature was acquired. IR-ATR reference and sample spectra were generated by averaging 100 

scans at a spectral resolution of 1 cm-1. 

The application of carbonate suspensions prepared with acetone onto ATR waveguides has been 

demonstrated to increase spectral quality and reproducibility by improving the sample-waveguide 

contact, which is attributed to the formation of a cast-like film.46, 73 Although acetone is preferable 

to water for minimizing solubilization or reaction of carbonate minerals in liquid suspensions, 

acetone was avoided during these experiments to allow monitoring of the drying process, to 

ensure a higher quality reference measurement, and to minimize vapor interferences inside the 

sample compartment. 

 

5.2.2 Results and Discussion 

Representative IR-ATR spectra of all examined carbonate specimens for the database are 

provided in Appendix A-2. Here, the fundamental vibration frequencies (i.e., peak maxima) for 

ν1 (Table 5-3), ν2 (Table 5-4), minor ν2 (Table 5-5), and ν4 (Table 5-6) absorptions are 

presented in table format alongside previously published values obtained by transmission-

absorption techniques. 
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Table 5-3: Absorption frequencies in wavenumbers (cm-1) for the ν1 carbonate feature for 
aragonite group minerals. 
 

ν1 Symmetric Stretch (Aragonite Group Only) 
Mineral This Work Adler et al. 196350 Chester et al. 196774 

Aragonite 1082.8 1084.6 1083.4 
Witherite 1059.6 1061.6 1060.4 

Strontianite 1071.8 1073 1069.5 
Cerussite 1051.5 1052.6 1050.4 

 

Table 5-4: Absorption frequencies in wavenumbers (cm-1) for the major ν2 carbonate feature for 
all examined carbonate minerals. (* no reported value, or mineral not evaluated in the respective 
study). 
 

Major ν2 OOP Bend 
Mineral This Work Hunt et al. 19502 Adler et al. 19513 Chester et al. 19675 
Calcite 873.7 877.2 874.1 876.4 

Magnesite 882.3 888.9 883.4 885 
Siderite 865.2 869.6 * * 

Rhodochrosite 863.4 869.6 867.3 869.6 
Smithsonite 867.8 871.8 870.3 870.3 
Aragonite 855.8 877.2 859.8 856.9 
Witherite 857.2 * 859.8 856.9 

Strontianite 856.7 * 859.8 856.9 
Cerussite 838.5 * 840.3 839.6 
Dolomite 879.5 885 880.3 878.7 

 

Table 5-5: Absorption frequencies in wavenumbers (cm-1) for the minor ν2 carbonate feature for 
all examined carbonate minerals. (* no reported value, or mineral not evaluated in the respective 
study). 
 

Minor ν2 OOP Bend 
Mineral This Work Hunt et al. 19502 Chester et al. 19675 
Calcite 848 847.5 850.3 

Magnesite 855.7 854.7 852.5 
Siderite 835.2 836.8 * 

Rhodochrosite 837 836.8 847.5 
Smithsonite 841 840.3 858.4 
Aragonite 843.5 858.4 840.3 
Witherite 840 * 835.4 

Strontianite 842.9 * 840.3 
Cerussite 823.6 * 838.2 
Dolomite 852.9 854.7 852.5 
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Table 5-6: Absorption frequencies in wavenumbers for the ν4 carbonate features for all examined 
carbonate minerals. (* no reported value, or mineral not evaluated in the respective study). 
 

ν4 Planar Bend 
Mineral This Work Hunt et al. 19502 Adler et al. 19513 Chester et al. 19675 
Calcite 712.4 713.3 712.3 710.2 

Magnesite 748 750.2 747.4 746.3 
Siderite 737.1 740.7 * * 

Rhodochrosite 725.6 728.9 727.3 727.3 
Smithsonite 743.6 746.3 741.8 742.9 
Aragonite 712.5, 699.8 713.3, 699.3 712.3 710.2, 694.9 
Witherite 692.5 * 693 686.8 

Strontianite 706.1, 699.1 * 699.8 702.2, 697.4 
Cerussite 677.2 * 678.9 678.9 
Dolomite 728.8 729.9 728.9 726.7 

 

Some variations between the current study and previous reports on the fundamental vibration 

frequencies for carbonate minerals are readily apparent in the presented tables. While in most 

cases the spectral deviations were < 4 cm-1, deviations up to 17 cm-1, as for the minor ν2 band of 

smithsonite, were also observed. Generally, this should not present a significant problem for 

identifying carbonate species in moderate to high purity samples with collective evaluation of the 

multiple carbonate absorption bands. However, spectral mixing could reduce the reliability of 

species elucidation when evaluating samples containing low carbonate content and/or multiple 

carbonate minerals. 

The spectral database provides diagnostic peak information for identifying all major carbonates 

anticipated to occur in gas hydrate ecosystems in the GoM with the exception of Mg-calcite. By 

extending the work of Bottcher et al. described in Section 5.1.3.3,39 the endmember fundamental 

frequencies from the spectral database for calcite, dolomite, and magnesite were used to derive 

the following equation for characterizing Mg-calcites with IR-ATR spectroscopy: 

 

Mg
Exp

1
4

6.35
93.711)(cmν

X=
−−

 

 
Equation 5.2 
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The derived equation is a simple rearrangement from a linear fit (R2 = 0.998) to enable extraction 

of the Mg2+ mole fraction (XMg) using an experimentally obtained ν4 vibrational frequency 

(ν4(cm-1)Exp). In addition, the linear fit equation can be used to predict fundamental ν4 band 

positions for varying Mg2+ mole fractions. Table 5-7 summarizes a range of expectation values 

for the ν4 peak position for various ranges of XMg. 

 
Table 5-7: Predicted fundamental ν4 band positions for various ranges of Mg2+ mole fractions as 
generated from data obtained from IR-ATR spectra of calcite, dolomite, and magnesite in the 
ATR spectral database. (* the predicted peak location for XMg = 0.00 of 711.93 is less than the 
experimental value for calcite, expected XMg = 0.00, at 712.4). 
 

XMg Predicted ν4(cm-1) 
0.00 – 0.10 712.4* - 715.5 
0.10 – 0.20 715.5 – 719.1 
0.20 – 0.30 719.1 – 722.6 

 

The predicted ν4 peak locations for different Mg2+ mole fractions displays the range of spectral 

shifts that could potentially be encountered with the occurrence of magnesian calcites. Using the 

derived equation to calculate XMg for the examine calcite standard (ν4 = 712.4), a XMg value of 

0.013 was obtained. This demonstrates minor error using this strategy; however, this method 

should facilitate a suitable first quantitative evaluation of homogeneous magnesian calcite 

samples. Furthermore, the calibration only requires spectral analysis of the three endmember 

samples, calcite, dolomite, and magnesite, which are readily available as high-purity, research 

grade specimens. 

 

5.3 Seafloor Sediment Collections from the GoM 

Three sediment collections from two gas hydrate ecosystems in the Mississippi Canyon region of 

the GoM were examined with IR-ATR spectroscopy throughout progression of this thesis. 

Detailed information regarding each collection is provided in the following sub-sections. 
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5.3.1 Box Core Sediment Collections from MC118 in June 2006 

Shallow sediment box cores (< 30 cm deep) were collected at various locations around the 

hydrate system at MC118 on June 9 and June 11 of 2006 on-board the R/V Pelican (owned and 

operated by the Louisiana Universities Marine Consortium, Chauvin, LA). The cruise was 

conducted by the GOMGHRC, and was funded by the Minerals Management Service (MMS, 

U.S. Department of the Interior). The first phase of this cruise focused on completing geophysical 

seismo-acoustic grid profiles of the MC118 hydrate site. Six CTD casts and several preliminary 

instrument tests for the GOMGHRC seafloor observatory were additionally conducted throughout 

this cruise. Figure 5-2 displays a global positioning system (GPS) trace of the cruise plotted with 

Google Earth software. 

 

 
 
Figure 5-2: GPS trace of the June 2006 GOMGHRC cruise to MC118 aboard the R/V Pelican. 
The inset provides an accentuated view of grid profiles from the collection of geophysical lines 
for mapping acoustic reflections throughout the sediments. 
 

The box core sampler (Figure 5-3) had a 30.5 × 30.5 × 45.7 cm trap for collecting sediments. 

Real-time positioning and monitoring of the box core unit was enabled from an attached Ultra-

short baseline (USBL) transponder relaying coordinates back to the ship mounted transceiver 
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(Model 5000HA, Linkquest Inc., San Diego, CA). USBL feedback was then overlaid onto a 

seafloor map of the MC118 area (C&C Technologies, Lafayette, LA) using the TrackLink 

software package (Linkquest Inc., San Diego, CA). 

 

 
 
Figure 5-3: Box core unit equipped with USBL navigational component (blue frame with black 
cylinder) utilized to collect seafloor sediments during the June 2006 GOMGHRC cruise to 
MC118 on the R/V Pelican. 
 

Box core samples were collected with the following procedures: (1) The coring unit was lowered 

from the ship’s A-frame to approx. 50 m above the seafloor. (2) The ship went into a controlled 

drift for maneuvering the core unit over a targeted sampling location. (3) Once positioned, the 

core unit was rapidly deployed to the target. (4) After the core unit struck bottom, USBL 

coordinates were recorded followed by retrieval of the box core. On average, each collection took 

approx. 1.5 hrs. With calm seas during core collection, target accuracy was typically within 10 m. 

Overall accuracy was influenced by sub-surface currents and line drag resulting in a substantial 

distance offset between the ship and core unit. Despite such difficulties, this coring strategy 

resulted in considerable target accuracy. Figure 5-4 provides a representative screen shot of the 

navigation screen following a successful box core collection. 
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Figure 5-4: Screen capture of navigational feedback for the ship and box core unit locations 
following a successful sampling event. The sample location is indicated by the bull’s-eye with 
triangular center. The rings surrounding the bull’s-eye are 100, 200, and 300 m in diameter. 
Screen shots were recorded for each target location containing the date, time, and coordinates for 
each sample location. 
 

Upon retrieval of the box core unit, sediments were sub-sampled by push-coring with 5.1 cm id. 

clear polyvinylchloride (PVC) pipe followed by separation of marked color stratifications within 

the sediment. The depth of push-cores ranged from 13 to 29 cm with 2 – 4 observable color 

changes within each sub-sample. Sub-samples identified within the text are distinguished as Top, 

Mid, and Bot where Mid = Middle, Bot = Bottom, and depth below seafloor follows the order 

Top < Mid < Bot. A detailed list of sediments collected from MC118 during this cruise is 

provided in Appendix A-3. Figure 5-5 provides an optical image displaying 4 color 

stratifications within a sub-sampled push-core. 
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Figure 5-5: Representative image of a push-cored sub-sample with a 5.1 cm id. clear PVC pipe 
capped with rubber stoppers. Four distinct color changes within the sediments can be visualized 
in the pipe section next to the graduated ruler. The light brown layer in this image corresponds to 
the top sediment layer at the sediment-seawater interface. 
 

After subdivision, all samples were placed in plastic bags, frozen on-ship, transported to the 

laboratory in cooled ice chests, and maintained in freezer storage at -80 °C prior to IR-ATR 

evaluation. Before spectroscopic evaluation, samples were thawed at approx. 4 °C, 6 – 10 mL of 

sediment was transferred into a 15 mL glass vial for refrigerated storage at 4 °C, and the 

remaining sample was returned to freezer holding at -80 °C. Box core samples are designated as 

BC# corresponding to the respective sampling locations. Table 5-8 provides the coordinates of 

box core sampling sites from the June 2006 GOMGHRC cruise including field notes collected 

during sample collection. 
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Table 5-8: USBL coordinate locations and field notes for box core samples (BC#) collected from 
MC118 in June 2006. All coordinates are referenced to Zone 16 in Universal Transverse 
Mercator (UTM) meters of the North American Datum of 1927 (NAD27) based on the Clarke 
ellipsoid of 1866. 
 

 Latitude (N) Longitude (W)  
Sample Degrees Minutes Seconds Degrees Minutes Seconds Field Notes 
BC1 28 51 28.5923 88 29 33.8671 Shells, Gassy Mud 
BC2 28 51 21.8532 88 29 28.5801 Slight Oil Sheen 

BC3 28 51 8.2715 88 29 31.5127 Spilled, Oil, Shells, Nodules; 
Sediment Not Sampled 

BC4 28 51 14.1734 88 29 18.7122 Shells at Bottom 
BC5 28 51 29.4959 88 29 36.9823 Shells, Nodules, and Gassy Mud 
BC6 28 51 31.1223 88 29 39.4490  
BC7 28 51 11.7656 88 29 23.0113  
BC8 28 51 8.4233 88 29 24.5590 Oil 
BC9 28 51 8.8363 88 29 32.0866 Shells, Oil 
BC10 28 51 18.7126 88 29 37.9212 Not Sampled, Oil 
BC11 28 51 7.6325 88 29 20.7956  
BC12 28 51 7.4440 88 29 30.8883 Oil 
BC13 28 52 44.9218 88 28 30.0892 No Sediment Retrieved in BC 

 

 
5.3.2 Gravity Core Sediment Collections from MC118 in October 2005 

In addition to the sediments collected for this thesis during the 2006 GOMGHRC, sediments 

previously collected from three locations at MC118 were provided by Dr. Carol Lutken at the 

University of Mississippi. Gravity core samples were collected during a GOMGHRC conducted 

and MMS funded cruise in October 2005.75 Three sediment samples were provided with the 

designations Core 21, Core 26, and Core 38; the sediments reflected sub-samples at intervals of 

100 – 105, 30 – 34, and 52 – 56 centimeters below seafloor (cmbsf), respectively. Coordinates for 

the sampling locations are; Core 21: 28 51.258 N, 88 29.6028 W (117 cm core; No USBL, core 

location is ship’s location.), Core 26: 28 51.1551 N, 88 29.4879 W (54 cm core, USBL on coring 

unit), and Core 38: 28 51.0431 N, 88 29.5633 W (89 cm core, USBL on coring unit). Both 

samples from Core 21 and Core 26 contained nodule formations that were additionally evaluated 

with IR-ATR spectroscopy as discussed in Section 6.2. 
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5.3.3 Sediments from Piston Core MD02-2570 

Piston core sediments from sampling location MD02-2570 were provided by Dr. Rudy Rogers at 

Mississippi State University. These samples were initially donated by scientists from a cruise 

partially funded by the U.S. Department of Energy, and jointly conducted by the Institut Polaire 

Francais, Paul-Emile Victor and the U.S. Geological Survey. Piston cores were collected from the 

French vessel R/V Marion Dufresne during a cruise from July 1 – 8, 2002. Sampling locations 

were around a gas hydrate mound in the Mississipi Canyon area of the GoM at 28.57100N, 

89.68983W (water depth of 641 m).76, 77 The piston core was sub-sampled from 0 to approx. 

30 meters below seafloor (mbsf). Samples were provided in plastic bags and stored at 4 °C. The 

site location for this core sample was designated as MD02-2570 at the time of collection. 

Sediments from the same set of samples provided by Dr. Rogers were previously utilized to 

evaluate the influence of organic and inorganic sedimentary components on gas hydrate induction 

and formation rates.76 Additional information from this cruise can be found in Paull et al.77 

 

5.4 IR-ATR Spectroscopic Screening of Sediment Samples 

IR spectroscopic analysis of sediment collections for this thesis focused on three primary goals: 

(1) rapid characterization of sediment samples in their “native” hydrated state for closely 

emulating sediment signatures in their native environments to assess in situ analytical capabilities 

of future submersible IR chemical sensing platforms, (2) qualitative and semi-quantitative 

evaluation of carbonate mineral compositions in native and/or dried samples, and (3) assessment 

and possible correlation of compositional and/or spectral variances to assist characterization of 

the geological settings with respect to the sediment collection environment(s). Sediment samples 

were not manipulated beyond the described collection, transport, and storage procedures outlined 

in Section 5.3. In select cases, additional experiments were performed to further characterize 

sample composition (i.e., carbon isotope ratios). Spectroscopic data collected during sediment 

analysis is discussed in detail throughout the remainder this chapter as well as in Chapter 6. 
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5.4.1 Experimental 

The same instrumentation and experimental setup described in Section 5.2.1.2 for generating IR-

ATR spectra of carbonate minerals for the spectral database was also utilized for spectroscopic 

evaluation of all sediment samples. 

For IR-ATR screening of sediments, sufficient sample was deposited onto the waveguide to 

ensure coverage of the entire measurement surface following collection of a reference spectrum 

with a clean, dry ZnSe crystal after stabilized conditions within the sample compartment from 

purging for at least 10 mins with dry air. Reference and sample spectra were collected from 

4000 – 400 cm-1 by averaging 100 sample scans at a spectral resolution of 1 cm-1, unless 

otherwise specified. Sequential spectroscopic measurements were typically collected at 60, 90, or 

120 s intervals until a stabilized signal was obtained for dried sediments. Following each sample 

evaluation, dried sediment was rinsed off the waveguide surface with a stream of deionized water 

without mechanical rubbing to minimize scratching of the measurement surface. Once the 

majority of sediment was removed, a moistened Kimwipe (Kimberly-Clarke Professional, 

Neenah, WI) was utilized to gently clear away any residual particles. 

 

5.4.2 Results and Discussion 

 5.4.2.1 Assessment of Sediment Compositions from Native Samples 

IR-ATR spectra collected within the first few minutes following sediment deposition onto the 

waveguide surface are close representations of the expected spectroscopic signatures if samples 

were to be evaluated in the natural environment. Although strong absorption features from water 

occur around 3300, 2100, 1640, and below 1100 cm-1, a significant amount of information can 

still be obtained respective of the sediment composition. Figure 5-6 contains a representative IR-

ATR spectrum for sediments collected from BC12 with generic labeling of the major absorption 

characteristics observed in the native hydrated sediment. 
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Figure 5-6: IR-ATR spectrum of hydrated BC12 sediments. General absorption characteristics are 
labeled for point of reference. This spectrum contains substantial absorption features from water, 
carbonates, quartz, and clays. Additional minor C-H stretch features above 2800 cm-1 resulting 
from the presence of crude oil are also observed. Sample: BC12B Bot. 
 

For native sediments examined within this work, the most notable and variable spectral features 

of interest are: (1) water absorption features at approx. 3300, 2100, and 1640 cm-1, (2) the strong 

ν3 carbonate absorption feature in the region of 1550 – 1350 cm-1, and (3) the C-H stretch and 

bend features from crude oil above 2800 cm-1 and approx. 1460 cm-1, respectively. Figure 5-7 

exhibits the diversity of spectral profiles obtained for hydrated sediments from four MC118 box 

core locations. 
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Figure 5-7: IR-ATR spectra from four box core locations at MC118. Variations in the spectral 
profiles for water, crude oil, and carbonates are readily apparent. Samples: BC7A Bot, BC9A 
Bot, BC5B Bot, and BC12A Bot. 
 

Spectral variation in the absorbance of water bands from sediment samples was previously 

discussed in detail concerning the potential application of MIR chemical sensors for monitoring 

gas hydrate dynamics in Chapter 4. Hence, the following discussion will focus on fluctuations in 

crude oil and carbonate signatures. 

Among all sediment samples evaluated in this study, C-H stretch signatures from crude oil were 

only observed in box core sediments collected from BC9 and BC12. Previous carbon isotope 

evaluations of gas and oil hydrocarbons in the sediments surrounding MC118 revealed substantial 

microbial alteration via depleted 13C isotope ratios.23 Although biodegraded crude is widely 

dispersed around MC118 as indicated in the field notes provided in Table 5-8, spectroscopic 

detection of oil in the sediment spectral profiles from BC9 and BC12 has been interpreted to 

result from the close proximity to higher seep prone areas linked to the fault conduits throughout 

MC118. The C-H features observed in BC9 and BC12 sediments are relatively weak and suggest 

only a minor overall mass contribution of crude oil to the sediment composition. However, if 
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localized pockets of highly concentrated crude oil are deposited onto the waveguide surface, the 

potential for generating related IR spectral features significantly increases. Figure 5-8 displays 

the presence of two localized and highly concentrated pockets of biodegraded crude oil in 

sediments recovered from BC9. 

 

 
 
Figure 5-8: Pockets of highly concentrated biodegraded crude oil (brown stains circled in red) in 
push-cored BC9 sediments from MC118 collected in June 2006. Although the crude appears to be 
a low mass percentage of the overall sediment composition, enough oil is present to generate 
absorption features in IR-ATR spectra when within evanescent field sensing regions. For scale, 
the diameter of this push-core tube is approx. 7.6 cm. 
 

In addition to the spectroscopic signatures of biodegraded crude oil in a few sediment samples, 

substantial variations in the spectral profile of ν3 carbonate absorption features were immediately 

evident. Figure 5-9 contains an accentuated view of ν3 carbonate signatures from native MC118 

sediments, which were previously displayed as full spectra in Figure 5-7. 
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Figure 5-9: Accentuated view of ν3 carbonate profiles in the IR-ATR spectra of native box core 
sediments collected from MC118. The spectral signature from each sample exhibits unique 
absorption characteristics. Samples: BC7A Bot, BC9A Bot, BC5B Bot, and BC12A Bot. 
 

The ν3 carbonate profiles displayed in Figure 5-9 reveal a significant amount of information 

regarding differences in the sediment composition from each sampling location. First, the ν3 

profile of sample BC7A was the most commonly observed signature in surficial sediments 

collected at MC118. From additional experiments described in Chapter 6, it has been found that 

the strong, sharp peak at 1413 cm-1 is characteristic to sediments containing substantial 

accumulations of coccoliths. BC9A exhibits very similar features to the coccolith laden BC7A 

sediment; however, the presence of biodegraded crude in this sample leads to an additional sharp 

absorption protrusion at 1460 cm-1. Furthermore, the broadened ν3 spectral characteristics 

observed in sediments from BC5B and BC12A samples have been directly linked to areas of 

authigenic carbonate formation connected to chemosynthetic activities evidenced by δ13C 

measurements described in Appendix A-1 and Chapter 6. Partial broadening of the BC12A 

features can also be attributed to the presence of biodegraded crude, as indicated by the 

observance of C-H stretch absorptions. 
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Although the abundance of information contained within the spectral region of the ν3 carbonate 

absorption has been briefly discussed here, Chapter 6 provides more detailed considerations on 

the spectral consequences with respect to biogenic and authigenic carbonate formations. The 

focus of this section was primarily to acknowledge the extent of detailed information readily 

extracted from IR-ATR spectra of native sediment samples, which has significant implications for 

future applications of MIR chemical sensors in these environments. 

 5.4.2.2 IR-ATR Characterization of Dried Sediment Samples 

Although detailed information can be generated from IR-ATR spectra of hydrated sediments, a 

more thorough characterization of the sediment composition can be extracted when water 

interferences are minimized. Figure 5-10 provides a representative IR-ATR spectrum from dried 

BC7 sediments with the labeling of general absorption features. 

 

 
 
Figure 5-10: Representative IR-ATR spectrum of dried BC7 sediments collected from MC118. 
General absorption characteristics are labeled for reference. This spectrum displays improved 
spectral access to sediment components following the reduction of water interferences by drying. 
Sample: BC7A Bot. 
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Figure 5-10 displays significantly improved spectral access to compositional information after 

reduction of water interferences surrounding clay (i.e., smectite, illite, kaolinite, etc.) absorption 

features characteristic of O-H stretches from the aluminum silicate matrix at approx. 3600 cm-1 

and the fingerprint region below 1600 cm-1.78, 79 As clay absorption features are only of generic 

interest for this thesis, the discussion will now focus on the fingerprint region (1600 – 400 cm-1). 

Figure 5-11 provides an expanded view of the fingerprint region from Figure 5-10. 

 

 
 
Figure 5-11: Labeled view of the fingerprint region for an IR-ATR spectrum of dried BC7 
sediments. Quartz and clay exhibit similar absorption features resulting from Si-O moieties. 
Improved spectral access to fundamental carbonate absorption bands is clearly observed. Sample: 
BC7A Bot. 
 

The fingerprint region contains a high density of information on the mineral composition, which 

becomes readily accessible following the drying process. Quartz and clays exhibit multiple 

absorption bands with several similar Si-O features that congest the spectral region from 1200 –

 850 cm-1; although, strong ν2 carbonate signatures can still be observed. Additional mineral 

spectral features are also apparent below 850 cm-1. In the scope of current work, the primary 

concern with regards to clay and quartz absorption features arises from their close proximity to ν4 
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carbonate signatures that occur in the range of 735 – 700 cm-1. The IR absorptions of quartz and 

clay leads to some minor overlap with ν4 carbonate spectral features, which can constrain the 

accuracy of IR methods for quantitative evaluation of carbonate minerals. In the present work, the 

IR evaluation of sediments has primarily focused on qualitative and semi-quantitative methods 

for characterizing carbonate compositions and their differences within the geological context of 

gas hydrate ecosystems. Hence, clay and quartz interferences are discussed where relevant; 

however, further development of IR methods for evaluating these types of samples will require 

more careful consideration to the consequences of spectral interferences from these major mineral 

constituents. 

The carbonate features of primary interest for GoM sediment evaluations are the ν3 absorption the 

1550 – 1350 cm-1 region and the ν4 mode occurring from 735 – 700 cm-1. In general, the ν4 

carbonate absorption region remains accessible for IR-ATR evaluation despite minor IR 

absorptions of clay and quartz minerals. The ν2 carbonate bands strongly overlap with spectral 

contributions from clay and quartz at 1200 – 850 cm-1; therefore, this carbonate feature is of 

limited practical usage for carbonate speciation in these particular sediment samples. However, 

shifts in the absorption profile of the ν2 vibrational mode were found to correlate with variations 

observed in the ν3 carbonate region. A complete description of the observed ν3 and ν2 spectral 

anomalies is provided in Chapter 6. 

Among all GoM sediments evaluated, calcite and dolomite were the most frequently observed 

carbonate minerals with calcite being the only species detected in all samples. Aragonite shells 

litter the seafloor surrounding the MC118 site, and were recovered in several box core 

collections. However, no discernable spectral contributions from aragonite were observed in any 

of the IR-ATR spectra of sediment samples, including sediments with recovered shells and/or 

authigenic carbonate nodules. This is attributed to the large shell sizes as discussed in Section 

5.1.2.3, and suggests the relative instability of aragonite within the very fine surficial sediment 
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fractions (< 62.5 μm) and/or undersaturated pore waters with respect to aragonite at the sampling 

locations surrounding MC118. The only unambiguous spectral detection of Mg-calcite among all 

sediments was in BC12 samples. Figure 5-12 provides accentuated views of ν4 carbonate features 

exemplifying the diversity of carbonate signatures observed in sediment samples with examples 

from the three sample collections described in Section 5.3. 

 

   
 

   
 
Figure 5-12: Selected views of ν4 carbonate absorption features for IR-ATR spectra obtained 
from (a.) BC1C Bot, (b.) BC7A Bot, (c.) BC9A Bot, (d.) BC12A Bot, (e.) MC118 Core 26, and 
(f.) 27+m sediments from core MD02-2570. The ν4 absorption characteristic to calcite was 
observed in all samples. Dolomite is clearly present in BC1C Bot, BC12A Bot, and Core 26 
sediments from MC118, as well as in 27+m sediments from MD02-2570. Mg-calcite was only 
observed in BC12 sediments, as indicated in (d.). 
 

In Figure 5-12, spectra (a.) – (d.) display the extent of variability obtained for ν4 carbonate 

features in box core sediments collected from MC118 in June 2006. The most common ν4 
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signature can be observed in spectrum (b.) for BC7A Bot sediments. MC118 samples exhibiting 

only calcite-related ν4 features provide the first indication of sediments with biogenic coccoliths 

as the primary carbonate source within the very fine sediment fraction and no further indication 

of authigenic carbonate available from this absorption feature, as discussed in Chapter 6. 

In Section 5.4.2.1, the spectral profiles of BC9 and BC12 were shown to contain measurable 

amounts of biodegraded crude oil. The presence of crude oil in sediment samples was coincident 

with noticeably reduced IR absorption intensities, as these sediment samples coalesced during the 

drying process (see Y-scales in Figure 5-12 (b.) and (c.)). As sediments clumped together while 

drying, they delaminated from the waveguide surface, thereby resulting in decreased spectral 

intensity from reduced evanescent field interactions. This phenomenon appears to correlate with 

the relative mass fraction of crude oil in these samples. BC9 sediments typically exhibited 

stronger C-H absorption features, indicative of higher crude content, and lower spectral intensities 

compared to BC12 sediments. Despite the presence of crude and apparent sample detachment 

from the ATR crystal surface in BC9 samples, calcite was still detected with no indication of 

additional carbonate species. 

Calcite, dolomite, and Mg-calcite were detected in sediments from BC12, as labeled in Figure 5-

12 (d.), thereby indicating the presence of authigenic carbonate. The IR absorption of Mg-calcite 

appears as a shouldering feature covering the spectral region between calcite and dolomite 

features. The ν4 region from other representative spectra provided in Figure 5-12 serve as 

excellent comparisons to aid visualization of the spectral absorption of Mg-calcite. Using 

Equation 5-2, Mg2+ mole fractions (XMg) can be estimated to range from 0.1 – 0.2. Spectral 

mixing from the presence of calcite and dolomite limit the capability to provide an exact XMg 

value, and it has previously been recognized that effective quantification of XMg requires a 

homogeneous sample.39 Furthermore, Mg-calcites with a wide range of XMg compositions are 
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likely to be present within a single sample matrix, as the degree of Mg2+ incorporation can vary 

with precipitation over long periods of time and temporal fluctuations in pore water conditions. 

Sediments from two of the three MC118 gravity cores, Core 21 and Core 26, contained 

significant dolomite contributions, as evident in their IR-ATR spectra. Core 38 did not exhibit 

any significant dolomite absorption features in the ν4 region. Furthermore, the carbonate 

absorption characteristics (ν3 and ν4) from Core 38 sediments closely resembled those obtained in 

the IR-ATR spectra of BC7A Bot sediments, as displayed in Figures 5-11 and 5-12 (b.). All 

samples evaluated from the MD02-2570 piston core collected in Mississippi Canyon during 2002 

contained strong dolomite and calcite signatures. 

In all spectra displayed in Figure 5-12, overlapping spectral interferences are observed for both 

calcite and dolomite absorption bands arising from clay and quartz features. Calcite exhibited 

stronger spectral overlap due to tailing from the quartz and clay absorption bands centered below 

700 cm-1, whereas only minor overlap was typically observed for dolomite and the clay 

absorption centered at approx. 750 cm-1. A wide range of calcite-dolomite compositions relative 

to the overall carbonate mass fraction are observed in the IR-ATR spectra displayed in Figure 5-

12 (a.), (d.), (e.), and (f.). Section 5.5 addresses the semi-quantification of the relative mass 

percentages of calcite and dolomite to the total carbonate mass for all sediment samples evaluated 

in this study. In addition, the impact of spectral interferences from clay and quartz features with 

respect to data interpretation will be further addressed within Section 5.5. 

 

5.5 Calcite-Dolomite Ratios from Sediment Collections 

In 1967, Chester and Elderfield described an IR method to determine the relative mass percentage 

contributions from calcite and dolomite to the total carbonate composition in rock samples 

utilizing absorption intensities at the peak maxima of the respective ν4 features.5 After examining 

a series of 7 calcite-dolomite standards ranging from 5% to 95% calcite with 100% sample mass 
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from the combined composition, a first order linear calibration function was generated to extract 

the relative mass percentages of calcite and dolomite with respect to the total carbonate content. 

The X-axis of the calibration plot was obtained by the ratio of calcite absorption intensity divided 

by the sum of intensities for calcite and dolomite (C/(C+D)), where C = calcite and D = dolomite. 

Dual Y-axes represented the inverse relationship in composition enabling simultaneous 

calculation of the respective mass % contributions such that higher C/(C+D) values corresponded 

to greater calcite composition. This evaluation strategy is resilient to potential sample-to-sample 

absolute absorption intensity fluctuations (i.e., change in effective sample pathlength, particle 

density, etc.) resulting from the normalization and ratiometric calculation yielding a unitless 

value. Since 1967, several reports have expanded on this initial method for quantifying carbonate 

minerals for various applications.55, 60 In this work, similar methods have been developed for 

semi-quantitative evaluation of the relative mass percentages of calcite and dolomite in the 

carbonate composition of marine sediment samples using ν4 peak area analysis of IR-ATR 

spectra. 

 

5.5.1 Experimental 

 5.5.1.1 Materials and Instrumentation 

The instrumental setup and equipment is identical to that described in Section 5.2.1.2 for 

generating IR-ATR spectra of carbonate minerals. Additionally, the same research grade calcite 

and dolomite specimens described in Section 5.2.1.1 were utilized to establish a calibration 

method for estimating the mass percent composition of calcite and dolomite with respect to total 

carbonate mass. 

Standardized calcite-dolomite samples were prepared as aqueous suspensions similar to that 

described for evaluating single carbonate mineral specimens. However, for quantitative 

evaluation, it was pertinent to ensure that reaction or dissolution of calcite was minimized. Hence, 

an aqueous solution was prepared by adjusting the pH of deionized water (R = 18.2 MΩ⋅cm at 
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25°C) to approx. 8.5 for generating standard sample suspensions. This stock solution (~200 mL) 

was prepared following the drop-wise addition of a highly concentrated potassium hydroxide 

solution after the addition of 3 KOH pellets (J.T. Baker, Phillipsburg, NJ) to ~25 mL of deionized 

water. Drops were added until a stable pH reading of approx. 8.5 was obtained with a calibrated 

pH meter (ThermoOrion Model 555A, Thermo Fisher Scientific Inc., Waltham, MA). 

 5.5.1.2 Sample Preparations and IR-ATR Measurement Procedures 

Calcite and dolomite specimens were separately hand ground into a fine powder with a ceramic 

mortar and pestle to generate stocks utilized for all calibration standards. In addition to preparing 

five standard samples, four blind samples were prepared for evaluating the calibration method. 

Three blind samples were prepared using the same ground calcite and dolomite stocks for 

concocting calibration mixtures. The remaining blind sample was purposefully prepared from 

secondary and separately ground calcite and dolomite stocks as a rough measure of calibration 

robustness. 

Following preparation of calcite and dolomite stocks, each sample was vigorously mixed before 

preparing calcite-dolomite calibration standards ranging from 10% to 90% calcite with approx. 

1.8 g total mass. The four blind samples (designated as BS1 – BS4) were prepared in similar 

fashion. Table 5-9 summarizes the calcite-dolomite compositions for calibration standards and 

blind samples (obtained after spectroscopic analysis). 
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Table 5-9: Composition information for calcite-dolomite calibration standards and blind samples. 
Mass % values represent both the absolute and relative mass compositions for each species with 
respect to the total sample and total carbonate content. (D = dolomite and C = calcite). 
 

Calibration Standards Mass (g) Mass (%) 
%D:%C Dolomite Calcite Dolomite Calcite 
90:10 1.6068 0.1796 89.95 10.05 
70:30 1.2611 0.5504 69.62 30.38 
50:50 0.9003 0.9001 50.01 49.99 
30:70 0.5433 1.2603 30.12 69.88 
10:90 0.1805 1.6135 10.06 89.94 

 
Blind Samples Mass (g) Mass (%) 
BS#; %D:%C Dolomite Calcite Dolomite Calcite 
BS1; 32:68 0.5786 1.2246 32.09 67.91 
BS2*; 46:54 0.8298 0.9738 46.01 53.99 
BS3; 7:93 0.1163 1.6821 6.47 93.53 
BS4; 78:22 1.4033 0.3937 78.09 21.91 

 

Prior to the initial spectroscopic evaluation of each calibration mixture or blind sample, 4.5 mL of 

the prepared KOH solution was added with a 0.10 – 1.00 mL calibrated Eppendorf pipette 

(Eppendorf North America Inc., New York, NY). The sample compartment was purged for at 

least 10 mins with dry air prior to collecting a reference spectrum of a clean, dry ZnSe crystal for 

each sample evaluation. Upon completion of the reference spectrum, the respective calibration 

mixture or blind sample suspension was aspirated and dispensed from a single-use disposable 

plastic pipette for approx. 15 s to ensure sample homogeneity. Afterwards, approx. 1 mL of the 

sample mixture was delivered and distributed onto the waveguide, fully covering the 

measurement surface. IR-ATR spectra were then continuously recorded at 90 s intervals 

throughout the drying process until approx. 25 spectra were obtained following spectral 

stabilization of dried, powdered residues. This measurement strategy required approx. 3 hrs per 

individual sample analysis. IR-ATR reference and sample spectra were generated by averaging 

100 sample scans at a spectral resolution of 1 cm-1. The calibration set was generated over a three 

day period without any disturbance to the experimental apparatus. Each calibration sample was 
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evaluated only once per day without any prescribed order. Blind samples were evaluated the day 

following completion of the calibration measurements. Each blind sample was evaluated only 

once. Statistical evaluation for the reproducibility of blind sample evaluations was performed by 

pooling analytical information from all four sample analyses. 

 

5.5.2 Results and Discussion 

 5.5.2.1 Calibration for Determining Mass % of Calcite and Dolomite to Total Carbonate 

Figure 5-13 contains representative IR-ATR spectra from the ν4 spectral region for calcite-

dolomite standards used for calibrating the relative mass % of calcite and dolomite to the total 

carbonate composition. 

 

 
 
Figure 5-13: IR-ATR spectra highlighting the ν4 carbonate region for calibration standards used 
to establish the correlation of peak areas to the mass % of each component. Spectra were 
uniformly shifted to a zero baseline at 740 cm-1. As expected, the intensity of calcite and dolomite 
absorption features varied according to the relative mass fraction present in each sample. 
(D = dolomite and C = calcite). 
 

A “valley-to-valley” peak integration method was developed to evaluate the ν4 spectral 

absorptions of calcite (716.3 – 705.2 cm-1) and dolomite (733.9 – 721.9 cm-1), while limiting 
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overlap between the two components. This integration method was utilized for evaluating all 

calcite-dolomite compositions for standard, blind, and sediment samples. 

For each standard and blind sample, the average of 25 consecutive integrated peak areas (PAs) 

was calculated and used to represent the sample specific PA value for each component used for 

further calculations. Proportional PA ratios (Prop. PAs) for calcite-dolomite analysis were 

determined following two possible combinations; (1) D/(C+D) and (2) C/(C+D) where 

D = dolomite PA and C = calcite PA. This calculation is identical to that described by Chester 

and Elderfield; however, PAs were utilized in this study, as opposed to absorption maxima.5 For 

calibration standards, the average Prop. PA was calculated from triplicate evaluations of each 

respective sample standard. Table 5-10 provides a reduced data analysis table with calcite-

dolomite Prop. PAs used to generate standard calibration curves and calibration fit parameters 

utilized for correlating the mass % of calcite and dolomite with respect to the overall carbonate 

content present in the sample; full data tables are provided in Appendix A-4. 
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Table 5-10: Data table for IR-ATR analysis of standard samples. Prop. PAs were calculated from 
the average of triplicate analyses. The standard deviation (SD) of Prop. PAs are provided in 
addition to the % Error calculated using the linear calibration fit equation with the SD. The SD 
and % Error are the same for both Prop. PA calculation methods. Linear calibration fit parameters 
are provided. In addition, an approximation of the dynamic range for each Prop. PA calculation 
strategy is presented. The reported dynamic range is only valid for samples where the sum of the 
mass from (calcite+dolomite) = 100% of the sample mass. The % calcite and dolomite in each 
sample standard were calculated from mass values. (D = dolomite PA and  C = calcite PA). 
 

Calibration Standard Prop. PA Prop. PA   
% Dolomite:% Calcite D/(C+D) C/(C+D) SD % Error from SD 
89.95:10.05 0.916 0.084 0.003 0.28 
69.62:30.38 0.714 0.286 0.002 0.20 
50.01:49.99 0.496 0.504 0.006 0.60 
30.12:69.88 0.300 0.700 0.003 0.28 
10.06:89.94 0.103 0.897 0.001 0.19 
 Linear Calibration Fit Parameters 
 Fit from D/(C+D) Fit from C/(C+D) 
 y = A + B*x y = A + B*x 
 A 0.565 A 1.796 
 B 97.639 B 97.639 
 R2 0.9995 R2 0.9995 
 Dynamic Range Estimated from 6*AvgSD 
 From D/(C+D) Calibration From C/(C+D) Calibration 
 2.3 – 97.7% Dolomite 3.6 – 96.4% Calcite 

 

From Table 5-10, evaluation of the Prop. PA ratios from IR-ATR spectra was very reproducible 

resulting in high quality linear regression functions with the capability to quantify both carbonate 

species over an estimated dynamic range from approx. 3 – 97 mass % with this sample matrix. 

The % relative standard deviation (%RSD) of Prop. PA ratios averaged < 1.2% despite average 

%RSDs of approx. 7.5% from absolute PA values (see full data tables in Appendix A-4). Hence, 

usage of Prop. PA ratios provides inherent resilience against sample-to-sample intensity 

fluctuations, which is desirable for practical applications. Figure 5-14 displays linear calibration 

plots generated for determining the mass % contributions of calcite and dolomite to the total 

carbonate composition along with results for the spectral analysis of 4 blind samples. 
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Figure 5-14: Calibration functions for determining the mass % of calcite and dolomite 
contributions to the total carbonate content using Prop. PA ratios for ν4 absorptions (a.) D/(C+D) 
and (b.) C/(C+D). Error bars represent the mass % error calculated from three times the SD of 
triplicate measurements. In addition, the mass % determinations of calcite and dolomite from IR 
analysis for four blind samples (BS#) are plotted along with actual mass % values calculated from 
the recorded mass composition. (BS2* was prepared from secondary calcite and dolomite stocks). 
 

The quality of linear regressions generated by Prop. PA ratio analysis of standard samples is 

readily observed in Figure 5-14. In addition, the experimentally determined and actual mass % 

values calculated from the sample masses for calcite and dolomite for all blind samples are 

plotted. Prop. PA ratios obtained from IR evaluation are plotted along the calibration function 

based on the calculation of D/(C+D) or C/(C+D). Actual mass values were plotted using the 

experimentally determined Prop. PA ratio versus the actual mass %s determined from the sample 

composition. The largest absolute deviation from the true value using the described IR method 

was < 1.4%. In addition, the composition of BS3 (6.5% D : 93.5% C) was determined within 1% 

of the actual value, although it was slightly beyond range of the calibration standards. This result 

was consistent with respect to the estimated dynamic range from Table 5-10. Furthermore, the 

mass composition of the BS2* sample prepared from secondary calcite and dolomite stocks was 

determined within 1% of the actual value. The purpose for single evaluations of blind samples 
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was to simulate the practical application for rapid on-ship sample assessment. Analytical 

confidence in single trial evaluations is desirable if time is limited and costly. A reduced data 

table summarizing IR-ATR evaluation of blind samples is provided in Table 5-11; the full data 

table is provided in Appendix A-4. 

 
Table 5-11: Data table for IR-ATR analysis of blind samples. The average PA for calcite and 
dolomite, Prop. PA ratio calculated as either D/(C+D) or C/(C+D), and calculated mass % for 
calcite and dolomite are included. An excellent agreement is obtained by the comparison of 
sample mass % (determined from mass composition) with the mass % determination by IR 
analysis. The largest error in % determination was less than 1.4% of the respective mass 
composition. (BS2* was prepared from secondary calcite and dolomite stocks). 
 

 Blind Sample Analysis: Sum(C+D) = 100% Sample Mass 
 Mass (%) PA SD D/(C+D) % (C or D) by IR % Error 

ID D C D D D D C (C or D) 
BS1 32.09 67.91 0.3375 0.0023 0.3370 33.47 66.53 1.38 

BS2* 46.01 53.99 0.5402 0.0023 0.4750 46.94 53.06 0.93 
BS3 6.47 93.53 0.0809 0.0019 0.0690 7.30 92.70 0.83 
BS4 78.09 21.91 0.9469 0.0030 0.7822 76.94 23.06 1.15 

   PA SD C/(C+D)    
  ID C C C    
  BS1 0.6640 0.0025 0.6630    
  BS2* 0.5971 0.0022 0.5250    
  BS3 1.0907 0.0019 0.9310    
  BS4 0.2636 0.0020 0.2178    

 

To establish this calibration, it was not required to control the total sample mass deposited onto 

the waveguide surface. This is one particular advantage of utilizing proportional ratios coupled 

with the Beer-Lambert law. Hence, experimental results should remain highly reproducible as the 

absorption of all matrix components shall be affected equally provided that: (1) packing of the 

residual sample powder within the evanescent field is reproducibly representative of the sample 

composition following evaporation of the aqueous matrix, and (2) any absolute intensity 

fluctuations occur irrespective to the relative mass % of calcite and dolomite to the total 

carbonate composition. Absorption intensity fluctuations were apparent from sample-to-sample 

evaluation as indicated by the %RSD in absolute PA values of approx. 7.5%; however, intensity 

fluctuations appeared to occur irrespective of the calcite and dolomite composition as the %RSD 
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for Prop. PA ratios was < 1.2%. Thus, this calibration method provides a robust analytical 

evaluation strategy, which is significant for supporting the practical application of this technique; 

not only for studies presented in this thesis, but also for real-world application such as on-ship 

sediment analysis. The capabilities, advantages, and limitations of this analysis strategy are 

further discussed in Section 5.5.2.5. 

 5.5.2.2 Evaluating Calcite and Dolomite in MC118 Sediments (June 2006 Cruise) 

IR-ATR spectra of box core sediments collected from MC118 in June 2006 were obtained over a 

period of nine months. Calcite and dolomite compositions with respect to the total carbonate 

content in sediment samples have been calculated as prescribed by the calibration equations using 

the Prop. PA ratios. Analytical results have been compressed and integrated into a site map 

(Figure 5-15) with each sample location identified and significant findings indicated. 
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Figure 5-15: Condensed summary of IR-ATR spectral analyses of MC118 sediments collected in 
June 2006 (BC#) and October 2005 (C#). Each sampling location and significant findings are 
provided. Variability with respect to hydrocarbon detection and carbonate mineral diversity 
around the MC118 system is readily visualized and accentuated around the SW hydrate mound 
and the NW ridgeline. Dolomite mass % (red text with % D) are averages relative to the total 
carbonate mass, not sample mass. δ13C values (V-PDB scale as brown text with ‰) are also 
provided as discussed in Appendix A-1 and Chapter 6. (Swath batyhmetry color-shaded relief 
map provided courtesy of the GOMGHRC, and produced by Alessandro Bosman (University of 
Rome, La Sapienza) and Leonardo Macelloni (CMRET) from acoustic data collected by C&C 
Technologies (Lafayette, LA) with the Hugin 3000 AUV). 
 

Calcite was clearly detected in all box core sediment samples collected at MC118. Sediments 

from BC2, BC4, BC6, BC7, BC8, and BC11 exhibited very similar absorption profiles with no 

indication of dolomite from ν4 evaluations via visual inspection or peak area analysis. Peak area 

analysis of ν4 absorption features for calcite and dolomite in IR-ATR spectra for these samples 

resulted in calculated relative mass % values for dolomite to the overall carbonate composition 
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ranging between -5% – < 1%. The artifact of calculated negative mass % values was frequently 

obtained via the prescribed data evaluation strategy when calcite was the only detected carbonate 

species in the IR-ATR spectra of sediment samples (i.e., C = 100% and D = 0% based on IR-ATR 

analysis). Figure 5-16 visually displays that the origin of negative mass % values resulting from 

mathematical artifacts due to the peak integration method evaluating the dolomite absorption 

region, which spans a dip in the spectrum related to interference from the clay absorption feature 

centered at approx. 750 cm-1. 

 

  
 
Figure 5-16: Selected viewings of an IR-ATR spectrum for BC7A Bot sediments. (a.) IR-ATR 
spectrum displaying calcite-only carbonate absorption features and tailing of the clay absorption 
feature centered at ~750 cm-1 readily apparent. (b.) Accentuated view of the dolomite integration 
region imposed on the same IR-ATR spectrum from (a.). The red (solid) line illustrates a small 
gap below the baseline imposed during peak integration analysis resulting in the calculation of 
negative mass % values for dolomite in the total carbonate composition in sediment samples. 
Thus, C = 100% and D = 0% when this occurs during sediment analysis with the prescribed 
evaluation strategy. 
 

The implemented peak integration method for evaluating carbonate absorption features imparts a 

straight line spanning the defined spectral region for analysis. Then, the area between the imposed 

line and the IR spectral signature is calculated. Hence, when dolomite is not present at a threshold 
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level to overcome the influence of the spectral dip resulting from the clay absorption feature, as in 

Figure 5-16, a negative peak area is obtained from IR-ATR spectral analysis. Therefore, when 

calculating the mass % of dolomite from a negative peak area, regardless of using either C/(C+D) 

or D/(C+D), an artifactual negative mass % value arises. The mathematical calculation of (C+D) 

amplifies the magnitude of this artifact in the mass % values with increasing negative peak area 

values. Calculated negative mass % values are interpreted as 0% dolomite and 100% calcite in the 

overall carbonate mass fraction. All mass % values are presented in this thesis as the output 

values from the prescribed evaluation procedure to illustrate the effect of spectral interference 

from clay on the quantitative evaluations. Although negative mass % values were frequently 

returned from this evaluation procedure, the IR-ATR spectra for all sediment samples were 

visually inspected to confirm the absence/presence of dolomite, aragonite, and/or Mg-calcite. 

Although the presence of dolomite and/or other carbonate minerals was not detected via IR-ATR 

spectroscopy in BC2, BC4, BC6, BC7, BC8, and BC11 samples, low mass %s could be present in 

the sediment sample in addition to calcite. In calibration samples, the lower quantification range 

for dolomite was approx. 3% of the sample mass without matrix dilution or interference from clay 

mineral absorption features. Hence, spectral sensitivity to the detection of multiple carbonate 

minerals in marine sediment samples is expected to be lower depending upon the carbonate mass 

contribution to the overall sample mass. Additional examination of the ν3 spectral profile, as 

discussed in Chapter 6, revealed no significant indication to the presence of additional carbonate 

species other than coccolith calcite for these particular samples. Table 5-12 provides 

representative peak area results from spectral evaluation of the ν4 absorption feature assessing the 

calcite-dolomite composition in BC7 sediments; full data tables from the analysis of all marine 

sediments from the GoM are provided in Appendix A-5. 

 

 



 174

Table 5-12: Analytical results from evaluating ν4 carbonate absorption features to determine the 
relative mass % of calcite and dolomite in the total carbonate content for sediments from push-
core A of BC7 sediments. The negative values result from matrix interference indicating that 
calcite is the only carbonate species contributing to the IR-ATR spectrum (i.e., C = 100% of the 
carbonate composition). Similar values were obtained for BC2, BC4, BC6, BC8, and BC11 
sediment samples. Visual inspections confirmed that calcite was the only carbonate species 
detected within IR-ATR spectra. 
 

Calculated Mass % of Calcite and Dolomite from Σ(CO3) in BC7 Sediments 
Push-core Sub-sample D PA D SD D/(D+C) % D % C 

BC7A Top (1) -0.0057 0.0027 -0.0560 -4.90 104.90 
BC7A Top (2) -0.0080 0.0014 -0.0491 -4.23 104.23 
BC7A Top (3) -0.0064 0.0017 -0.0413 -3.46 103.46 
BC7A Bot (1) -0.0048 0.0022 -0.0179 -1.18 101.18 
BC7A Bot (2) -0.0083 0.0019 -0.0355 -2.90 102.90 
BC7A Bot (3) -0.0100 0.0020 -0.0417 -3.51 103.51 

 

Although this quantification strategy yielded artifactual negative mass % values indicative of 

100% calcite, the representative results provided in Table 5-12 illustrate the consistent analysis of 

IR-ATR spectra from both BC7A Top and Bot sub-samples collected over a span of eight months 

in the laboratory. Minor variability is observed, which is attributed to the heterogeneous nature of 

sediment matrices. 

As seen in Figure 5-15, biodegraded oil is widely distributed throughout the hydrate system at 

MC118 including BC3 and BC10 sediments, which were not sampled for evaluation with IR-

ATR spectroscopy. Spectral detection of crude oil in BC9 and BC12 sediments were previously 

described. However, visual inspection of the ν4 carbonate absorption features revealed different 

results. BC9 sediments exhibited only calcite features, whereas BC12 sediments contained 

calcite, Mg-calcite, and dolomite absorption bands (see Figure 5-12 (c.) and (d.)). With exception 

of crude oil absorptions, the IR-ATR spectra of BC9 sediments closely resembled those obtained 

for BC2, BC4, BC6, BC7, BC8, and BC11 samples. Semi-quantitative analysis of calcite and 

dolomite compositions in the total carbonate mass provided conflicting results with calculated 

values ranging from approx. -19% up to approx. 26%. Upon closer visual inspections of the IR-

ATR spectra, calcite was confirmed to be the only carbonate mineral contributing to the obtained 
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spectra (i.e., C = 100% and D = 0%). The conflicting quantitative ν4 analyses are attributed to the 

combination of two factors: (1) significantly reduced absorption intensities for all sample 

components in BC9 sediments resulted from the enhanced detachment of sample from the 

waveguide surface with the presence of crude oil, and (2) the average spectral noise, typically 

insignificant in the mass composition analysis, becomes a significant factor impacting the 

outcome of mass analysis as a result of sample delamination (see Figure 5-12 (c.)). Visual 

inspection of the IR-ATR spectra throughout the drying process confirmed that calcite was the 

only detected carbonate species within BC9 sediments. 

Although BC12 sediments also contained measurable amounts of crude oil, unambiguous spectral 

identification of dolomite, calcite, and Mg-calcite was possible in the ν4 region. The presence of 

Mg-calcite further complicates the characterization of calcite and dolomite compositions to the 

overall carbonate mass. Highly variable mass % values were obtained for dolomite composition 

in BC12 sediments, which ranged from approx. 10 to 30% with an average > 20% (this value was 

assigned to BC12 sediments in Figure 5-15). The range of variance is partly attributed to the 

presence and spectral interference of Mg-calcite. However, the detection and variability of 

multiple carbonate species surrounding the SW hydrate mound signifies the detection of 

authigenic carbonate formation. This assessment is complemented by the visual confirmation of 

abundant authigenic formations surrounding the SW hydrate mound during manned submersible 

dives. Further evaluation and considerations to the significance of spectral features exhibited by 

BC12 sediments for detecting authigenic carbonate formation is discussed in Chapter 6. 

The only additional box core sediment samples exhibiting identifiable dolomite absorption 

features were those collected from the BC1 location. Calculated mass % values for dolomite 

contribution to the overall carbonate mass ranged from not detectable (≤ 1%) up to approx. 10.5% 

with the average < 10%, as indicated in Figure 5-15. These findings, coupled with the recovery 
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of ‘gassy’ mud and aragonite shells, are consistent with the detection of authigenic carbonate 

formation driven by chemosynthetic communities. 

Lastly, sediments collected from BC5, specifically the bottom sediments from the B push-core, 

exhibited unique spectral characteristics. Deviations in the ν3 absorption profile followed trends 

characteristic to authigenic carbonate formation observed in BC1 and BC12 samples; however, 

calcite was the only identifiable carbonate species from visual inspection of the ν4 region. Highly 

variable calculated mass % values for dolomite were obtained from BC5 sediments, which ranged 

from approx. -50% to approx. -10%. As previously mentioned, the negative mass % values are a 

mathematical artifact, and confirm calcite identifiable contributor to the IR-ATR spectra. 

Considering the broadened ν3 spectral characteristics combined with recovered authigenic 

carbonate nodules and shells indicative to chemosynthetic activity, the IR-ATR spectra for BC5B 

Bot sediments strongly supports the detection of localized authigenic carbonate formation at this 

sampling site. 

This section provided a focused discussion regarding qualitative and semi-quantitative analyses 

of calcite-dolomite compositions in box core sediment collections. The calculation of negative 

mass % values throughout this section underscores a shortcoming in this data evaluation 

procedure, which is discussed further in Section 5.5.2.5. However, the most significant finding in 

this chapter stems from the diversity of carbonate minerals and the spectral deviations observed 

from BC1, BC5, and BC12 samples, which provided the initial insight for the capability to detect 

authigenic carbonate formation with IR-ATR spectroscopy. Additional analyses of nodule 

samples and coccoliths are discussed in Chapter 6, which focuses on the detection of authigenic 

carbonate via qualitative assessment of unexpected characteristics and changes in the ν3 carbonate 

absorption signature. 
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 5.5.2.3 MC118 Gravity Core Sediments (October 2005 Cruise) 

IR-ATR spectroscopic analysis of MC118 sediments collected from gravity cores revealed 

several interesting results (see Figure 5-15 for locations). Figure 5-17 includes representative IR-

ATR spectra focused on the ν4 region for each of the investigated sediment samples. 

 

   
 
Figure 5-17: Representative IR-ATR spectra for sediments from gravity cores 21, 26, and 38. 
Strong dolomite signatures are observed near 730 cm-1 in core 21 and core 26 sediments. While 
not clearly evident, a minor hump may indicate the presence of dolomite in core 38. 
 

Gravity core sediment samples examined in this study were collected further below the water-

sediment interface than those evaluated from box core collections. In addition, the sediment 

samples from core 21 and core 26 were accompanied by authigenic carbonate nodule formations. 

Analysis of the carbonate mass composition in cores 21 and 26 indicate that approx. 50% of the 

carbonate mass fraction is comprised of dolomite with no quantifiable amount in core 38 

sediments (see full data tables in Appendix A-5). The detection of strong dolomite signatures in 

core 21 and 26 sediments coupled with presence of authigenic nodules is strongly indicative to 

the detection of authigenic carbonate within the very fine sediment fractions. The high dolomite 

composition and sediment recovery depths suggest that dolomite has either accumulated from 

prolonged periods of primary precipitation and/or diagenetic conversion of calcite by 

dolomitization. Detailed isotopic, petrographic, and porewater analyses are necessary to better 

assess the genesis/diagenesis of dolomite from these particular coring locations. The slight hump 
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near 730 cm-1 in the IR-ATR spectrum of core 38 sediments may indicate minor dolomite 

composition; however, calcite was identified as the primary spectral contributor further indicated 

by visual inspection of the ν3 region. Additional consideration to these samples is provided in 

Chapter 6. 

 5.5.2.4 Sediments from Piston Core MD02-2570 

Access to piston core sediments collected from site MD02-2570 in Mississippi Canyon provided 

an excellent opportunity to better assess the potential application for rapid depth profiling of 

sediments with IR-ATR spectroscopy. Overall, the carbonate absorption features in the IR-ATR 

spectra from sediment samples in this piston core resembled those obtained for sediments from 

gravity cores 21 and 26 from MC118 (see Figure 5-17 (a.) and (b.)). All analyzed sediments 

from 1 mbsf to approx. 30 mbsf (sample designation as 27+m) are characterized by strong 

dolomite and calcite signatures without detection of additional carbonate minerals. Figure 5-18 

summarizes the semi-quantitative relative % contributions from dolomite and calcite to the total 

carbonate mass fraction with respect to the depth of each sediment sample. 
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Figure 5-18: Semi-quantitative assessments from IR-ATR spectra for the mass % of dolomite and 
calcite in the total carbonate fraction of piston core sediments collected from MD02-2570. For 
each sediment depth, the calcite and dolomite mass % are plotted with the sum equal to 100% of 
the carbonate fraction. Error bars for 6, 18, and 21 mbsf samples are twice the SD from triplicate 
evaluation. Lines are present to assist visualization. 
 

A wide range of calcite-dolomite mass fractions from the MD02-2570 piston core sediments is 

clearly evident in Figure 5-18. The dolomite mass % in the overall carbonate composition ranged 

from approx. 30 to 90% (see Appendix A-5). The greatest variability was observed within the 

first 12 m. The shallowest sediments obtained from this core were from 1 mbsf; therefore, the 

dolomite composition for surficial sediments (< 15 cmbsf) was designated as 100% calcite based 

on the most common results obtained from box core sediments at MC118. These sediments were 

collected around a gas hydrate location in the Mississippi Canyon region (not at MC118); 

therefore, it is hypothesized that dolomite could be present within surficial sediments at the 

MD02-2570 site. To gauge the analytical reproducibility, sediments from 6, 18, and 21 mbsf were 

analyzed in triplicate resulting in standard deviations < 6%. This range was not beyond the 

expectation for heterogeneous natural sediments. The most significant findings from these 
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experiments are the extent of variability in calcite-dolomite compositions and the consistently 

high dolomite mass fractions. Although IR-ATR analysis is not expected to facilitate direct 

elucidation of the specific processes of dolomite formation, the detection and depth profiling of 

changes in dolomite composition supports the practical application of MIR chemical sensors for 

assisting the characterization of authigenic/diagenetic dolomites in marine sediments. 

 5.5.2.5 Advantages, Limitations, and Potential of Quantitative Evaluations 

The primary objective for characterizing the calcite-dolomite compositions with IR-ATR in this 

thesis was to establish a first semi-quantitative approximation of the relative compositional 

variability throughout sediment samples with particular emphasis on the MC118 hydrate site. 

However, some limitations on the quantitative accuracy for analyzing calcite-dolomite 

compositions were found despite the quality and robustness of Prop. PA ratio calibrations, which 

are addressed in this section. 

 Advantages of Ratiometric Calibration: 

In Section 5.4.2.2, the clumping and delamination of samples from the waveguide surface were 

correlated to the presence of crude oil. However, sediment delamination was observed upon 

drying of essentially all native sediment samples, albeit at varying degrees. Clay minerals have a 

high water sorption capacity; thus, clumping and surface detachment is primarily attributed to the 

contraction of clay mineral moieties upon drying, which appears amplified in samples containing 

crude oils.80 Second, sediment samples were evaluated over a period of approx. 11 months for 

this thesis. The potential sample-to-sample variance in absolute intensity fluctuations due to 

sample delamination and instrumental drift could lead to obscure evaluation results for 

quantitative evaluations based upon absolute intensities without correction for instrumental drift 

and the effective sampling pathlength. However, assuming that the investigated sediment samples 

are somewhat homogeneous, absorption intensity fluctuations resulting from sample delamination 

and/or instrumental drift should proportionally affect the absorbance of all components. Thus, a 

ratiometric evaluation method should provide consistent sample-to-sample results regardless of 
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variance in the effective sample-waveguide contact and/or instrumental drifts. In this work, 

consistent mass % values for calcite and dolomite relative to the total sample carbonate 

composition were obtained for all samples irrespective to the period each sample was evaluated 

despite inherent variance in sample-waveguide contact (see results in Appendix A-5). Hence, any 

observed variability is mostly attributed to compositional variance and sample inhomogeneities in 

the marine sediments. Consistent quantitative values were obtained without manipulating the 

sediment samples, which further demonstrates the robust nature of ratiometric data evaluation. 

 Current Limitations and Restrictions: 

There are two primary factors that must be further addressed regarding the quantitative analysis 

of carbonate minerals in marine sediment samples for improving the accuracy of data evaluation 

methods described in this thesis. 

The first consideration to ensure consistent and accurate quantitative analysis of carbonates in 

marine sediments with IR-ATR spectroscopy is by controlling the mean particle size (PS). It has 

been established in the literature that the sample PS characteristics directly affects the analytical 

accuracy of IR techniques when evaluating carbonate minerals in natural samples (see discussion 

in Section 5.1.3.2). The key particle size limit reported to ensure a high confidence in analytical 

accuracy is < 2 μm. In transmission-absorption measurements, a PS well below the wavelength of 

radiation is necessary to minimize scattering affects in non-absorbing regions. For ATR methods, 

the scattering of light in non-absorbing regions is essentially absent regardless of PS; therefore, 

uniform PS is required to ensure dense and uniform particle packing within the evanescent field 

representative of the compositional mass fractions within a sample.59 Thus, it is required to 

maintain constant PS characteristics across both the calibration standards and natural samples. 

Without homogenizing the investigated sample matrix, quantitative results can be systematically 

biased against the overall sample composition. In this work, the quantitative analysis of calcite-

dolomite content in marine sediments focused on the evaluation of non-manipulated sediments 

following an in situ drying process, which is preferable for rapid, semi-quantitative on-ship 
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sediment analysis. Without previously drying and homogenizing the sample by grinding, the 

quantitative results presented in this work are biased against the presence of carbonate minerals 

from larger particulates (i.e., foraminiferal tests, pelletoids, mollusk shells etc.) due to a size 

mismatch with the evanescent field (see Section 5.1.2.3). As a result, the reported quantitative 

values are predominately reflective of finer grained sediments, which limit quantitative accuracy 

in calcite and dolomite composition assessments relative to the bulk sediment matrix. 

The second factor currently limiting the quantitative accuracy of carbonate minerals in marine 

sediments with IR-ATR spectroscopy is the impact of clay, quartz, and Mg-calcite absorption 

features. The overlapping nature of these bands with the calcite and dolomite ν4 vibrational 

modes reduces the accuracy for a straightforward calibration established for only the two 

components of interest. Hence, it is necessary to further address the absorption influences from 

these interfering matrix components to migrate from semi-quantitative to quantitative results 

characterizing multiple carbonate mineral compositions in marine sediments. This should be 

facilitated in the future with the establishment of multivariate data evaluation routines considering 

the spectral influences from all major sediment matrix constituents. 

 Potential of the Method: 

Due to the current limitations, the results presented in this thesis provide a first semi-quantitative 

measure for characterizing the calcite and dolomite compositions in complex marine sediment 

matrices utilizing IR-ATR spectroscopy. With the variety of samples collected from the GoM, 

this method has been confirmed as a useful strategy for evaluating the wide range and variability 

of carbonate minerals encountered in complex oceanic gas hydrate ecosystems, which is an 

imperative initial step towards improving the quantitative capabilities of this methodology in the 

future. In addition, Chapter 6 will focus on the practical application of IR-ATR spectroscopy as 

a qualitative characterization tool with immediate significance for detecting and characterizing 

the occurrence and distribution of authigenic carbonates driven by chemosynthetic communities 

associated with cold hydrocarbon seeps in the GoM. 
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5.6 Conclusions 

This chapter has covered the fundamental application of IR-ATR spectroscopy for characterizing 

carbonate minerals with particular focus on the diversity and variability encountered in gas 

hydrate ecosystems within the GoM. The first task addressed was the establishment of an IR-

ATR spectral database for 10 of the most common anhydrous carbonate minerals. This database 

is useful for assisting the identification of carbonate minerals within complex matrices such as 

marine sediments. Although a reference specimen of a homogenous Mg-calcite was not acquired 

for compilation of the spectral database, sufficient evidence was obtained from the literature to 

confirm the spectroscopic detection of Mg-calcite in BC12 sediments.39 Furthermore, the IR-ATR 

carbonate spectral database enabled a functional derivation, following the work of Bottcher et al., 

enabling the evaluation of Mg2+ compositions of homogenous Mg-calcite samples.39 

The second major application of IR-ATR spectroscopy for assessing carbonate minerals in marine 

sediments was the qualitative evaluation of sediments in their ‘native’ and dried states. As 

demonstrated throughout Section 5.4, an abundance of information can be quickly obtained via 

the qualitative assessment of wet and dry samples. This was particularly useful for evaluating the 

diversity and variability of carbonate mineralogy surrounding the MC118 system and aiding the 

elucidation of indicators for the spectroscopic detection of authigenic carbonates, which is the 

focus of Chapter 6. The ability to contextualize IR-ATR spectroscopic data from MC118 

throughout this chapter was significantly enhanced via several key factors: (1) accurate mapping 

of sediment collection locations with respect to the site geography, (2) accumulation of context 

clues such as ‘gassy’ or oil stained sediments and the recovery of shells and/or authigenic 

carbonate nodules, and (3) previous characterization studies of the MC118 hydrate site from 

GOMGHRC members (i.e., isotopic compositions of authigenic carbonate nodules23) and 

extensive literature archives addressing the complexity of gas hydrate ecosystems. 

The third focus of this chapter was establishing the semi-quantitative analysis of calcite-dolomite 

compositions relative to the overall carbonate content in sediment samples. Although in Section 
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5.5.2.1 it was confirmed that a high quality analytical calibration can be generated to evaluate 

calcite and dolomite composition with IR-ATR techniques comparable to other IR techniques in 

the literature, there were several factors limiting highly accurate quantitative assessments in this 

thesis (described in Section 5.5.2.5). However, based on the findings in this thesis, two primary 

factors were identified that should facilitate improvement to the quantitative characterization of 

carbonate minerals in marine sediments from complex hydrate ecosystems with IR-ATR 

techniques in the future. In addition, the obtained semi-quantitative results generated during these 

studies provide a first approximation as to the characteristic variability of dolomite compositions 

in marine sediments surrounding the MC118 gas hydrate site, thus providing an initial guideline 

for improving the quantitative capabilities to address environmentally relevant compositional 

variations. Furthermore, the presented results allude to potential pitfalls for the more generic 

application of quantitative IR methods for evaluating carbonate minerals in natural samples 

without specifically considering the potential interferences of major sediment components 

surrounding the sampling environment. 

An additional key finding from these initial sediment screening studies was the limited spectral 

sensitivity to hydrocarbons despite the wide distribution and frequent visual observation of crude 

oil surrounding the MC118 hydrate site. The enhanced presence of biodegraded crude in 

sediments from BC9 and BC12 was accentuated by identifiable C-H stretch absorption features in 

the IR-ATR spectra. However, visual observation coupled with the lack of IR-ATR detection of 

crude signatures in sediments from BC2, BC8, and BC11 displays the resilience of this 

measurement technique to potential interferences from natural organic matter in the sediments 

surrounding MC118. The IR-ATR sediment analyses presented in this chapter additionally 

facilitated an initial assessment of potential spectral interferants from the MC118 site with respect 

to IR gas hydrate monitoring strategies described in Chapter 4. The findings from such 

evaluations (discussed in Section 4.3.4) support the future application of IR techniques to 

monitor gas hydrate growth dynamics in sediment matrices. 
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Overall, the particular significance to the studies described in this chapter was establishing the 

initial connection between IR-ATR spectral signatures and the presence of authigenic carbonates 

associated with chemosynthetic communities that thrive on energy from hydrocarbon seepage 

emanating through fault conduits at the MC118 site. Collectively, chemosynthetic activity and 

gas hydrates play an important role in the global cycling and sequestration of carbon, carbonate, 

and greenhouse gases. As IR-ATR spectroscopy has been demonstrated as a useful strategy for 

characterizing carbonate minerals in marine sediments and gas hydrate growth dynamics, the 

realization of deep-sea MIR chemical sensors is anticipated to facilitate improved access for 

assessing and characterizing the significance of ‘small’ scale distributions and dynamics of 

localized authigenic carbonate formation and gas hydrates within complex oceanic gas hydrate 

ecosystems. Chapter 6 will address the application of IR-ATR spectroscopy for characterizing 

the origins and variability of carbonate minerals within context of oceanic gas hydrate ecosystems 

and the GoM. 

 

5.7 Outlook 

As discussions of IR-ATR spectroscopy and carbonate mineral analysis will continue in Chapter 

6, only a brief outlook is provided herein. From this chapter, it is of paramount importance to 

define the analytical objectives for the application of IR-ATR spectroscopy when evaluating 

carbonate minerals in marine sediments. Much information can clearly be obtained simply 

through qualitative application with many avenues for practical application. However, the 

quantitative evaluation of carbonate minerals in marine sediments requires additional research to 

facilitate improved accuracy of the described IR-ATR analysis. To attain improved accuracy, it is 

pertinent to generate a robust multivariate calibration, while ensuring conservation of PS 

characteristics between calibration standards and sediment samples. The multivariate calibration 

should focus on the accountability for spectral influences from major sediment components, such 

as quartz and clay minerals. More thorough characterization of major sediment components from 
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various geographic regions coupled with advanced data evaluation routines is anticipated to 

facilitate accurate quantitative assessment of carbonate minerals within diverse marine settings 

and highly variable sediment matrices. 
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CHAPTER 6 
 

SPECTROSCOPIC DETECTION OF AUTHIGENIC CARBONATES IN MARINE 
SEDIMENTS CONTAINTING COCCOLITH CALCITE 

 
 
 

This chapter extends upon the experimental applications of IR-ATR spectroscopy for 

characterizing carbonate minerals in seafloor sediments previously discussed in Chapter 5. 

However, the focus shifts towards the diagnostic identification of chemosynthetically driven 

authigenic carbonate precipitation within the very fine sediment fractions of surficial marine 

sediments surrounding gas hydrate ecosystems. To facilitate this objective, a variety of qualitative 

investigations concerning the origin of spectral variability among ν3 IR vibrations of carbonate 

minerals in the IR-ATR spectra of sediments are presented. Topics discussed include evaluation 

of recovered authigenic carbonate nodules and spectral characterization of coccoliths produced 

from laboratory cultures of coccolithophores. This chapter demonstrates the capability to identify 

chemosynthetically driven authigenic carbonate precipitation through the disruption of peculiar 

carbonate absorption features in marine sediments traceable to coccolith accumulations 

originating from the photic zone over 800 m above the seafloor. Furthermore, concluding remarks 

summarizing the breadth of IR-ATR spectroscopic analyses of samples collected from the 

MC118 gas hydrate ecosystem are provided. 

 

6.1 Motivation 

In Chapter 4, the initial motivation for spectroscopic investigations of marine sediments was to 

facilitate a feasibility assessment for extending evanescent field sensing strategies for hydrate 

monitoring into oceanic environments. During the first sediment characterization experiments, 

striking contrasts were observed in the ν3 carbonate profiles of IR spectra collected for MC118 

sediments. This simple observation stimulated a variety of studies to further understand spectral 

data and the application of IR-ATR spectroscopic techniques for addressing the relationships, 
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consequences, and connections between carbonate mineralogy within the context and complexity 

of oceanic gas hydrate ecosystems, particularly in the Gulf of Mexico. IR studies described in 

Chapter 5 focused on the initial assessment of inter- and intra-site characteristics of carbonate 

minerals in the described sediment collections. During sediment studies and concurrent spectral 

analysis of recovered authigenic carbonate nodule samples (discussed in this chapter), a 

correlation was observed for spectral broadening of ν3 carbonate signatures with the occurrence 

of chemosynthetically driven authigenic carbonate formations. This hypothesis was further 

supported through the association of spectral similarities of sediments in close proximity to the 

recovery of authigenic carbonate nodules and the combination of context clues suggestive of 

chemosynthetic activities intimately connected to authigenic carbonate precipitation. 

As discussed in Chapter 5, the combination of gas hydrate formation and the influence of 

associated chemosynthetic communities play a significant role in the global cycling and 

sequestration of greenhouse gasses in extreme oceanic environments; in effect buffering the 

migration of greenhouse gasses from oceanic sources into the atmosphere. Hence, the potential 

capability for utilizing IR-ATR spectroscopy as a tool for characterizing the spatial occurrence 

and enabling in situ assessment to the significance of authigenic carbonate precipitation within 

marine sediment fractions warranted further consideration. The potential value for such a tool was 

further accentuated with the current lack of data regarding the dynamics, distributions, and/or 

significance of authigenic carbonate formation and associated chemosynthetic organisms within 

fine sediment fractions surrounding oceanic gas hydrate systems. However, to substantiate this 

hypothesis, it was essential to establish a definitive explanation for the omnipresent carbonate 

signature observed throughout surficial sediments hypothesized to be unaffiliated with authigenic 

carbonate and provide a valid explanation as to the governing nature of spectral differences. 

Initial evidence capable of providing an explanation for the occurrence and nature of IR carbonate 

signatures in sediment samples originated through the examination of scanning electron 

microscope (SEM) images of MC118 sediments, which revealed the presence of coccoliths, 
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which are highly structured biogenic carbonate particulates produced by single-celled planktonic 

organisms that thrive throughout many of Earth’s oceans and seas (Figure 6-1). This realization 

provided the context for consideration to the regional effects of natural processes that can directly 

and significantly impact sediment compositions with molecular level consequences to spectral 

observations. Resulting, this chapter presents the experimental studies and findings that 

substantiate the capability for IR-ATR spectroscopy as a tool for detecting the occurrence of 

chemosynthetically driven authigenic carbonate precipitation within surficial sediments 

surrounding gas hydrate ecosystems. The findings presented in this chapter provide a significant 

advancement towards improved characterization and understanding of authigenic carbonate 

formations and associated chemosynthetic organisms within oceanic gas hydrate ecosystems. 

 

  
 
Figure 6-1: SEM images of coccoliths from MC118 gravity core 38 sediments. A small sediment 
portion was smeared onto a glass microscope slide and allowed to dry before collection of images 
with a Nova Nanolab 200 (FEI Company, Hillsboro, OR). Coccolith shield morphologies are 
characteristic of the coccolithophore species Emiliania huxleyi (E. huxleyi).1-4 
 

 
6.1.1 Coccolithophores and Coccoliths 

Coccolithophores are a diverse group of single-celled, photosynthetic planktonic algae with an 

average size between 10 to 100 μm in diameter.2, 4, 5 Most species are covered by a coccosphere 
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comprised of small 2 – 20 μm sized calcite plates known as coccoliths, which are formed within 

the coccolith vesicle inside the cell body.2, 4, 6 Coccolith morphologies are characteristic to 

individual species and commonly used for taxonomic identification.1-4, 7 Coccolithophores are an 

abundant life form in the photic zone of Earth’s oceans and seas; that cycle and drive globally 

significant fluxes of organic carbon and carbonate in marine environments through 

photosynthetic conversion of CO2 into O2 and organic carbon in addition to the generation of CO2 

and carbonate during coccolith formation.2, 4, 8-10 

Coccolithophore cell densities typically range between several thousand to many hundreds of 

thousands per L of seawater.2, 4, 7 Occasionally, algal blooms occur whereby cell densities 

exceeding 1,000,000 per liter of seawater have been observed, which can be visualized in satellite 

imagery by significant shifts to the color of ocean waters.2, 4, 11 Coccolithophore activity and 

coccolith sedimentation flux have been shown to vary seasonally. A study by Ziveri et al. 

exemplifies the variability and magnitude of coccolith fluxes from sediment traps placed in the 

San Pedro Basin, Southern California Borderlands.12 The authors reported coccolith fluxes 

ranging from as low as 30,000 coccoliths per m2 per day to as high as 866,390,000 coccoliths per 

m2 per day (equivalent to approx. 81 mg of carbonate accumulation per m2 per day) between 

January 7 and July 26, 1988. In this thesis, the impact of coccolithophores and coccolith 

sedimentation on the composition of surficial marine sediments is of particular importance with 

the focus centered on the Gulf of Mexico region. 

 6.1.1.1 Coccolithophores in the Gulf of Mexico 

In 1972, Hulbert and Corwin reported average coccolithophore concentrations throughout the 

GoM from 1,500 – 9,000 cells per L with highs between 5,000 – 20,000 cells per L from samples 

collected between November 1965 and December 1969.13 A more recent and thorough 

investigation of coccolithophores in the GoM was documented in the doctoral work of Vita 

Pariente, which includes a review of previous coccolithophore water column studies in the GoM 
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region.7 In general, water column coccolithophore concentrations in the GoM were found to 

range from 1,500 cells per L to as high as 155,000 cells per L.7 

The work of Pariente was primarily concerned on seasonal and vertical differences in 

coccolithophore community structuring within the GoM between October 1990 and March 1991.7 

The standing coccolithophore crop during the study interval was generally less than 105 cells per 

L with the greatest densities found in March of 1991 (by a factor of 2 to 3) primarily from the 

abundance of E. huxleyi. Despite the diversity of coccolithophore species observed during that 

work, four primary species where found to dominate seasonal populations. In October, the 

dominant species were; Umbellosphaera irregularis, Umbellosphaera tenuis, Florisphaera 

profunda, and E. huxleyi. In March, E. huxleyi was the prevalent species in most samples; 

however, F. profunda was observed at most sampling locations, often surpassing E. huxleyi 

populations for samples collected in the nutricline. Table 6-1 summarizes temporal observations 

of the most prominent coccolithophores found in the GoM water column by Pariente.7 

 
Table 6-1: Coccolithophore species accounting for ≥ 50% of the population in at least one sample 
as reported by Pariente.7 Percent values in parenthesis reflect the maximum observed relative 
abundance from all samples with respect to each individual species. Despite the single sample 
reference, these four species were prevalent throughout most sampling locations. Table adapted 
from Pariente.7 
 

Abundance ≥ 50% (max. relative abundance) 
Period October 1990 

F. profunda (84%) 
U. irregularis (69%) 
U. tenuis (64%) 

Species 

E. huxleyi (56%) 
Period March 1991 

E. huxleyi (99%) Species 
F. profunda (64%) 

 

 6.1.1.2 Coccolith Distributions in Gulf of Mexico Sediments 

As previously discussed in Section 5.1.2.3, biogenic carbonate formations from planktonic 

foraminifera and coccolithophores are widely distributed and dominate the carbonate composition 

of sediments throughout the GoM off of the continental shelves.14 Pierce and Hart characterized 
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the regional taxonomic distributions and variability of coccolith morphologies in surficial bottom 

sediments throughout the GoM with exception to the continental shelves.1 From their 

investigations, coccoliths from 11 primary taxa were identified to comprise > 0.5% of coccolith 

accumulations in sediments from all observed taxa (35 extant and 21 extinct) with E. huxleyi 

coccoliths representing the dominant species (> 75% on averagae). Table 6-2 summarizes the 

overall observation frequencies for the 11 primary coccolith taxa reported by Pierce and Hart.1 

 
Table 6-2: The overall relative % observation of coccolith taxa contributing > 0.5% from all 
surficial sediment samples collected throughout the Gulf of Mexico as reported by Pierce and 
Hart. Table adapted from Pierce and Hart.1 (* Updated taxonomic classificatiion as Calcidiscus 
leptoporus).2, 3 
 

Taxa Observed % 
E. huxleyi 76.32 

Gephyrocapsa oceanica 5.65 
Umbilicosphaera mirabilis 4.83 

U. irregularis 2.01 
Cyclococcolithina leptopora* 1.74 

Syracosphaera pulchra 1.57 
U. tenuis 1.40 

Scapholithus fossilis 1.06 
Rhabdosphaera stylifera 0.85 
Discosphaera tubifera 0.57 
Thoracosphaera hemii 0.53 

Sum Observed % 96.53 
 

In addition to characterizing the community structuring of coccolithophores in the GoM water 

column, Pariente also compared the relative prominence of coccolithophore water column 

populations observed from October 1990 and March 1991 with consideration to the 10 most 

abundant coccolithophore species found within GoM sediments as reported by Pierce and Hart.1, 7 

A general overview of this comparison revealed that the combined abundance of water column 

coccolithophores from October and March with respect to the 10 most abundant species found in 

sediments accounted for only 74.41% of the total coccolithophore population (with exclusion of 

F. profunda from water column data). There are several contributing factors to the variation of 

comparing water column organisms to sedimented coccoliths as discussed in detail by Pariente.7 
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Perhaps the most prominent reasons suggested by Pariente for such variations included: (1) Time; 

water column samples are a single record in space and time, whereas sediments are a sum 

geologic record of the past, and (2) the number of coccoliths generated varies from species to 

species.7 

Additional considerations were also offered by Pariente as to why E. huxleyi dominates the 

coccolith accumulations throughout GoM sediments: (1) the number of coccoliths produced and 

shed by E. huxleyi is more than most other species, (2) E. huxleyi has probably been more 

abundant over longer time periods throughout the water column, (3) E. huxleyi may have been 

more abundant in the past as sediment compositions are a reflection of the past, (4) transport of 

coccoliths from shelf regions where E. huxleyi is a dominant species, (5) rapid and abundant 

coccolith formation from past, sporadic E. huxleyi blooms, (6) the high cell multiplication rate of 

E. huxleyi, and (7) a sum influence of all factors.7 Essentially, E. huxleyi is currently the 

preeminent coccolithophore species in the GoM, and that is directly reflected in the taxonomic 

composition of coccoliths in GoM sediments. 

 6.1.1.3 General Characteristics of Coccolith Shields 

There are two main classifications of coccoliths, heterococcoliths and holococcoliths.2, 4, 5 

Heterococcoliths are formed of various shapes and sizes of fundamental crystal units, whereas 

holococcoliths are comprised of many small crystals of the same type.2, 4 Holococcoliths are 

typically more soluble than heterococcoliths; hence, heterococcoliths dominate the coccolith 

record in deep-sea sediments.2, 4, 5 Much research has focused on understanding the cellular 

mechanisms involved during coccolith calcification, as well as describing the structures and 

morphologies of coccoliths.2, 4, 6, 8, 10, 15-20 In general, the biomineralization of coccolith shields is a 

highly controlled, molecular-level process initiating with the nucleation of single calcite crystals 

specifically oriented (respective to the C-axis of a calcite rhombohedron) around an organic-

based template to form a proto-coccolith ring.15 The continued growth of crystals around the 

proto-coccolith ring continues by the addition of various single-crystal units with complex 
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morphologies, which are believed to be controlled by several factors including spatial constraints 

from growth vesicles within the cell and interaction with organic molecules until the final 

coccolith morphology is realized.2, 4, 6, 10, 15-20 Ultimately, heterococcolith shields are composed of 

many interlocking single-crystal units that exhibit exceptional molecular and crystalline 

uniformity giving rise to diverse coccolith morphologies between 2 – 20 μm respective to 

individual coccolithophore species.2-4, 6, 10, 15-20 

 6.1.1.4 Coccoliths versus Foraminifera Tests 

Biogenic carbonate formations from planktonic foraminifera and coccolithophores are widely 

distributed throughout sediments in the GoM.1, 14 Combined, they produce the dominant 

carbonate contributions to surficial sediments off of the continental shelves.14 In sediments 

comprised of both foraminifera and coccoliths, the calcareous foraminiferal tests contribute 

mostly to carbonates in the sand size particle fractions from 62.5 – 2,000 μm with fragments 

composing silt portions from 4 – 62.5 μm. On the other hand, coccolith carbonate dominates the 

very fine sediment fractions < 6 μm.2, 4, 5 Hence, coccolith carbonate is more apt to influence the 

IR-ATR spectrum than foraminiferal carbonate as coccoliths provide an excellent ‘size’ match for 

interaction with the evanescent field penetration depth (~700 nm @ 1335 cm-1 with n1 = 2.42 and 

n2 = 1.3). In this thesis, coccoliths were addressed as the most probable contributor of peculiar 

carbonate absorption features observed within MC118 sediment; facilitated through SEM 

investigations that revealed abundant coccolith assemblages. 

 

6.2 Correlating Spectral Profiles of Authigenic Carbonate Nodules with Select Sediments 

In addition to the characterization of MC118 sediments with IR-ATR spectroscopy as described 

in Chapter 5, a number of authigenic carbonate nodules (δ13C values between -24 and -34‰, see 

Appendix A-1) recovered from MC118 box cores BC3 and BC5 and gravity cores 21 and 26 

were also analyzed. The following sub-sections focus on the characterization of carbonate 
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minerals and spectral signatures obtained from authigenic carbonate nodules exhibiting strong 

depletions in 13C from the inheritance of C generated from the chemosynthetic oxidation of 

seeping hydrocarbons at MC118. Furthermore, spectral similarities between authigenic nodules 

and select sediments from MC118 are described. Nodule sizes generally ranged from approx. 

3 mm up to 3 cm. Figure 6-2 contains optical images of several recovered authigenic carbonate 

nodules from MC118. 

 

 
 
Figure 6-2: Authigenic carbonate nodules collected from (a.) BC3* and (b.) BC5 MC118 
samples. (* nodules provided courtesy of Dr. Roger Sassen, GERG, Texas A&M University). 
 

 
6.2.1 Experimental 

 6.2.1.1 IR-ATR Instrumentation 

IR-ATR spectra of carbonate nodules were recorded from 4000 – 400 cm-1 using a Bruker 

Equinox 55 FT-IR spectrometer (Bruker Optics Inc., Billerica, MA). The spectrometer was 

equipped with a LN2 cooled MCT detector (Infrared Associates, Stuart, FL) and Specac Gateway 

in-compartment horizontal ATR unit (Specac Inc., Woodstock, GA). For spectral analysis, each 

sample was deposited directly onto a trapezoidal ZnSe (nD = 2.43 at λ = 5 µm) ATR crystal 

(MacroOptica, Moscow, Russia) with dimensions of 72 × 10 × 6 mm and 45 ° end facets. A 

custom cut 3/16” th. polycarbonate cover allowed purging of the sample compartment with dry 

air to stabilize background water and CO2 and expedite sample drying. Additional physical 
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descriptions of the optical path and components used in the experimental setup can be found in 

Section 3.2. 

 6.2.1.2 Sample Preparations and IR-ATR Measurement Procedures 

Nodule specimens were first isolated from the sediment matrix and rinsed with an aqueous 

potassium hydroxide (J.T. Baker, Phillipsburg, NJ) solution (pH ~9.5 to protect aragonite) as to 

remove loose sediment particulates from the larger carbonate mass. Solution preparation 

procedures followed that described in Section 5.5.1.1. After rinsing, nodule samples were 

allowed to air dry for at least 48 hrs before being hand ground into a fine powder with a ceramic 

mortar and pestle. Once ground, particulates were placed in a glass vial with plastic cap and 

stored at room temperature until further use. 

Prior to the spectroscopic evaluation of each sample, a sufficient volume of KOH solution (pH 

~9.5) was transferred into the sample vial to form a viscous particulate suspension while ensuring 

minimal solvation and reaction of the carbonate minerals, particularly aragonite. A reference 

spectrum with a clean, dry ZnSe crystal was collected after purging the sample compartment for 

at least 10 mins with dry air. After collection of the reference spectrum, the sample suspension 

was thoroughly mixed by pulling and ejecting sample contents from a single-use disposable 

plastic pipette for approx. 15 s. Approx. 1 mL of the sample mixture was delivered and 

distributed as to fully cover the waveguide surface. IR-ATR spectra were then continuously 

recorded, typically at 90 s intervals, throughout the sample drying process. Once spectral 

stabilization for dried, powdered residue was observed, measurements were continued until 

approx. 25 spectra were obtained for each sample. Each individual sample analysis required 

approx. 3 hrs. IR-ATR reference and sample spectra were generated by averaging 100 sample 

scans at a spectral resolution of 1 cm-1. Each specific sample was evaluated only once. In select 

cases, a small portion of unwetted sample was isolated for carbon isotope characterization 

studies. Following IR analysis of each sample, powdered residue was rinsed off the waveguide 

surface with deionized water. Once most of the sample residue was removed, a moistened 
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Kimwipe (Kimberly-Clarke Professional, Neenah, WI) was used to clear away any residual 

particulates. 

 

6.2.2 Results and Discussion 

Several key observations were made throughout the spectroscopic evaluation of authigenic 

carbonate nodules: (1) as expected, much stronger carbonate features were observed with 

comparatively lower intensity absorptions from clay and quartz minerals than sediment matrices, 

(2) highly variable carbonate mineral compositions, (3) Mg-calcite signatures were observed in 

all nodule samples, (4) no less than two carbonate species were observed in any sample, and (5) 

the ν3 carbonate region always exhibited characteristically broad absorption features. Figure 6-3 

contains an IR-ATR spectrum for an authigenic carbonate nodule collected from BC5 sediments. 

 

 
 
Figure 6-3: An IR-ATR spectrum for an authigenic carbonate nodule recovered from BC5 
sediments. Notice very strong carbonate absorption features in addition to minor spectral 
abosrptions from clay and quartz minerals. Of particular importance is the broad ν3 carbonate 
absorption profile around 1500 cm-1. 
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In general, three compositional classifications of authigenic nodules were found: (1) High 

Aragonite (δ13C of -26.6‰ for representative sample); medium to high aragonite signatures with 

medium to low calcite and Mg-calcite features, (2) Medium Dolomite (δ13C of -34.0‰ for 

representative sample); medium to low dolomite absorption intensities with medium to high 

calcite and Mg-calcite contributions, and (3) High Mg-Calcite (δ13C of -24.0‰ for representative 

sample); a single nodule sample exhibiting a strong Mg-calcite profile, medium to low calcite 

signature, and very low to no dolomite absorption character. The usage of qualitative terms high, 

medium, and low do not describe the composition of Mg-calcite, but are in reference to 

qualitative IR signal strengths respective to individual carbonate species. Figure 6-4 provides IR-

ATR spectra centered on the ν4 carbonate absorption region to display characteristic signatures 

for the three generalized nodule classifications based on spectroscopic analysis of carbonate 

mineral compositions. 

 

   
 
Figure 6-4: IR-ATR spectra of 7 nodule samples from MC118 demonstrating the diversity of 
carbonate mineral compositions observed for (a.) High Aragonite nodule samples, (b.) Medium 
Dolomite nodule samples, and (c.) a High Mg-calcite nodule sample. Spectra were uniformly 
shifted to and absorbance of 0.0 at 740 cm-1 to aid visualization. (* Sample provided courtesy of 
Dr. Roger Sassen, GERG, Texas A & M University). 
 

The diversity of carbonate mineral constituents in authigenic nodule samples was readily 

observed despite IR-ATR spectroscopic evaluation of only several samples. It is anticipated that 

continued spectroscopic analysis of additional samples coupled with the development of high-
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precision quantification methods will reveal a continuous range of carbonate compositions. 

However, the current primary significance of these IR-ATR spectroscopic measurements is 

revealed by the broad ν3 carbonate spectral profiles observed from all examined nodule samples. 

Figure 6-5 compares the ν3 carbonate spectral region for selected samples from each general 

nodule classification and two characteristic ν3 absorption profiles observed in surficial sediments 

from box core collections at the MC118 hydrate site. 

 

   
 
Figure 6-5: Observed ν3 carbonate absorption features from IR-ATR spectra of (a.) authigenic 
carbonate nodules from three general composition classifications (average δ13C of -28.98‰ for 4 
examined nodule specimens), (b.) sediments in close proximity to recovered nodules from BC5B 
Bot sample (δ13C of -18.7‰), and (c.) sediments from BC11A Bot sample displaying sharp, well-
defined absorption characteristics with no significant context clues indicative to authigenic 
carbonate formation at this sample collection (average δ13C of 0.50‰ for BC7 and BC11 
sediments). 
 

In Figure 6-5, rather broad ν3 carbonate absorption profiles are observed in the selected spectra 

representing authigenic carbonate nodules from each general composition classification (a.) and 

sediments from the BC5B Bot sample (b.), which was in close proximity to authigenic nodule 

formations. The BC11 sample collection was collected with no significant context clues 

suggestive to the potential for chemosynthetically driven authigenic carbonate formation (i.e., 

shells or nodules). The ν3 carbonate profile from sample BC11A Bot (Figure 6-5 (c.)) exhibits a 

very sharp absorption feature at 1413 cm-1 and three distinctive, albeit minor, shoulders at approx. 

1485 cm-1, 1520 cm-1, and 1398 cm-1. A close examination of the ν3 spectral signature for the 
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BC5B Bot sample reveals similar characteristics to the BC11A Bot sample; however, the profile 

is considerably broadened with diminished features characteristic to the BC11A Bot sample. 

A quick overview of ν3 carbonate absorption profiles from box core sediments, described in 

Chapter 5, reveals that sediments from BC2, BC4, BC6, BC7, BC8, BC9, and BC11 collections 

were found to exhibit similar spectral features exemplified by the BC11A Bot sample in Figure 

6-5 (c.). Sediments from BC1, BC5, and BC12 were the only collection locations to contain 

samples with broadened ν3 carbonate absorption characteristics similar to those displayed in 

Figure 6-5 (a.) and (b.) for authigenic nodules and the BC5B Bot sample, respectively. IR 

spectroscopic results summarized in this section facilitated establishment of the initial correlation 

between ν3 carbonate absorption characteristics and the detection of chemosynthetically driven 

authigenic carbonate formation. 

 

6.3 Coccoliths Observed in MC118 Samples 

To characterize coccolith assemblages in MC118 samples, samples were evaluated visually with 

the assistance of a SEM. The following sub-sections summarize the significant findings from 

brief characterization studies of MC118 samples. 

 

6.3.1 Experimental 

MC118 samples were characterized with use of the SEM from a Nova Nanolab 200 (FEI 

Company, Hillsboro, OR) and the assistance of Dr. Christine Kranz (ASL, Georgia Tech). 

Sediment samples were smeared onto either a small portion of a glass microscope slide or gold-

coated glass cover slip. Sediment samples were allowed to dry for at least 12 hrs prior to SEM 

examination. Sediments from the BC7 sampling location were used for the characterization of 

coccolith assemblages in sediment matrices. In addition, the surface of a small (~3 mm) 

authigenic carbonate nodule recovered from BC3 sediments was examined. Prior to nodule 
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analysis, the sample was lightly rinsed with an aqueous KOH solution (pH ~9.5) and allowed to 

dry at room temperature for approx. 72 hrs. Glass slides and the nodule sample were secured onto 

standard, aluminum SEM pin stub specimen stages with the aid of PELCO carbon conductive 

tabs (Ted Pella, Inc., Redding, CA) in order to minimize sample charging. 

 

6.3.2 Results and Discussion 

 6.3.2.1 Taxonomic Characterization of Coccoliths in MC118 Samples 

Coccolith morphologies are very diverse and commonly used for taxonomic classification of 

coccolithophore species.1-3 In Section 6.1.1.4, results from an extensive study of coccolith 

distributions throughout the surficial sediments in the GoM by Pierce and Hart were 

summarized.1 In this thesis, only brief characterization studies of coccoliths present in MC118 

samples were carried out, and coccolith identification was facilitated with the use of taxonomy 

guides of Pierce and Hart, Winter and Siesser (eds.), and Young et al.1-3 

From approx. 25 SEM imaging locations in three sediment samples and one nodule sample, 

coccoliths from 4 of the 11 primary taxa found in surficial sediments throughout the GoM by 

Pierce and Hart were identified with high confidence.1 The 4 coccolith taxa were Emiliania 

huxleyi, Gephyrocapsa oceanica, Calcidiscus leptoporus, and Thoracosphaera heimii. Coccolith 

morphologies characteristic of E. huxleyi were the most abundant formations observed within 

MC118 samples; consistent with findings reported by Pierce and Hart.1 Figure 6-6 contains SEM 

images illustrating the various coccolith taxa observed during coccolith characterization studies in 

this thesis. 

 

 

 

 

 



 207

  
 

  
 
Figure 6-6: SEM images exhibiting coccoliths with taxonomic identification of 4 primary taxa 
found in GoM sediments. Images (a.), (c.), and (d.) were collected from BC7 sediments, and 
image (b.) was collected during surface evaluation of an authigenic carbonate nodule collected 
from BC3. In images (b.) and (c.), well-preserved E. huxleyi coccoliths are also indicated without 
an identification tag. More coccoliths and coccolith fragments can be observed in each image. 
 

 6.3.2.2 Coccolith Density in MC118 Sediments 

Coccoliths characteristic of E. huxleyi were observed in abundance during SEM investigations. 

Figure 6-7 contains two SEM images illustrating the abundance of readily identified coccoliths 

and coccolith fragments superficially distributed from the BC7 sediment sample. 
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Figure 6-7: SEM images with highlighted whole coccoliths and coccolith fragments from BC7 
sediments; E. huxleyi (green), G. oceanica (blue), and an unidentified taxa (yellow). 
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In Figure 6-7, a reasonable estimation of eight coccoliths (whole, nearly whole, and summed 

minor fragments) per 25 μm × 25 μm can be made. Using values from Chapter 7 to describe 

‘active’ sensing regions along the waveguide surface for IR-ATR measurements with a similar 

experimental setup as that used for sediment studies (radiation cone angle of 2 ° and source radius 

of 0.1278 cm from Table 7-3 in Section 7.3.3.2), approx. 215 mm2 of the measurement surface 

participates in spectral generation. Hence, a rough approximation indicates that > 2.5 × 106 

coccoliths (equivalent to approx. 25 mg)12 would be subject to full or partial interaction with the 

evanescent field, which is ample particle density and sufficient mass for significant contribution 

to IR-ATR spectra. Results summarized in this section confirmed the feasibility for characteristic 

carbonate signatures, specifically displayed in Figure 6-5 (c.), to originate from accumulated 

coccoliths within sediments collected from the MC118 gas hydrate site. 

 

6.4 IR-ATR Spectroscopic Evaluation of Coccoliths from Coccolithophore Cultures 

To confirm the capability for detecting authigenic carbonate precipitation within very fine 

sediment fractions with IR-ATR spectroscopy, it was imperative to establish a direct connection 

of ν3 carbonate infrared absorption signatures displayed in Figure 6-5 (c.) with coccolith 

formations. This section provides a detailed overview of experiments and results for the 

generation of IR-ATR absorption spectra of coccoliths produced by cultured coccolithophores. 

 

6.4.1 Experimental 

 6.4.1.1 Coccolithophore Cultures 

Coccolithophore cultures were purchased from Ward’s Natural Science (Rochester, NY). In total, 

9 vials with approx. 20 mL (each) of coccolithophores in marine culture media were obtained. 

After initial receipt of the coccolithophore cultures, optical microscope (OM) (Olympus BX41, 

Olympus America Inc., Mellville, NY) and SEM images (Nova Nanolab 200, FEI Company, 
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Hillsboro, OR) were taken to confirm the presence of coccolith shields and assist taxonomic 

identification. To reduce interference from salt recrystalization, approx. 1 mL of culture was 

diluted with 12 mL of KOH solution (pH ~9.5) and centrifuged (IEC Clinical Centrifuge, 

International Equipment Company, now Thermo Scientific, Waltham, MA) for 2 hrs. Following, 

all but ~0.5 mL of supernate was discarded, and the sedimented coccolith/coccolithophore 

condensate was re-suspended in the remaining solution. Several droplets of the condensate were 

pipetted onto a glass microscope slide and gold-coated glass cover slip and allowed to dry for OM 

and SEM imaging, respectively. Figure 6-8 provides confirmatory images of generous coccolith 

production by coccolithophore cultures of Pleurochrysis carterae.3 

 

  
 
Figure 6-8: Optical microscope image at x100 magnification (a.) and SEM image (b.) of 
coccoliths produced by Pleurochrysis carterae. The coccoliths are ellipsoidal shaped rings 
approx. 2 μm in length along the major axis. 
 

The primary objective for culturing coccolithophores was to generate a sufficient mass of 

coccoliths for IR-ATR spectroscopic evaluation. Hence, elementary culturing methods were 

utilized compared to highly controlled coccolithophore culture studies.4, 21, 22 Cultures were 

maintained in uncovered vials between 21 – 25 °C in a partially shaded, eastward facing window 

for 4 – 6 weeks prior to harvesting for spectroscopic evaluation. Each vial was sealed and gently 

swirled each morning for approx. 10 s to mix culture contents. Following, the vials and flasks 

were uncovered to facilitate gas exchange. 
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 6.4.1.2 Sample Preparation 

During collection of coccoliths for IR-ATR spectroscopic evaluation, similar treatments for 

concentrating coccoliths while reducing the potential for salt interferences for OM and SEM 

images were carried out. First, culture vial contents were transferred into 6 glass centrifuge tubes 

and brought to equivalent volumes with KOH solution (pH ~9.5). Following centrifugation for 

approx. 2 hrs, all but approx. 1 mL of culture media was carefully removed and discarded. Then, 

approx. 12 mL of KOH solution was added to achieve equivalent volumes before centrifuging for 

another 2 hrs. After rinsing and concentrating coccoliths (with coccolithophores), the supernatant 

from each centrifuge tube was carefully removed until approx. 1 mL of condensate remained. 

Condensates from each vial were then re-suspended and transferred into 2 clean centrifuge tubes. 

Before centrifuging the combined contents, 2 mL of KOH solution was added to each of the 

initial tubes and vigorously shaken to maximize coccolith/coccolithophore collection. KOH 

recovery solutions were then added to the final 2 tubes. Final collection tubes were brought to an 

equivalent volume with additional KOH solution, and then centrifuged for approx. 1 hour. 

Supernate was removed until approx. 2 mL of condensate and solution remained. Finally, each 

sample was capped and stored at room temperature. 

 6.4.1.3 IR-ATR Instrumentation and Spectroscopic Measurement Procedures 

The IR-ATR spectra of coccolith/coccolithophore samples were collected using the same 

experimental configuration as described in Section 6.2.1.1. 

IR-ATR spectroscopic measurements were carried out for aliquots of each sample tube with 

condensed coccoliths and coccolithophores. Prior to loading each sample, the internal sample 

compartment was purged for at least 10 mins before collecting a reference spectrum. Following, 

the coccolith/coccolithophore matrix was re-suspended and mixed with the 2 mL of remaining 

solution before dispensing approx. 1 mL of sample to fully cover the waveguide surface. After 

sample deposition, IR-ATR spectra were collected at 90 s intervals while drying until a minimum 
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of 30 spectra were collected following signal stabilization after water evaporation. All reference 

and sample spectra were 100 sample scan averages at 1 cm-1 resolution. 

 

6.4.2 Results and Discussion 

In SEM images of GoM sediments (as seen in Figure 6-7), accumulated coccolith shields were 

found as detached particulates; a common result of sloughing from living organisms and 

separation from expired organisms during detrital sedimentation.2, 7 From published SEM photos, 

a single P. carterae cell is generally covered with > 70 coccoliths.3, 16 Considering the difference 

between cell size (~10 μm) to coccolith size (~2 μm) with at least a 70:1 

coccolith:coccolithophore ratio, only minor organic-based spectroscopic signatures were expected 

during evanescent field measurements. Hence, no additional treatments were taken to further 

isolate the coccoliths from organic remnants of the culture matrix. Representative IR-ATR 

spectra for each of the prepared coccolith condensates are provided in Figure 6-9. 

 

 
 
Figure 6-9: IR-ATR spectra for each sample of coccolith condensates from cultured 
coccolithophores of P. carterae. 
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As expected, the IR-ATR spectra of coccolith condensates were dominated by calcite absorption 

features (ν4; 713 cm-1) with only minor spectral contributions from organic coccolithophore 

debris and/or remnants from the parent culture media around 3000 – 2820 cm-1 and 1200 –

 950 cm-1. Additionally, minor water absorption features were observed in the O-H stretch and H-

O-H bend regions. However, the most significant finding was the absorption characteristics of the 

ν3 carbonate region in both cultured coccolith samples. The IR-ATR spectra exhibit an intense, 

sharp absorption band at 1413 cm-1 resembling the ν3 carbonate profiles from MC118 sediments 

inundated with coccoliths. Accentuated views of the ν3 carbonate absorption regions for 

coccoliths from culture (CfC) and a graphical overlay with coccolith loaded BC7A Bot sediments 

(δ13C of 0.4) are provided in Figure 6-10. 

 

  
 
Figure 6-10: IR-ATR spectra displaying accentuated views of the ν3 carbonate region for (a.) 
coccoliths from culture (CfC) for evaluated condensate samples and (b.) overlays of CfC and 
coccolith rich BC7A Bot sediments collected from MC118. Each carbonate profile exhibits an 
intense, narrow absorption feature centered at 1413 cm-1. 
 

In addition to the intense band at 1413 cm-1, the spectra of P. carterae coccoliths exhibit two 

partially defined shoulders similar to MC118 sediment signatures. Shouldering absorption 

features were observed at approx. 1485 cm-1, 1520 cm-1, and 1398 cm-1 in MC118 sediments, and 
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at approx. 1484 cm-1 and 1399 cm-1 from cultured coccoliths. A comparable, distinctive 

absorption feature at 1520 cm-1 was not observed for the cultured coccoliths. This is currently 

attributed to a slight inter-species variance in single-crystal calcite units contributing to the 

overall coccolith morphology; primarily between E. huxleyi and P. carterae as E. huxleyi 

coccoliths are dominant throughout GoM sediments. A more thorough consideration to 

molecular, structural, and environmental factors contributing to spectral differences in the ν3 

carbonate profiles is provided in Section 6-5. 

Following IR-ATR spectroscopic evaluation, OM images were collected for dried coccolith 

assemblages on demounted ZnSe waveguides. Figure 6-11 contains an OM image displaying a 

high surface density of condensate residue contrasted against a bare portion on the ZnSe 

waveguide. The zonal boundary between coccolith remnants and clean surface resulted from 

dismounting the waveguide; a small edge portion of ZnSe crystal is masked by a Viton mat when 

mounted in the ATR assembly to prevent solution leakage. 

 

 
 
Figure 6-11. OM image (x2.5) contrasting a bare portion of ZnSe crystal with a high surface 
density of coccolith/coccolithophore residue after IR-ATR measurements. 
 

Additional OM images were collected at x50 magnification for visual confirmation of coccolith 

structures on the ZnSe waveguide surface following spectroscopic evaluation. Representative 

images from each condensate sample are contained in Figure 6-12. 
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Figure 6-12: OM images of dried coccolith accumulations on ZnSe crystals following 
spectroscopic evaluation of (a.) CfC trial 1 at x50 magnification in dark-field lighting and (b.) 
CfC trial 2 at x50 magnification. Copious coccoliths are observed on the ZnSe waveguide surface 
in both images. 
 

The ν3 carbonate spectral signatures from cultured coccoliths exhibited a direct correlation to 

many of the IR-ATR profiles from surficial MC118 sediment collections with abundant 

coccoliths, which was further corroborated with SEM imagery and carbon isotope evaluation of 

BC7 and BC11 samples (average δ13C of 0.5). The traceability of coccolith signatures from IR 

spectra in most MC118 sediment samples is consistent within established context. Coccolith 

accumulations account for a significant mass fraction of sediment compositions off of the 

continental shelves in the GoM as a product of thriving coccolithophore crops throughout photic 

waters in the Gulf region (expected δ13C of carbonate close to normal seawater values of 0). At 

the MC118 hydrate site, this signal is disrupted by the culmination of geophysical and 

biogeochemical processes driving authigenic carbonate formation (expected depletion of 13C from 

the inheritance of C from seeping thermogenic hydrocarbons with strongly negative δ13C values). 

Although direct correlations have been established and experimentally validated, it is important to 

understand the underlying molecular level consequences giving rise to the observed spectral 

differences. Hence, Section 6.5 provides a thorough examination as to the origins of 

characteristically ‘sharp’ ν3 carbonate profiles of biogenic coccoliths and the consequences of 

authigenic carbonate precipitation leading to broadened spectral features. Then, final conclusions 
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from IR-ATR spectral analyses of MC118 sediment and nodule samples examined throughout the 

described studies are provided in Section 6.6. 

 

6.5 Traceability of Coccolith IR Absorption Signatures in Sediments with and without 

Authigenic Carbonates 

A variety of topics must be considered to understand the spectral consequences of authigenic 

carbonate formation on the alteration of carbonate absorption signatures from coccolith laden 

sediments. This section will first focus on delineation of the nature of IR absorption features 

characteristic to coccolith formations. Then, the spectral impact of authigenic carbonates as 

disruptive elements that decompose the traceability of coccolith signatures in sediment samples 

will be discussed. The ν3 carbonate absorption feature will be of primary interest, but absorption 

characteristics of the ν2 carbonate signature are also considered. 

 

6.5.1 Molecular Characteristics of Coccoliths and Relationship to IR Absorption Features 

In Section 6.1.1.3, the molecular level control coccolithophores impart during the 

biomineralization of coccoliths was described.2, 4, 6, 10, 15-20 IR absorption characteristics of solid 

samples are strongly influenced by molecular composition, the molecular uniformity throughout 

crystalline lattices, and mixed-crystal formations.23, 24 The IR spectral consequences to calcite 

absorption features from Mg2+ incorporation during the formation of Mg-calcite (Section 5.1.3.3) 

is a specific example of the impact molecular composition can impart upon crystal uniformity and 

resultant IR absorption characteristics of carbonate minerals.25-27 In contrast, the IR absorption 

characteristics of carbonate crystals should also be indicative of considerable uniform molecular 

composition coupled with highly ordered crystalline lattices. Although molecular composition is 

important, spectral comparison of coccolith calcite and non-biogenic, naturally occurring calcite 

mineral (also referred to as inorganic calcite) reveals that the crystalline structure is perhaps more 
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influential to the ν3 carbonate profile. Figure 6-13 contains an overlay from the IR-ATR spectra 

of cultured coccoliths and naturally occurring inorganic calcite. 

 

 
 
Figure 6-13: IR-ATR spectra focused on the ν3 carbonate absorption features for calcite for 
coccoliths from culture (CfC) and hand ground non-biogenic calcite (calcite). The calcite 
spectrum was obtained from the IR-ATR spectral database described in Section 5.2. 
 

The ν3 calcite absorption profiles from coccoliths and inorganic calcite mineral are quite different 

despite both specimens being composed of high purity calcite. The observation of broadened 

features from the non-biogenic mineral, also observed in other calcite spectra in the literature,28-34 

can result from disruption to well-ordered crystalline lattices during grinding (results in peak 

height variations in XRD measurements35). Furthermore, although large single-crystals can form 

naturally, the absence of biologically templated growth can increase the susceptibility to lattice 

defects or alteration, which can directly influence IR absorption characteristics (i.e., the formation 

of Mg-calcite as discussed in Section 5.1.3.3). Hence, the well-defined ν3 carbonate absorption 

features characteristic of coccolith formations are attributed to the high degree of organismal 
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control over the molecular composition and, most importantly, the crystallographic uniformity of 

‘nano’-sized single-crystal building blocks that form the coccolith shield.4, 10, 15-20 

The IR-ATR spectral features obtained following the concentration of millions of cultured 

coccoliths further reflects the conservation of precise control in templated crystal formation 

among organisms of the same species. In this work, coccoliths from E. huxleyi were found to be 

the most abundant coccolith morphology within MC118 sediments; however, the direct 

connection of sediment spectral features to coccolith formations was based upon the absorption 

characteristics from cultured P. carterae coccoliths. The cellular calcification mechanisms of 

coccolith formation and coccolith structuring have been extensively studied for both E. huxleyi 

and P. carterae.4, 10, 15-20 Although cellular components involved in coccolith calcification 

mechanisms have been shown to vary between E. huxleyi and P. carterae, coccolith growth from 

both species (as well as other heterococcolith producing species) initiate through what has been 

described as a proto-coccolith ring.4, 10, 15-20 The proto-coccolith ring is comprised of two types of 

alternating single calcite crystals; V and R scaffolding units having their c-axis oriented either 

vertically or radially to the coccolith plane, respectively. Once formed, growth propagates 

through the addition of other single crystal units until the species specific coccolith morphology is 

achieved.4, 10, 15, 16, 18-20 

The extreme similarities of ν3 carbonate profiles, particularly the sharp, strong absorption at 

1413 cm-1, in the IR-ATR spectra of MC118 sediments and cultured coccoliths reflects an 

inherent inter-species conservation for generating coccoliths with highly uniform molecular 

composition and ordered single crystal structures. However, slight differences in the overall ν3 

profiles were observed, such as the absence of a distinctive shoulder at approx. 1520 cm-1 from 

cultured coccoliths (additional spectral details provided in Section 6.4.2). This is currently 

attributed to differences in the basic single-crystal building blocks contributing to the overall 

coccolith morphologies primarily respective to E. huxleyi and P. carterae; although, the coccolith 



 219

dominated sediment signature may also reflect contributions from accumulated coccoliths of 

other taxa (i.e., morphologies from G. oceanica). Additionally, the presence of organic matter in 

cultured coccolith samples could overshadow accentuation of such a shouldering feature due to 

spectral mixing. 

 

6.5.2 Disruption to ν3 Carbonate Signatures of Sediments Laden with Coccolith Calcite due to 

Authigenic Carbonate Formation 

Now that molecular level characteristics contributing to the peculiar ν3 absorption trends of 

coccoliths and a brief introduction to factors capable of disrupting IR absorption features have 

been considered, it is essential to address the consequences of authigenic carbonate formation that 

leads to overshadowing of the IR absorption signatures in sediments containing abundant 

coccoliths. 

Coccoliths are widely distributed throughout the GoM, and are the primary carbonate source in 

the particle fraction < 6 μm of surficial sediments with taxonomic distributions variable at a 

regional scale.1, 2, 4, 5, 7, 9, 14, 15 Throughout Chapter 5 and previous sections within this chapter, the 

traceability of coccolith spectral signatures in MC118 sediments has been clearly demonstrated. 

Hence, at a particular location, such as the MC118 site, a characteristic ν3 carbonate signature 

should be observed throughout the very fine sediment fractions reflecting a rather homogeneous 

taxonomic distribution of coccoliths unless disrupted from the appearance of ‘non-coccolith’ 

carbonate within the sediment matrix. In current studies, microbially driven authigenic carbonate 

precipitation of ‘non-coccolith’ carbonate has been demonstrated to degrade the peculiar spectral 

profile of sediments with abundant coccolith calcite at MC118. 

Although authigenic carbonate formation at the MC118 hydrate site is biogeochemically driven 

by chemosynthetic communities associated with hydrocarbon seepage emanating from extensive 

fault conduits as discussed in Chapter 5, authigenic carbonate precipitation is a non-templated 
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abiotic process, which introduces a number of factors that can collectively attribute to spectral 

broadening of the ν3 profiles characteristic to proliferate coccolith aggregations in seafloor 

sediments. The IR-ATR spectroscopic characterization of carbonate minerals from MC118 

authigenic nodule formations revealed the presence of multiple carbonate minerals in each 

evaluated sample. Although sample grinding can potentially disrupt the spectral profile by 

damaging crystal lattices, the appearance of multiple carbonate species is interpreted to have the 

most significant impact upon ν3 broadening due to spectral mixing of multiple modal 

contributions with slight variations in the fundamental absorption frequency respective of cationic 

substitution. Broadened ν3 spectral characteristics from sediments with authigenic carbonate 

formation also exhibited clearly distinguishable carbonate species diversification with exception 

of sediments from the BC5 location, which contained several High Aragonite authigenic nodules 

and the only observed High Mg-calcite authigenic nodule sample. 

Mg-calcite was observed in all nodule samples and sediments from the BC12 location. As 

discussed in Section 5.1.3.3, the occlusion of Mg2+ into calcite structures introduces positional 

disorder of CO3
2- and unit-cell contraction of the calcite lattice. Disruption of the calcite lattice 

with Mg2+ substitution during formation of Mg-calcite leads to spectral broadening and blue 

shifting of characteristic calcite absorption bands with increasing Mg2+ substitution as described 

by Bottcher et al.27 Hence, in addition to band broadening from spectral mixing with the 

appearance of Mg-calcite, seeded Mg-calcite growth on coccolith formations could diminish 

coccolith contributions to the ν3 carbonate signature. 

Spectral broadening from authigenic carbonate formation is also attributed to the spontaneous 

precipitation of non-templated crystals. In addition to the susceptibility of lattice defects, 

authigenic carbonate formation, morphology, and cementation can vary widely with temporal 

fluctuations in pore water chemistry, Mg2+ concentration, temperature, salinity, and pressure.5, 36 

This can result in the accumulation of diverse carbonate mineralogy and dissimilar crystal 
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formations comparable to mixed-crystals, which are known to contribute to spectral broadening.24 

Sensitivity of the ν3 spectral profile between ground inorganic calcite and cultured calcite 

coccoliths (see Figure 6-13) illustrates the potential for significant broadening as a result of 

accumulated particulates with dissimilar and/or disrupted crystalline features. 

In addition to the various molecular and crystallographic consequences authigenic carbonates can 

impart upon the broadening of the ν3 profile for coccolith rich sediments, two additional factors 

associated with authigenic carbonates can also attribute to diminished coccolith spectral 

signatures in seafloor sediments. First, accumulation of authigenic carbonate dilutes the relative 

mass abundance and consequently the spectral contribution from coccoliths. Second, the potential 

seeded overgrowth of coccolith formations by authigenic carbonate, which can additionally 

reduce evanescent field interactions with coccoliths. 

Although many factors from the appearance of authigenic carbonate can perturb the ν3 profile 

characteristic to coccolith sediments, the diminished mass fraction of coccolith composition and 

concomitant diversification of carbonate minerals are considered to be the most influential factors 

impacting the IR spectrum. Overall, the peculiar coccolith absorption characteristics and the 

influences of authigenic carbonate formation on the IR spectrum enable the detection of 

authigenic precipitation within coccolith dominated sediments at MC118. Furthermore the 

presence of biodegraded crude oil, a foundational component for chemosynthetic communities 

driving authigenic carbonate formation, contributes spectral absorption features in the ν3 

carbonate region, which can influence detection capabilities (i.e., BC9 sediments exhibited 

depletion in 13C from authigenic carbonate with no IR spectral indication of authigenic carbonate 

through species diversification or broadened ν3 features). 
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6.5.3 Consideration of ν2 Carbonate Signatures of Coccolith Laden Sediments and the Impact of 

Authigenic Carbonate Formation 

It was previously mentioned in Section 5.4.2.2 that, upon introduction of authigenic carbonates, 

the ν2 carbonate absorption band exhibited similar characteristics and spectral changes observed 

in the ν3 region. To aid visualization and facilitate discussion, Figure 6-14 accentuates the ν2 

absorption region for inorganic calcite, coccoliths from culture, and sediments with and without 

ν3 spectral broadening. 

 

 
 
Figure 6-14: The ν2 carbonate absorption region displaying the IR absorption of hand ground 
inorganic calcite (calcite), coccoliths from culture (CfC), BC7A Bot sediments without authigenic 
carbonate interference, and BC1C Bot sediments with authigenic carbonate interference. 
 

Several key observations can be delineated from Figure 6-14. First, ν2 absorption features from 

BC7A Bot sediments, representative of sediment signatures without authigenic carbonate 

interferences, contain a sharp absorption band at 871.6 cm-1 with a weak shoulder at 877 cm-1. 

However, the prominence of the 871.6 cm-1 band is significantly decreased by the appearance of 

authigenic carbonate in BC1C Bot sediments; although, some resemblance to coccolith related 

features are still observed in both the ν2 and ν3 absorption profiles. The ν2 absorption of cultured 



 223

coccoliths is observed at the same position as the weak shoulder in BC7A Bot sediments, and the 

inorganic calcite peak reflects the disrupted absorption trends from BC1C Bot sediments. The 

same contributing factors leading to similar spectral changes observed in the ν3 absorption 

characteristics also influence the profile of ν2 carbonate features. However, the origin of two 

clearly distinguishable ν2 absorption bands from the coccolith rich BC7A Bot and similar 

sediments is unclear, as the ν2 peak from cultured coccoliths only exhibits one peak matched with 

the weaker absorption feature from the sediment sample. This is currently attributed to inter-

species variance of single-calcite crystal units contributing to the overall coccolith morphology; 

however, further investigations are necessary to elucidate the source of both absorption features 

observed in sediment samples without authigenic interferences. 

 

6.6 Concluding Remarks from IR-ATR Spectral Analyses of Sediment Collections and 

Nodule Samples 

The collective experiments performed throughout Chapters 5 and 6 have demonstrated the 

ability to detect the impact of localized and patchy authigenic carbonate formation driven by 

chemosynthetic communities at the MC118 hydrate site from the background carbonate signature 

of widely distributed coccolith accumulations throughout the GoM. Carbon isotope data and the 

abundance of context clues supporting the potential for authigenic carbonate formation within 

sediments at sampling locations, including the recovery of authigenic nodules, shells from larger 

chemosynthetic organisms, and oily and/or gassy sediments, substantiate interpretations with the 

coincident appearance of spectroscopic perturbations to carbonate signatures. In addition, the 

capability to readily associate analytical results from each sampling location with respect to site 

geography and previous characterization of hydrate and carbonate formations further accentuate 

the value of context clues throughout this pioneering work with a limited number of sampling 

locations. 
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Sampling locations BC4, BC9, and BC12 exhibited signs for potential authigenic carbonate 

precipitation. However, IR evaluations revealed that only BC12 sediments were conclusively 

indicative to the presence of authigenic carbonates; thus, alluding to the localized effects and 

variability of pore water chemistry and perhaps biogeographic variance surrounding the fault 

conduits at the southwest vent. The patchy distribution of authigenic carbonates was further 

demonstrated from the analysis of spectral profiles in sediments from the BC5 location (NW 

ridge), which exhibited highly localized authigenic signatures. Sub-samples from the BC5A push-

core did not indicate the presence of authigenic carbonate. However, the bottom sediments from 

push-core BC5B (approx. 8 – 13 cmbsf) were sampled and evaluated because of a diffuse streak 

of fine white particulates contrasting against sediments tainted black from abundant H2S (i.e., 

smelly), a favorable biogeochemical component for promoting authigenic carbonate precipitation. 

Evaluation of this sample revealed characteristic spectral changes in the ν3 carbonate region 

indicative of authigenic carbonate formation. The BC5B Bot sample was particularly interesting 

as the presence of additional carbonate minerals other than calcite were not detected in the ν4 

region. This could be the result of precipitated calcite and/or low Mg-calcite, low mass 

compositions of dolomite, or some combination with no detectable impact upon the ν4 region. 

The recovery of shells, gassy mud, and spectral confirmation of authigenic carbonate in sediment 

samples from BC1 and BC5 locations and authigenic nodules recovered from BC5 strongly 

support further investigations to improve characterization of the region along the NW ridgeline at 

MC118. 

Combined results from MC118 gravity core samples 21, 26, and 38 and the piston core samples 

from MD02-2570 provide a great deal of insight for additional applications of IR-ATR 

spectroscopy, including potential limitations for characterizing chemosynthetically driven 

authigenic carbonate formation surrounding oceanic hydrate locations throughout the GoM. 

Semi-quantitative analyses for estimating the relative mass % of dolomite to the total sediment 
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carbonate composition revealed considerably high dolomite compositions in core 21 and 26 

samples and all samples evaluated from the MD02-2570 piston core. The high dolomite content 

could result from either pervasive and/or prolonged primary authigenic precipitation driven by 

chemosynthetic processes or diagenetic burial dolomitization processes, which are currently not 

well understood by the scientific community.5, 37 Carbon isotope data confirms that carbonate 

from cores 21 and 26 and the 6 mbsf MD02-2570 sub-samples contain authigenic carbonate 

inherited from chemosynthetic processes; however, more extensive chemical and petrographic 

analyses are required to further characterize the origination of dolomite. 

Although only a limited number of samples > 30 cmbsf have been evaluated, the strong 

occurrence of dolomite within the first meter of piston core sediment samples suggests potential 

depth limitations for definitive characterization of active authigenic carbonate precipitation driven 

by chemosynthetic processes. Additional IR-ATR studies evaluating the compositional changes 

of dolomite with higher resolution depth profiles coupled with classical isotopic, chemical, and 

petrographic analyses may facilitate advances towards understanding dolomite genesis/diagenesis 

at MC118, which is anticipated to be highly variable within these complex ecosystems. IR-ATR 

is particularly attractive for facilitating advances on this topic because it is amenable for in situ 

application and rapid on-ship/laboratory sediment screening. The rapid screening capability and 

simplicity of visual, qualitative sample diagnostics via broadened ν3 carbonate absorption profiles 

should serve as an excellent procedure for quickly identifying the onset of dolomite transitional 

zones.37 This should enable the focused analytical characterization (i.e., isotopic analysis, 

petrographic characterization, chemical composition, etc.) on samples collected within sediment 

zones demonstrating compositional changes in the IR-ATR spectra. 

Spectroscopic evaluations of recovered authigenic carbonate nodules from MC118 revealed 

diverse carbonate mineral compositions. Initial qualitative characterization facilitated the 

identification of three general compositional classification groups. Although no substantial 

insight into the dynamics of the MC118 hydrate site can be gained from the limited number of 



 226

samples evaluated at this time, continued sample characterization and development of improved 

quantitative ternary (calcite + Mg-calcite, dolomite, and aragonite) or quaternary (calcite, Mg-

calcite, dolomite, and aragonite) classification schemes may reveal intra-site trends and 

variability regarding the history and dynamics of carbonate formation at MC118. Additional 

characterization and dimensioning of such data sets with isotopic ratio analyses may also 

contextualize compositional changes with respect to the extent and variability of biological 

activity upon authigenic carbonate formations at this location. 

The accuracy of semi-quantitative IR-ATR spectroscopic methods for characterizing calcite-

dolomite compositions to the total sediment carbonate composition in this thesis was highly 

constrained. However, its application has facilitated an initial approximation as to the range of 

dolomite mass % composition in surficial sediments at MC118 and identified potential limitations 

for characterizing chemosynthetically influenced authigenic carbonate formation due to unknown 

processes leading to considerable dolomite fractions in deeper sediments. Furthermore, to 

facilitate broader application of this method for characterizing calcite-dolomite compositions in 

complex marine solid samples at MC118, as well as other locations, more careful considerations 

and correction for the spectral influences of quartz, clay, Mg-calcite, and aragonite are required. 

Lastly, the most significant finding of this thesis was establishing the connection of peculiar ν3 

carbonate absorption features from surficial marine sediments to coccoliths. At MC118, the 

presence of authigenic carbonates driven by chemosynthetic organisms has been shown to occur 

in highly localized microenvironments through disruption in the spectral traceability of regionally 

distributed coccoliths. Hence, the capability to distinguish localized environmental changes to 

carbonate mineralogy among the background and context of regional coccolith carbonate cycles 

illustrates the potential for broader application and development of IR-ATR sensing strategies to 

further address additional aspects of complex marine carbonate cycles. During this initial work, 

coccoliths from P. carterae were found to exhibit similar IR absorption characteristics to the 

coccolith laden sediments at MC118, which primarily consisted of E. huxleyi morphologies. 



 227

However, slight spectral variations allude to potential inter-species variance of IR absorption 

characteristics. This is interesting as the coccolith signature observed at MC118 may exhibit 

geographic variations with respect to regional scale differences in the taxonomic distributions of 

coccoliths. 

In conclusion, the capability to detect the presence of authigenic carbonates is attractive for 

assessing and characterizing the spatial distributions and mineralogical variance throughout the 

MC118 site. This is particularly important for evaluating the extent and significance of carbon 

cycling and sequestration mechanisms that act as buffers against the migration of greenhouse 

gasses from oceanic sources into the atmosphere. Furthermore, the appearance of strong dolomite 

interferences with increasing sediment depths reveal potential limitations for associating spectral 

drift to microbial influenced carbonate formation; however, IR-ATR should additionally facilitate 

depth profiling of the carbonate composition to identify critical interfaces where dolomite 

becomes a substantial carbonate constituent. Thus, enabling assessment of its own limitations and 

focusing additional studies that may facilitate the elucidation of dolomite formation processes and 

diagenetic zones of authigenic carbonates in the GoM as summarized in Botz et al.37 

The use of IR-ATR spectroscopy for characterizing the carbonate composition in marine 

sediments within this thesis was highly focused on characterization of the MC118 gas hydrate 

ecosystem. Although only a limited number of samples were collected and analyzed from the 

MC118 site, the well-established contextual background for this particular location has facilitated 

the development of practical, qualitative and semi-quantitative applications for IR-ATR sensing 

strategies that are immediately applicable to on-ship and laboratory analysis. With regards to the 

GOMGHRC objectives, the most promising immediate applications include the spatial 

characterization of authigenic carbonate formation within surficial sediments and the variance of 

carbonate mineralogy. Information obtained from such studies should facilitate additional 

dimensional analyses of the MC118 site with a particular emphasis on coordination of the 

collective context to all consortium studies. 
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6.7 Outlook 

Although the focus of carbonate work described in this thesis was centered on a single location 

within the GoM, the regional and global distributions of coccolithophores and isolated gas 

hydrate ecosystems associated with thriving chemosynthetic communities that drive accumulation 

of massive authigenic carbonate formations indicates a profound relevance for extending the 

application of IR-ATR sensing strategies to characterize oceanic gas hydrate ecosystems beyond 

the confines of the MC118 site.2, 4, 5, 9, 14 For example, Milliman summarizes the global 

distributions of biogenic carbonate oozes to cover > 47% of the seafloor (typically between 

45 ° N and 45 °S), and that deep-sea oozes account for > 89% of the total carbonate in surficial 

sediments of Earth’s oceans.5 In addition, the occurrence, distribution, variability, and complexity 

of carbonate mineralogy with respect to different marine environments provides ample 

opportunity for developing additional contextually relevant environmental applications for 

qualitative and quantitative IR-ATR spectroscopic carbonate analyses. In contrast, this technique 

should also provide an avenue for identifying the occurrence of biogeochemical and/or 

geophysical shifts in oceanic environments based upon the consequences that can be recorded 

through changes in carbonate signatures and mineralogy. Hence, the simplicity and capabilities of 

presented work is anticipated to stimulate broader application of this technique for on-ship 

screening of oceanic sediments. Furthermore, the current work establishes an immediate and 

significant in situ application for deep-sea MIR chemical sensing platforms, which substantiates 

the need to push forward development of instruments capable of performing in harsh oceanic 

environments. 

The application for IR-ATR spectroscopy for assessing coccolith absorption characteristics opens 

the door for many research opportunities. Coccolithophores thrive throughout most photic waters 

of Earth’s oceans and seas.2, 4, 9 In the GoM, the abundance of E. huxleyi and the respective 

dominance of E. huxleyi coccoliths in marine sediments should impart the greatest influence over 

the spectroscopic signature of coccolith marine sediments off of the continental shelves.1, 7 
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However, the additional accumulations of coccoliths from other taxa have the capability for 

contributing to the overall carbonate spectral profile.1 Hence, it will be of particular interest to 

assess and establish the spectral variance across coccolith species as well as mixed-species 

accumulations, with particular emphasis on the taxonomic distributions respective to primary 

oceanic zones and geographic regions (e.g., Tropical Atlantic, Transitional Atlantic, and the 

Mediterranean).2, 4, 5 In addition, IR spectroscopic analysis may be useful for evaluating inter-

species relationships based upon molecular consequences in the spectral features of coccolith 

formations. However, coccoliths are not the only significant source of biogenic carbonate with 

wide geographic distributions in deep-sea sediments. Planktonic foraminifera and pteropods are 

two additional primary sources of biogenic carbonates.4, 5 Although the larger size of these 

carbonate formations compared to coccoliths limits their potential for generating traceable 

absorption features in the IR-ATR spectra of sediments, the fact that they are carbonate with a 

global prominence requires detailed considerations to fully assess their spectroscopic value. 

It is additionally important to address the capabilities, limitations, and potential for quantitative 

and semi-quantitative applications for evaluating carbonate mineralogy within marine sediments 

with IR spectroscopy. 

First, the semi-quantitative strategies utilized in this work limits highly accurate quantitative 

assessment of the relative calcite-dolomite compositions to the total sediment carbonate. 

However, despite the restricted accuracy, it has been demonstrated as a useful strategy for 

assessing large scale variability and general trends in shifting carbonate compositions. More 

careful considerations to sediment matrix compositions including quartz, clays, and carbonates 

are necessitated to improve quantitative capabilities for this evaluation strategy while adhering to 

established particle sizes of < 2 μm to ensure measurement accuracy and reproducibility. 

Second, the quantification of total carbonate compositions in marine sediments with IR 

spectroscopy has been demonstrated previously in the published literature.32, 38, 39 Although this 

application was not specifically addressed in this thesis, presented results are of particular 
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significance regarding the published work by Mecozzi et al.32 They demonstrated the capability to 

quantify the total carbonate content in marine sediments through evaluation of the peak area 

respective to ν3 carbonate absorption features. However, from this work there are perhaps two 

major oversights when projecting the potential capabilities for this evaluation strategy: (1) the 

developed analytical strategies would be widely applicable with exception to sediments with 

crude oil and (2) that the influence of additional carbonate species other than calcium carbonate 

would be negligible. In many marine environments, the influence of additional carbonate 

minerals or calcium carbonate polymorphs may be negligible. However, the variability and 

complexity of ν3 absorption profiles with respect to calcium carbonate polymorphs and the 

origins of a single carbonate species, as demonstrated in the case of ‘coccolith calcite’, requires 

more careful considerations before generic implementation to ensure validity of proposed peak 

integration quantification methods. Chester and Elderfield displayed the capability to quantify 

total carbonate composition through peak height analysis with ratiometric correction for other 

major minerals in many types of marine sediments.38 This strategy is advantageous to peak 

integration methods as peak height analysis is less susceptible to peculiar peak shapes. Overall, 

the few publications available limit a full assessment as to the capabilities of IR quantification 

strategies for characterizing all types of carbonates throughout the full range of in marine 

sediments in the Earth’s oceans and seas. Until that has been fully demonstrated, specific 

considerations must be taken into account regarding local and regional processes that impact 

sediment matrix compositions (particularly carbonates) to ensure quantitative accuracy. 

Lastly, despite the limited capability to fully address the adequacy and limitations for quantitative 

evaluation of carbonates in marine sediments with IR-ATR spectroscopy, the potential for 

developing robust quantitative methods applicable throughout diverse marine settings is not 

unrealistic. Through the development of chemometric algorithms, the full potential for IR 

spectroscopic strategies to quantify carbonate minerals in marine sediments may be realized. 
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Implementation of such data evaluation tools may enable direct quantification of carbonates in 

both dried sediments and native hydrated sediments, which is ideal for in situ applications. 

However, this will require rigorous data collection sets to realize this capability and correct for 

highly variable matrix compositions. Currently, the demonstration of simple, qualitative analysis 

for characterizing marine carbonates with IR-ATR spectroscopy in this work has significant 

potential to facilitate investigations for gaining new insight into globally significant phenomenon 

without necessitating highly accurate and precise quantitative capabilities. Ultimately, combining 

the utility of qualitative analysis with the development of accurate and precise quantitative 

characterization of carbonates throughout the diverse complexity of marine sediments should 

provide a powerful analytical tool for exploring the complexity of carbonate mineralogy within 

Earth’s inner space. 
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CHAPTER 7 
 

TOWARDS A 2ND GENERATION OF SUBMERSIBLE MIR CHEMICAL SENSORS 
 
 
 

This chapter presents design considerations and initial efforts towards the development of a 2nd 

generation submersible MIR chemical sensing platform for deep-sea exploration. The first part of 

this chapter focuses on a general overview of deep-sea spectrometers and progress towards a 

submersible FT-IR system with a spherical glass housing. Advantages and disadvantages of the 

proposed housing design are considered in addition to a general overview of common ATR 

sensor probe geometries. Following, experimental and ray tracing simulations are presented for 

characterization of ATR sensing surfaces. The described work demonstrates the utility of virtual 

test environments for assessing sensor probe design and fabrication, optical design, and 

integration into next-generation deep-sea MIR chemical sensors. 

 

7.1 Spectrometers in the Deep-Sea 

In recent years, mass, Raman, and FT-IR spectrometers have been introduced for a variety of 

deep-sea sensing applications. Mass spectrometers generally implement a membrane-based inlet 

system suited for the detection and monitoring of dissolved gases (i.e., O2, CO2, and CH4) and a 

wide range of volatile organic compounds (VOCs).1-10 Several Raman spectrometers have 

integrated different optical probes for exploring gas hydrate systems and hydrothermal vents, 

with particular interests in characterizing dissolved gases, gas hydrate structures and 

compositions, mineral components (i.e., SO4
2-, NO3

-, and CO3
2-), and gas bubbles.11-16 The only 

demonstrated submersible FT-IR spectrometer system used a U-shaped, polymer-coated AgX 

fiber-optic sensor head for investigating VOCs (i.e., tetrachloroethylene, 1,2-dichlorobenzene, 

and xylenes) with particular focus on coastal waters.17-20 

Overall, submersible sensing platforms are suited for either mobile or stationary deployments. 

Mobile sensing objectives (primary application of current mass spectrometer systems) can range 
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from plume tracking to concentration profiling, and utilize state-of-the-art tracking and 

navigational systems for correlating analytical results with a precise time and sample location.1, 2, 

6, 9, 10 Navigational units are often integrated with the instrument carrier (i.e., AUV, remote 

operated vehicle (ROV), and/or main ship for tow-bodies).6, 10 Short-term stationary sensing 

activities (primarily demonstrated by Raman-based platforms) have been facilitated with assisted 

deployment and interactive target acquisition with ROVs, which is a well-suited strategy for 

exploratory research.12-16 Currently, deployments for described submersible sensing platforms 

have yet to be reported for durations extending beyond single dive sessions limited by carrier unit 

operational time. 

Growing interest in the establishment of ocean observatories (i.e., the GOMGHRC’s MC118 gas 

hydrate observatory and the ORION group’s MARS and NEPTUNE observatory networks) has 

supported the development and integration of sensor technologies for long-term deployment. 

However, there are several factors collectively contributing to the lack of demonstrated long-term 

deployments of spectrometer systems in deep-sea environments: (1) systems testing, validation, 

and development, (2) need for recovering data from the instrument unit, (3) risk of losing one-of-

a-kind, high-cost instruments, (4) operational costs (i.e., ship and submersible costs), and (5) 

power. Cost and power will likely remain enduring and limiting burdens; however, the underlying 

theme is the infancy of this field with only a limited number of instruments. The literature 

underscores that many of the developed instruments are capable of operating in extreme 

environments; yet, many are in still undergoing initial validation tests. With ever increasing 

numbers of deep-sea deployments and continuous system improvements to overcome the 

difficulties of sustained operation in deep-sea environments, it is only a matter of time until the 

described sensing platforms become a more common  and vital asset for exploring the deep-

ocean. 
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7.1.1 Submersible FT-IR Spectrometers 

The history of deep-sea FT-IR spectrometers is rather brief with only one sensing platform 

described in the literature to date with a depth rating of approx. 500 m.17, 18, 20 The described 

system implemented a Bruker Vector 22 FT-IR spectrometer encased in an aluminum cylindrical 

housing with a 38 cm active length of AgX fiber in a U-shaped geometry. The AgX fiber was 

coated with an ethylene-co-propylene membrane tailored to quantitative evaluation of VOCs. 

Overall, the complete system was approx. 1 m in length, 0.32 m in diameter, and a dry weight of 

approx. 95 kg. 

 7.1.1.1 Concept of ‘Sphere-IR’: A 2nd Generation Deep-Sea FT-IR Spectrometer 

The design and construction of a smaller, lighter 2nd generation deep-sea FT-IR spectrometer, 

‘Sphere-IR’, was initiated during this thesis; although, a completed system was not realized due 

to funding cutbacks. The instrument concept incorporates components from the commercially 

available, miniaturized Bruker IRcube FT-IR spectrometer (~17 kg with commercial housing) 

into a spherical glass housing (17” dia., 6,000 m depth rating with no penetrators (i.e., power and 

sensor probe) from Teledyne Benthos (North Falmouth, MA)). The instrument platform 

integrates a recently commercialized Stirling-cooled MCT detector (Model K508, Infrared 

Associates, Stuart, FL) with > 3,000 hrs of expected maintenance-free operation. Figure 7-1 

illustrates the overall design concept of ‘Sphere-IR’ with completed construction of the 

electronics sub-system and initial modeling of primary optics components. 
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Figure 7-1: Conceptual scaled CAD rendering of the modeled ‘Sphere-IR’ unit indicating the 
design, construction, and incorporation of electronics sub-system components and initial 
modeling of primary optical components for the optics sub-system compartment. 
 

In Figure 7-1, the design concept of ‘Sphere-IR’ includes two aluminum platforms for 

complementary optics and electronics compartments. The two platform system is designed to 

incorporate a compression system, which enables sealing and pressure compensation of the 

instrument housing by means of support struts for compressing and cinching the internal 

components in place without direct attachment to the glass unit. The submersible spectrometer 

was designed to include a single-board PC for operating spectrometer components, data 

collection, and on-board data evaluation strategies. Overall, ‘Sphere-IR’ is estimated to require 

between 140 – 175 Watts of power. To date, the electronics sub-system compartment has been 

constructed, and incorporates power distribution, signal processing, and computer control of 

instrument components to enable a low-powered “sleep” mode for intermittent measurement 

objectives. Figure 7-2 displays a schematic for the electronics sub-system as designed by Dr. 

Frank Vogt. 
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Figure 7-2: Schematic for the electronics sub-system designed by Dr. Frank Vogt. The IRcube 
spectrometer components are treated as a single entity in this diagram. (Drawing not to scale). 
 

Following completed construction of the electronics compartment, the focus shifted towards 

design and construction of the optics compartment. CAD modeling of the primary optical 

components (Figure 7-1) was completed. However, fabrication of the optics compartment was 

not realized; limited by the design of an appropriate pressure-tested sensor head enabling 

selection of secondary optics components (i.e., mirrors, lens, etc.) and suitable configuration of 

all optical components. The indicated HATR sensor probe in Figure 7-1 is only present for 

conceptual visualization with indication for the required penetration of the glass housing to 

spectroscopically access the external environment. Sections 7.2 and 7.3 provide detailed 
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treatments considering various sensor probe configurations and an experimental and spectral ray 

tracing characterization of sensing regions on planar waveguide surfaces to facilitate development 

and incorporation of suitable sensor probes for ‘Sphere-IR’. 

 7.1.1.2 Advantages and Disadvantages of ‘Sphere-IR’ Concept 

Spherical instrument housings are attractive for minimizing the dry weight of a submersible 

instrument by enabling higher pressure ratings with thinner wall thicknesses than required to 

obtain the same pressure rating for a cylindrical housing.21 In light of potential IR applications 

described in this thesis, the considerably large diameter of the current housing leads to anticipated 

difficulties for embedding a realized instrument into sediment matrices. Additionally, a sensor 

probe protruding from the glass housing, as illustrated in Figure 7-1, poses a substantial risk for 

shear forces to compromise system integrity. However, the housing material and reputation are of 

additional concern. Spherical glass housings have shown signs of degradation following multiple 

uses due to repeated pressurization and depressurization, causing splintering and ultimate peeling 

of glass sheets away from the housing.22 Hence, this particular housing has a limited lifespan with 

continual degradation to structural stability and increased risk of failure after each use. An 

aluminum or titanium housing constructed to maintain the same form factor for incorporation of 

current design schemes can minimize long-term risk factors; however, glass spheres enable low-

cost housing exchange when integrity is questionable or uncertain. 

 

7.2 Sensor Head Design Considerations 

The presence of Cl- in solution continually diminishes the optical throughput of unprotected AgX 

fibers.23, 24 U-shaped fiber degradation was eluded in measurement applications for the 

submersible FT-IR setup reported in literature from the use of a polymer enrichment membrane, 

which is necessary for signal enhancement of trace VOCs.17 As demonstrated in this thesis, a 

variety of applications exist for IR-ATR sensing platforms whereby implementation of a polymer 

film would limit sensitivity by separating the evanescent field from interacting with sample 
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matrix components of interest. Hence, consideration of alternatives to polymer-coated AgX fibers 

is necessary to realize the full potential of MIR chemical sensors in oceanic environments. 

An initial design goal of ‘Sphere-IR’ was to incorporate flexibility for the integration of 

replaceable sensor probes, which could implement various waveguiding materials (e.g., ZnSe, 

ZnS, etc.) and geometries (e.g., trapezoidal, conical, etc.). A variety of research applications have 

reported the use of commercially available ATR probes (Ocean Optics, StellarNet Inc., Remspec, 

Axiom Analytical, and Mettler Toledo)25-29, and typically integrate fiber light guiding with 

diamond, ZnSe, or sapphire 2 – 6 bounce crystal elements.30-38 Sapphire has a spectral cut-off at 

approx. 2000 cm-1, which limits many practical applications for MIR sensors. Diamond crystals 

are expensive and can exhibit perturbations in the 2000 cm-1 regime with impurities.39 ZnSe is a 

choice material for IR transparency; however, it is less rugged for high-pressure applications. 

Although a variety of ATR probes are commercially available, a custom high-pressure sensor 

probe incorporating a comparable trapezoidal ZnSe ATR element used in laboratory 

measurements was desired for to facilitate laboratory-like performance of ‘Sphere-IR’. A 

prototype sensor probe was not constructed in this work; however, initial tests were performed to 

characterize signal generation along the measurement surface of a standard 72 × 10 × 6 mm 

trapezoidal crystal element to assist design and construction considerations.40 

 

7.3 Characterizing ‘Active’ Sensing Regions along Trapezoidal ATR Waveguide Surfaces 

Complementary experimental and spectral ray tracing analyses are described in this section for 

identifying and evaluating IR signal generation along the measurement surface of a standard 

trapezoidal HATR element. Ray tracing simulations provide a powerful tool for evaluating the 

design and performance of optical systems. The spectral ray tracing software used in this work, 

SPRAY (W. Theiss, Aachen, Germany), has been previously implemented for simulating IR 

absorption measurements of organic layers from complex three-dimensional optical environments 

modeling an FT-IR microscope.41 In addition to computation of spectral absorption features, this 
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software enables the insertion of virtual detector elements anywhere within the simulated space 

for visualizing radiation distributions along optical paths. Hence, this aid provides a virtual 

environment suited for development and performance evaluation for a vast range of conceivable 

optical systems such as compact MIR sensing platforms. 

Experimental collection of IR-ATR absorption spectra from a series of discrete poly(styrene-co-

butadiene) (PSCB) deposits along the measurement surface of a standard 72 × 10 × 6 mm, 6-

reflection ZnSe HATR crystal enabled the extraction of precise locations for individual sensing 

regions and the radiation path through the HATR crystal. This allowed formulation of spectral ray 

tracing procedures to accurately simulate experimental measurements. Through the comparison 

of normalized experimental and simulation data, accurate estimates of the experimental radiation 

parameters were derived. Consequently, a narrow range of two-dimensional representations for 

HATR experimental sensing regions were generated. The following sub-sections provide a 

detailed description of this work and demonstrate the utility for implementing virtual 

environments to assist the development and optimization of efficient IR-ATR sensing platforms 

for deep-sea environments. 

 

7.3.1 Experimental 

 7.3.1.1 Instrumentation 

All IR-ATR measurements were collected using a Bruker IFS 66/S FT-IR spectrometer (Bruker 

Optics Inc, Billerica, MA) fitted with a Specac Gateway in-compartment HATR unit (Specac Inc, 

Woodstock, GA). A standard 6-reflection, 72 × 10 × 6 mm ZnSe crystal with 45° coupling facets 

and 1 mm 90° chamfers at each end of the 72 mm-axis was mounted in a custom horizontal flow 

cell. The top plate of the flow cell was removed for sample droplet deposition onto the 

measurement surface. The spectrometer was equipped with a KBr beamsplitter, ZnSe windows 

(dia. 40 mm) at the radiation inlet/outlet of the sample compartment, and an Infrared Associates 

D316/6 LN2 cooled MCT detector (Infrared Associates, Stuart, FL) with a 1 × 1 mm detection 
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element. The distance from the radiation inlet (ZnSe window) to the focal point in the sample 

chamber of the spectrometer is 128 mm. An Olympus BX41 optical microscope (Olympus 

America Inc., Melville, NY) with a x2.5 objective was used to evaluate the dimensions and 

repeatability of polymer droplet deposition at the ZnSe sensing surface. 

 7.3.1.2 Materials 

A 10% (w/v) solution of PSCB in toluene was prepared by dissolving 1.0063 g of polymer 

(Aldrich Chemical Company, Milwaukee, WI) in 10 mL of toluene (Certified ACS grade, Fisher 

Scientific, Fair Lawn, NJ) at room temperature with brisk mixing for 1 hr. The polymer solution 

was stored in a refrigerator at 2 °C. Polymer residues were formed following deposition of 

0.75 μL aliquots of solution at the crystal surface with a calibrated 0.50 – 10 μL Eppendorf pipet 

(Eppendorf North America Inc., New York, NY). 

 7.3.1.3 Ray Tracing Simulation Environment 

A 5-component model was devised to represent the experimental configuration in real dimensions 

for spectral ray tracing simulations with a constant environmental refractive index of 1.0003 

using SPRAY software (W. Theiss, Aachen, Germany). The simulated set-up modeled in-coupled 

radiation as a circular light source such that the internal reflection angle (θint,) equaled the beveled 

HATR element coupling facet angles (45°). The circular light source was positioned at the 45º in-

coupling facet, and was off-set from the central axis of the modeled 72 × 10 × 6 mm HATR 

element; closely emulating experimental conditions. The HATR element was assigned a constant 

refractive index of 2.44 corresponding to that of ZnSe at λ = 2.75 μm. A 72 × 10 mm rectangular 

screen was implemented for imaging the radiation distribution along the measurement surface of 

the HATR element. In addition, a 40 × 42.4 mm rectangular detector element was modeled in 

parallel to the beveled radiation exit facet of the crystal. Hence, all photons transmitted through 

the HATR waveguide during simulation measurements were collected by this detector for 

generating IR absorption spectra of simulated polymer deposits. 
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To simulate the spectral response of deposited PSCB residues, a 2.5 mm dia., closed cylinder was 

assigned a constant refractive index of 1.4 using a harmonic oscillator to simulate an arbitrary IR 

absorption band at 1443 cm-1 (oscillator strength: 30, damping constant: 1). For simulations, the 

deposit was defined as an absorbing cylindrical thin-film (20 μm thickness) virtually placed 

‘inside’ the HATR element near the measurement surface (30 μm). As the radiation distribution 

at each reflection region inside an HATR element provides a very close approximation of the 

resulting 2-dimensional evanescent field profile generated at the interface between the optically 

dense and the optically rare media, this model enables the direct comparison of normalized 

measurement data between experimental IR-ATR measurements and simulated IR transmission-

absorption measurements. Additional simulation parameters are provided in Appendix A-6. 

Integration of the large detector element for measurement simulations enabled the capability to 

evaluate signal generation for virtually any combination transmitted radiation parameters, 

including the in-coupled light source radius, radiation cone angle, and in-coupling position, 

without requiring precise dimensional modeling or configuration of optical components for a 

particular experimental setup. Furthermore, this simple model represents an ideal experimental 

situation of precise imaging optics with the focal plane of radiation on the order of detector 

element size. Tradeoffs and consequences of this modeling approach are addressed with 

discussion of two-dimensional approximations of sensing regions and error considerations in 

Section 7.3.3.2 and Section 7.3.3.3, respectively. 

 

7.3.2 Measurement and Simulation Procedures 

 7.3.2.1 Experimental Data Acquisition 

20 polymer deposition locations were marked along the measurement surface of a ZnSe crystal 

with an ultra fine point black permanent marker (Sharpie) at 3 mm intervals, excluding the first 

8 mm from the in-coupling facet and the last 7 mm prior to the exit facet, before polymer 
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deposition and collection of the respective IR-ATR spectra. The first and last 4 mm of crystal 

surface were inaccessible from waveguide mounting in the modified flow cell. Hence, the first 

and sixth internal reflection regions were not fully resolved with experimental measurements. IR 

absorption features from the permanent marker were negligible and effectively eliminated after 

collection of an initial background (reference) measurement following marker application and 

prior to the first polymer spot deposition. All PSCB/toluene aliquots were deposited without 

disrupting or removing the crystal mounting unit. Reference spectra were collected prior to the 

deposition of each 0.75 μL PSCB/toluene droplet. After each sample deposition, 15 spectra were 

recorded at 2 min intervals, allowing evaporation of toluene and providing a robust signal for the 

remaining PSCB residue. IR-ATR spectra were the average of 100 sample scans at 2 cm-1 

resolution from 4000 – 400 cm-1 while the instrument was purged with dry air. The light source 

aperture was set at 4 mm. 

Additional experiments were performed utilizing a continuously variable iris diaphragm 

(maximum opening of 2.5 cm) for approximating the solid cone angle of radiation propagated to 

the MCT detector element with and without the in-compartment HATR accessory. The iris 

diaphragm was centrally positioned in the spectrometer sampling compartment respective to the 

radiation inlet with a 6 mm space between the inlet and iris diaphragm. Radiation impingent upon 

the detector element was recorded as arbitrary energy units (ADC counts) displayed by the 

Bruker OPUS software package for the same eight aperture diameters in each scenario. Aperture 

diameters were set by closing the iris diaphragm to values between 0.3 cm and 2.0 cm with aid of 

a vernier caliper. Instrument source apertures during measurements with and without the in-

compartment ATR accessory were 4 mm and 2 mm, respectively. 

 7.3.2.2 Simulated Data Acquisition 

Simulated IR absorption measurements were collected from 1900 – 900 cm-1. A spectral 

resolution of approx. 8 cm-1 was defined for all simulations with 120 sample points spanning 

1000 cm-1. The light source was set to emit 125 photons per spectral point. Simulation series were 
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performed for various combinations of light source radii and radiation cone angles. All simulation 

cone angle values represent the cone angle of radiation as it is transmitted through the simulated 

ZnSe HATR crystal. For each simulation measurement series, a reference spectrum was 

generated with the cylindrical thin-film placed in a non-reflection (no absorption) region of the 

HATR element. After collecting a reference spectrum, simulated transmission-absorption 

measurements were performed consecutively as the cylindrical thin-film was positioned along the 

crystal surface corresponding to deposition locations in experimental studies. All simulated data 

were exported from SPRAY as percent transmission with respect to wavenumber for further data 

analysis. For all simulations, a single run was performed for each set of optical parameters and 

deposition location. 

 7.3.2.3 Experimental Data Analysis 

Eight spectral regions corresponding to IR absorption features of PSCB were evaluated by 

integrating respective peak areas. An IR-ATR spectrum of a PSCB residue with highlighted and 

numbered spectral regions used for data analysis is provided in Figure 7-3 with detailed peak 

integration regions listed in Table 7-1. Figure 7-3 also contains peak area evaluations for PSCB 

residues deposited at representative internal reflection and non-reflection regions, where the peak 

areas from 15 consecutive measurements are plotted versus time following aliquot deposition. A 

generally stable IR signal was observed during the last five measurements; therefore, peak areas 

for these five measurements with respect to each spectral region were averaged and used for 

further calculations. For simplification, the five averaged peak areas for a given spectral feature 

will be indicated as a singular peak area (PA) from here on. 
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Figure 7-3: (a.) Representative IR-ATR absorbance spectrum of PSCB with highlighted spectral 
features utilized for peak area evaluation. Spectral regions are provided in Table 7-1. Peak area 
values obtained for PSCB absorption features for (b.) internal reflection and (c.) non-reflection 
regions along the ZnSe waveguide surface. 
 

Table 7-1: Spectral regions used for evaluation of IR-ATR absorbance spectra of PSCB residues. 
 

Highlighted PSCB 
Spectral Features in Figure 7-3 Region (cm-1) 

1 2936 – 2817 
2 1613 – 1589 
3 1503 – 1426 
4 1503 – 1479 
5 1460 – 1426 
6 1038 – 1015 
7 985 – 950 
8 921 – 888 
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The central location for individual internal reflection elements along the waveguide surface were 

determined utilizing normalized PAs from 5 consecutive residues at 3 mm intervals in the spatial 

region for each reflection. PAs were plotted versus the respective distances from the in-coupling 

facet and fit with the Gaussian function: 
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Equation 7.1 

 

From Equation 7.1, xc provides the Gaussian peak center, corresponding to distance from the in-

coupling facet for the reflection center. The described fitting procedure assumes an axially 

symmetric radiation profile; however, this does not imply that the true radiation distribution and 

resulting signal generation profile is Gaussian. Other symmetric functions such as a Lorentzian 

curve can be used in lieu. In this work, a Gaussian bandshape provided consistently superior 

fitting results reflected by larger R2 values in contrast to Lorentzian curve fits. 

Normalized PAs for each spectral region and spot location were used to extrapolate the center of 

individual reflection elements. All data were normalized to the highest observed PSCB absorption 

for the respective spectral regions. From all residue positions, the highest PAs, regardless of 

spectral region evaluated, were observed at the deposition site corresponding to 17 mm from the 

in-coupling facet. Averages of all normalized PAs for the eight spectral regions for each 

deposition location were also calculated and fit with a Gaussian profile. In addition, the average 

of all PAs from the eight spectral regions for each deposition location were calculated and then 

normalized for fitting with the Gaussian function. Reflection center values for experimental 

measurements are presented as the average and standard deviation for these three fit procedures. 

To facilitate determination of the solid cone angles of radiation transmitted to the instrument 

detector with and without the in-compartment HATR accessory, iris diaphragm diameters and a 
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constant focal point distance of 122 mm inside the sample compartment (accounting for the 6 mm 

diaphragm offset) were used to calculate the radiation cone angle allowed to propagate with 

respect to each iris setting. ADC counts contributing to the overall signal throughput (total ADC 

counts measured with largest diaphragm opening) for each diaphragm setting were calculated by 

R2 = C2 - C1, where C1 and C2 are the total ADC counts from successive diaphragm settings, R2 is 

the contributed ADC counts for the larger diaphragm opening, C1 is the total measured ADC 

counts for the smaller diaphragm setting, and C2 is the total ADC counts measured for the larger 

diaphragm setting. The percent of total radiation coupled through to the detector was calculated 

by P = R2/CT)*100, where P is the percentage of total signal throughput for the larger diaphragm 

setting used in calculating R2, and CT is the total ADC counts for the largest diaphragm setting. 

The average radiation density for the exposed area between two successive diaphragm settings 

was calculated by D = (C2 - C1)/(A2 - A1), where D is the radiation density represented as ADC 

counts per cm2, C1 and C2 follow the description above, and A1 and A2 are the respective open 

diaphragm areas for the corresponding settings at C1 and C2. Values for the described 

measurements and calculations are given in Table 7-2. 

 7.3.2.4 Spectral Ray Tracing Data Analysis 

Exported transmission (T) data were converted into absorption (A) spectra following the 

transformation A = -log T. A background correction was applied to all data for each simulation 

series by subtracting the respective transformed transmission reference spectrum from the 

absorption spectra. Infrared absorption spectra were then evaluated by integrating peak areas 

across the entire simulated spectral region of 1900 – 900 cm-1. Representative absorption spectra 

for simulated reflection and non-reflection regions are provided in Figure 7-4. 
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Figure 7-4: Representative absorbance spectra from a simulated HATR reflection and non-
reflection region. 
 

The center of each internal reflection region along the HATR measurement surface was 

calculated for each simulation series from normalized PAs and the same Gaussian fit procedure 

described for experimental data evaluation. Peak areas for each simulation series were normalized 

to the highest observed absorption value, which always corresponded to a distance of 17 mm 

from the in-coupling facet. Calculated peak centers for simulation measurements are presented as 

the average and standard deviation of values obtained for all presented simulation series with 

combinations of cone angles from 1° – 16° and light source radii from 0.00215 cm – 0.1697 cm. 

The quality of match between normalized experimental and simulation data was evaluated as total 

residual error (TRE) based on the sum-of-squares of the residuals with respect to experimental 

data for all deposition locations from 11 mm to 59 mm. TRE was calculated for each combination 

of cone angle and light source radius. In addition, TRE values for the averages of normalized PAs 

for the three best matched combinations of cone angles with a constant light source radius of 

0.1278 cm (CLSR), the three best matched combinations of light source radii with a constant 
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cone angle of 2° (CCA), and the averages of normalized PAs for the three best overall matching 

combinations were calculated. 

 

7.3.3 Results and Discussion 

 7.3.3.1 Experimental Results 

The described experimental procedure enables visualization and evaluation of spatially resolved 

sensing regions along a HATR element from the investigation of evanescent field interactions 

with an IR active species (Figure 7-5). Figure 7-5 (a.) depicts PSCB residues deposited along the 

central axis for the 72 × 10 mm measurement surface of a ZnSe HATR crystal. PSCB absorption 

values (displayed as PAs) for each residue and the eight evaluated spectral regions are plotted 

versus distance from the in-coupling facet of the HATR crystal in Figure 7-5 (b). From this plot, 

four distinct sensing regions are evident with onset of a fifth region near the exit facet. Sensing 

regions are indicated by larger PAs relative to regions with little or no evanescent field interaction 

with PSCB residues resulting in near zero PAs. Figure 7-5 (c.) contains a surface map displaying 

an approximated signal generation profile for PSCB deposits along the crystal measurement 

surface generated by data extrapolation of Gaussian fits utilized for calculating peak centers. The 

two-dimensional representation in Figure 7-5 (c.) does not reflect the actual ‘active’ width per 

individual sensing region, as measurements were only taken along one transect of the 

measurement plane. Additionally, the Gaussian function only provides an approximation of the 

actual signal profile for each reflection region. A thorough treatment of two-dimensional 

approximations is contained in the ensuing discussion. 
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Figure 7-5: (a.) Optical image of PSCB deposits along the HATR crystal surface mounted in a 
topless flow cell. (b.) Absorption intensity (as PAs) of PSCB vs. distance from the in-coupling 
facet along the measurement surface.* (c.) Surface map projecting the absorbance intensity of 
PSCB residues along the measurement surface of a HATR crystal and displaying discrete ‘active’ 
sensing regions along the crystal surface.** (* Lines are for assisting visual inspection. ** Plot 
generated from PAs for PSCB absorbance in the spectral region from 2986 – 2817 cm-1). 
 

For spatially resolving individual internal reflection regions, the experimental procedure was 

designed by adapting the Nyquist theorem from a temporal consideration to a one-dimensional 

spatial treatment. According to the Nyquist theorem, it is necessary to sample at least 2x the 

signals highest frequency component to extract all available information. The Nyquist theorem is 

generally presented in the form f < 1/(2 Δt), where f is the signals highest frequency component 

and Δt is the time interval between samples. In this work, the equation was adapted to 

f < 1/(2 Δx), where f represents the highest spatial frequency component and Δx is the distance 

between PSCB deposits. For a 6 mm thick ATR crystal with light coupled at 45°, the internal 

reflection frequency is 1 reflection per 12 mm along the measurement surface (f = 0.083). Thus, a 

sampling frequency of 4 deposition spots per 12 mm (1/(2 Δx) = 0.17) adequately fulfills 

sampling requirements for the adapted version of the Nyquist theorem. 
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Experimentally, this was achieved by depositing 2.5 mm dia., PSCB residues at discrete 3 mm 

intervals along the HATR surface. An improved spatial resolution could potentially be achieved 

by depositing smaller residues at shorter intervals. However, smaller residues could result in a 

systematic bias for characterizing smaller ‘active’ sensing regions towards the exit facet due to 

reduced signal strength from less spatial interaction with the evanescent field and decreased 

evanescent field intensity at each successive sensing region from radiation divergence. 

A well-defined decay profile in the PSCB absorption behavior with respect to each successive 

sensing region was observed with increasing distance from the in-coupling facet. This is a result 

of the spatial dependence from both the overlap of PSCB residues with the evanescent field and 

the evanescent field intensity probing the PSCB deposits. In these experiments, the PSCB spot 

diameter was held constant; therefore, precise knowledge regarding three experimental 

descriptors is required to accurately account for the observed decay behavior: (1) the radiation 

path through the HATR crystal, (2) the through-coupled solid radiation cone angle, and (3) the 

diameter of the radiation cone coupled into the HATR crystal. 

 Radiation Path through the HATR Crystal: 

The path of radiation propagated through the HATR crystal, as determined by the position of 

radiation incident at the in-coupling facet and θint, dictates the precise location of each reflection 

region along the measurement surface. Hence, by precisely determining the location of each 

reflection region, the path of radiation can be defined and the position of in-coupled radiation at 

the entrance facet and θint can be extrapolated. 

For a 72 mm long and 6 mm thick trapezoidal crystal with radiation coupled orthogonally into the 

45° in-coupling facet, θint is 45°, and a simple ray optic calculation reveals 6 reflections spaced 

12 mm apart along the sensing surface. Hence, the central location for each internal reflection 

element along the 72 mm axis is only dependent upon the position of in-coupled radiation at the 

entrance facet. If incident radiation is assumed to be centered at the midpoint of the 45° beveled 
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section, the central locations for internal reflections along the 72 mm axis are calculated as 6 mm, 

18 mm, 30 mm, 42 mm, 54 mm, and 66 mm from the in-coupling facet. 

The average centers of reflection from experimental data for the 2nd through 5th internal 

reflections were determined to be 17.97 mm ± 0.11 mm, 30.17 mm ± 0.09 mm, 

42.14 mm ± 0.06 mm, and 54.22 mm ± 0.01 mm, respectively, with standard deviations reflecting 

the relative variance. Calculated reflection centers for each identified sensing region are in 

excellent agreement with values predicted by ray optic calculations for a radiation path with 

θint = 45° and orthogonally incident radiation on the midpoint of the beveled section at the in-

coupling facet. 

Based on this excellent agreement, the 1st and 6th internal reflection centers were extrapolated by 

subtracting and adding the average difference of distances between each consecutive identified 

reflection center (12.06 mm ± 0.15 mm) to the 2nd and 5th reflection center values, respectively. 

The extrapolated positions were calculated to be 5.90 mm ± 0.15 mm and 66.28 mm ± 0.15 mm 

for the 1st and 6th reflections, respectively. The extrapolated values are again in excellent 

agreement with values predicted for the defined radiation path obtained from ray optic 

calculations. Finally, the experimental radiation path through the ATR crystal was verified 

utilizing the calculated reflection centers to extrapolate θint and the position of light coupled into 

the beveled facet. The experimental internal reflection angle was calculated as 45° ± 1°, and the 

calculated position of radiation at the in-coupling facet deviated only 0.07 mm ± 0.14 mm 

towards the measurement surface from the midpoint of the 45° beveled section. 

 Through-Coupled Solid Radiation Cone Angle: 

To evaluate the through-coupled solid cone angle of radiation incident upon the detector element, 

measurements were performed to assess detector signal (in ADC counts; saturation at 32,676) 

with respect to a range of iris diaphragm diameters (values provided in Table 7-2). 

Approximately 99% of the total through-coupled radiation was detected with an open diaphragm 
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diameter of 2 cm; corresponding to a radiation cone angle of 9.4° in air (3.8° in ZnSe). However, 

the average radiation density across the exposed region between the 2 cm and 1.5 cm settings 

reveal a relatively low signal of approx. 655 ADC counts per cm2. Radiation density successively 

increases toward the radiation center with a maximum of approx. 31,120 counts per cm2 for a 

0.3 cm iris aperture. From the estimated radiation density values in Table 7-2, the potential for 

signal generation relative to the highest radiation density diminished to approx. 5% after an 

aperture of 1.2 cm with a 5.6° radiation cone angle in air (2.3° in ZnSe). 

 
Table 7-2: Experimental characterization of through-coupled radiation with and w/out the HATR 
accessory present in the instrument sample compartment. (* R2 values are the ADC counts 
contributed to the overall signal throughput for the respective diaphragm settings. ** P is the 
percentage of total radiation throughput with respect to values of R2. *** D is the calculated 
average radiation density as ADC counts per cm2 for the area exposed between successive 
diaphragm settings). 
 

Through-Coupled Radiation with In-Compartment ATR Accessory and 4 mm Source Aperture 
Diaphragm 

Opening (cm) 
Cone Angle 

(Air) 
Cone Angle 

(ZnSe) 
Total Signal 

(ADC Counts) R2
* P** D*** 

2.5 11.7° 4.8° 14900 200 1.3 113 
2 9.4° 3.8° 14700 900 6.0 655 

1.5 7.0° 2.9° 13800 1000 6.7 1572 
1.2 5.6° 2.3° 12800 1300 8.7 3761 
1 4.7° 1.9° 11500 2100 14.1 7426 
.8 3.8° 1.6° 9400 3400 22.8 11099 
.5 2.3° 0.94° 6000 3800 25.5 30236 
.3 1.4° 0.57° 2200 2200 14.8 31120 

Through-Coupled Radiation w/out In-Compartment ATR Accessory and 2 mm Source Aperture 
Diaphragm 

Opening (cm) 
Cone Angle 

(Air) 
Cone Angle 

(ZnSe) 
Total Signal 

(ADC Counts) R2 P D 

2.5 11.7° 4.8° Saturated NA NA NA 
2 9.4° 3.8° 31800 8300 26.1 6038 

1.5 7.0° 2.9° 23500 6300 19.8 9902 
1.2 5.6° 2.3° 17200 3500 11.0 10127 
1 4.7° 1.9° 13700 1900 6.0 6719 
.8 3.8° 1.6° 11800 6200 19.5 20239 
.5 2.3° 0.94° 5600 3500 11.0 27849 
.3 1.4° 0.57° 2100 2100 6.6 29705 

 

Assuming an axial-symmetric radiation distribution, a two-dimensional approximation of the 

radiation density profile for internal reflection elements can be generated by plotting each value 

of D with respect to the aperture center (represented as 0) at ± the radius of the larger diaphragm 



 256

setting used for calculations (Figure 7-6). Fitting of this plot with a Gaussian profile from 

Equation 7.1 provides a close functional resemblance, and yields an R2 value of approx. 0.97. 

Radiation densities listed in Table 7-2 do not indicate the absolute radiation density for each 

reflection region. These values will be larger as a result of focusing onto the in-coupling facet 

with a successive decrease at each reflection region from divergence. However, the 

proportionality of these values should be conserved. 

 

 
 
Figure 7-6: Calculated signal densities across each incremental area exposed with stepped iris 
aperture diaphragm settings and the ATR bench placed in the sample chamber. Signal densities 
are plotted ± the aperture radius in cm with 0 representing the aperture center positioned on the 
central axis of radiation propagation. The Gaussian fit provides a close functional resemblance to 
the data plot assuming an axial-symmetric radiation profile. 
 

The instrument source aperture for iris diaphragm measurements without the HATR accessory 

required a decrease from 4 mm to 2 mm to avoid detector saturation. This indicates that radiation 

has been vignetted from the detector element in addition to reflection losses occurring at the in-

coupling facet. From Table 7-2, it is evident that through-coupled radiation at diaphragm settings 

> 1 cm without the HATR accessory is almost entirely vignetted following addition of the HATR 

accessory. Thus, the largest through-coupled radiation cone angle contributing to the majority of 



 257

detected signal was determined to be between 4.7° and 7° in air (1.9° and 2.9° in ZnSe). 

Vignetted radiation, regardless of source (e.g., instrument focusing optics, detector element size, 

and/or presence of the HATR accessory optics), restricts efficiency of the total optical throughput 

(signal intensity) by filtering radiation that may actually propagate through the ATR element. In 

addition, the two-dimensional image of ‘active’ sensing regions along the HATR surface can be 

influenced due to vignetting with partial filtering of instrument radiation through-coupled to the 

detection element. 

 Diameter of In-Coupled Radiation Cone into the HATR Crystal: 

To approximate the actual dimensions of ‘active’ sensing regions along the measurement surface, 

precise knowledge of the radiation path, through-coupled cone angle, and diameter of the 

through-coupled radiation cone at the HATR in-coupling facet is required. The radiation path and 

through-coupled cone angle, described previously, govern the relative dimensions of successive 

‘active’ sensing regions with respect to beam divergence and location of each reflection region in 

the radiation path. However, without knowing the diameter of in-coupled radiation cone into the 

HATR crystal, accurate dimensions cannot be defined. With an estimated range of through-

coupled cone angles and a defined radiation path respective to fixed instrument optical 

components, the relative position of the HATR element in the optical path will dictate the 

diameter of the through-coupled radiation cone incident upon the in-coupling facet and resultant 

dimensions of each measurement region. A direct and accurate determination of the in-coupled 

diameter of radiation is not readily available without exact knowledge of the instrument focal 

point diameter and the influence of HATR accessory optical components. Thus, complementary 

spectral ray tracing simulations were used to assist in approximation of this value in addition to 

confirming experimental estimates of the through-coupled cone angles for the defined radiation 

path. Once a complete set of experimental values are obtained, two-dimensional representations 

for ‘active’ sensing regions can be approximated. 
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 7.3.3.2 Ray Tracing Results 

In this study, approx. 50 simulation series were performed with various combinations of light 

source radii and cone angles ranging from 0.00215 cm – 0.25 cm and 1° – 16°, respectively. From 

all series, model data obtained with the following combinations most closely emulated 

experimental results in this study: (1) 0.1278 cm ± 0.042 cm light source radii with a constant 

cone angle of 2° (CCA), and (2) a constant light source radius of 0.1278 cm with cone angles of 

2° ± 1° (CLSR). To compare simulation and experimental results, an average of normalized PAs 

for each of these simulation sets were calculated. Figure 7-7 exhibits simulation values plotted 

with respect to deposit locations along the HATR element alongside experimental results 

representing the average of normalized PAs from all investigated PSCB spectral regions. Error 

bars for simulation data represent ±1 standard deviation from the average of normalized PAs for 

each deposit location for CCA and CLSR simulation sets, respectively. Error bars for 

experimental data represent the relative variance (±1 standard deviation) of normalized PAs from 

all evaluated PSCB features. In Figure 7-7, the net decrease in IR absorption behavior for each 

successive sensing region in both simulation (CCA and CLSR) and experimental data resemble 

each other exceptionally well with a TRE of 0.119 for the CCA set and 0.123 for the CLSR set. 
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Figure 7-7: Averages of normalized PAs for experimental and simulation data*,** with respect to 
the measurement location plotted versus distance from the in-coupling facet of the HATR crystal 
(error bars are ± 1 standard deviation).*** (* Simulation ValuesCCA represent normalized and 
averaged PAs for data obtained with combinations of a 0.1278 cm ± 0.042 cm light source radii 
with a constant cone angle (CCA) of 2°. ** Simulation ValuesCLSR represent normalized and 
averaged PAs for data obtained with combinations of a constant light source radius (CLSR) of 
0.1278 cm with cone angles of 2° ± 1°. *** Lines are present for assisting visual inspection). 
 

In addition, ray tracing simulations were performed to aid visualization of the influence different 

cone angles (2°, 4°, 8°, and 16°) have on the spatial distribution of radiation at sensing regions 

along the measurement surface of the simulated HATR element. Figure 7-8 provides simulated 

surface maps of the radiation distributions obtained for increasing cone angles (designated as 2°, 

4°, 8°, and 16°) with a constant light source radius of 0.1278 cm. Qualitative visual inspection of 

experimentally generated and simulated surface maps (displaying all 6 internal reflection regions) 

yield excellent comparisons for both 2º and 4º simulation plots. However, upon inspection of 

normalized quantitative data, it was determined that simulated measurements generated with cone 

angles ≥ 4º reveal enhanced deviations from the experimental data. Thus, a cone angle of 2° was 

determined to provide a more appropriate representation of the experimental setup. 
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Figure 7-8: Simulated radiation density maps for visualizing internal reflection regions and the 
influence of increasing radiation cone angles from left to right (2º, 4°, 8°, and 16°). Simulations 
were generated with a source radius of 0.1278 cm. 
 

 Simulated Radiation Path through HATR Crystal: 

The circular light source was positioned at the mid-point of the beveled 45º in-coupling facet to 

generate the radiation path determined from experimental measurements. Average central 

locations for individual reflection regions (2nd through 5th reflection) from simulated spectral data 

were calculated as 17.98 mm ± 0.23 mm, 30.11 mm ± 0.22 mm, 41.88 mm ± 0.14 mm, and 

54.04 mm ± 0.28 mm. These values are in close agreement with both experimental and ray optic 

values. Therefore, the radiation paths in experimental and simulation measurements are 

quantitatively equivalent and confirm that the proposed fitting procedure enables an accurate 

assessment of central locations for reflection regions. 

 Simulated Through-Coupled Solid Radiation Cone Angles: 

To enable direct comparison between experimental and simulation data for estimating the 

experimentally through-coupled radiation cone angle, normalized PAs for simulation series with 



 261

increasing cone angles (2°, 4°, 8°, and 16°) and CLSR of 0.1278 cm were calculated. Figure 7-9 

(a.) displays the normalized profile of IR absorption intensities for simulated deposits along the 

sensing surface versus distance from the HATR in-coupling facet. Evaluation of the TRE for each 

cone angle revealed that simulated measurements with a cone angle ≥ 4º (TREs 0.271 for 4°, 

0.935 for 8°, and 2.423 for 16°) result in a considerable mismatch with experimental data. 

Increasing TRE values reflect a heightened decay in signal generation from enhanced radiation 

divergence with successively larger radiation cone angles being transmitted in the simulation 

environment relative to the actual through-coupled radiation in experimental measurements. 

 

  
 
Figure 7-9: (a.) Normalized peak areas for simulated deposits plotted versus distance from the 
HATR in-coupling facet with increasing cone angles and a source radius of 0.1278 cm.* (b.) 
Normalized peak areas for simulated deposits plotted versus distance from the HATR in-coupling 
facet with increasing source radii and a cone angle of 2°.* (* Lines are for assisting visual 
inspection). 
 

Additional simulation series with a constant light source radius of 0.1278 cm were performed to 

estimate a narrow range of cone angles that could produce similar results to experimental 

measurements. Simulated absorption measurements with cone angles of 1º, 2º, and 3º resulted in 
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comparable TRE values of 0.101, 0.166, and 0.205, respectively. With consideration of 

experimental error, the estimated range of experimentally through-coupled radiation cone angles 

based on simulation results was 2° ± 1°. This estimation was consistent with iris diaphragm 

studies (radiation cone angle between 1.9° and 2.9° in ZnSe). A TRE of 0.110 was obtained from 

averaged normalized simulation PAs for this range of cone angles and light source radius of 

0.1278 cm (CLSR data set). 

 Simulation of the Diameter of In-Coupled Radiation Cone into the HATR Crystal: 

To estimate the experimental diameter of in-coupled radiation into the HATR crystal, four 

simulation series were performed with different source radii (0.00215 cm, 0.0859 cm, 0.1278 cm, 

and 0.1697 cm) while maintaining a constant cone angle of 2°. Normalized PAs were calculated 

for comparison with experimental data. Results plotted in Figure 7-9 (b) illustrate the relative 

signal contributions for simulated deposits with respect to the highest observed absorption value 

at 17 mm from the in-coupling facet. The simulation series with a source radius of 0.00215 cm 

was eliminated as a candidate due to a significant mismatch with experimental values 

(TRE = 0.443). Low normalized PAs were observed at essentially all locations due to minimal 

spatial overlap between residues and transmitted radiation. For the remaining simulations, 

normalized PAs closely tracked the experimental values with TREs of 0.152, 0.166, and 0.211 for 

source radii of 0.0859 cm, 0.1278 cm, and 0.1697 cm, respectively. Thus, an estimated range of 

experimentally in-coupled radiation radii was 0.1278 cm ± 0.042 cm based on simulation results. 

The TRE for averaged normalized PAs for these simulation series was 0.123 (CCA data set). 

 Two-dimensional Approximations of ‘Active’ Sensing Regions: 

Two-dimensional approximations of the shape and size for ‘active’ sensing regions can now be 

projected with the culmination of previously defined radiation parameters. For ideal imaging 

optics and a focal plane on the order of the detector element size, the shape of experimental 

sensing regions can be closely approximated as an ellipse with the minor axis (width) approx. 

41% of the major axis (length). The elliptical shape results from differences in the radiation 
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pathlength at the reflection surface due to internal reflection at an angle of 45°. Thus, the ellipse 

major axis is projected along the 72 mm axis of the HATR measurement surface. In this 

approximation, the minor axis of the ellipse (projected on the 10 mm crystal axis) is the 

calculated radiation cone diameter with respect to distance from the ATR crystal in-coupling 

facet to the central location of each sensing region, the radius of in-coupled radiation, and the 

through-coupled cone angle. 

Figure 7-10 assists visualization of calculated projections for ‘active’ sensing regions with 

estimated radiation parameters determined for the experimental set-up. Minimum (min.) and 

maximum (max.) combinations of the through-coupled cone angles and radii of in-coupled 

radiation from simulation measurements were used to calculate a range of dimensions for 

experimentally ‘active’ sensing regions. The range of possible dimensions for each sensing region 

is depicted as the area (shaded green) between calculated projections for the respective min. and 

max. combinations. An area circumscribed by the smallest projected measurement region (shaded 

orange) represents ‘active’ sensing areas for all estimated through-coupled radiation parameters. 

The most probable size range for sensing regions was determined as the area (shaded red) 

between projected ellipses from the three simulation series best matched with experimental data 

(lowest TREs). The probability of actual sensing region dimensions decrease as the distance from 

this shaded region (red) increases; either toward the ‘inactive’ areas (shaded blue) or the center of 

‘active’ regions (shaded orange). Table 7-3 provides minor axis dimensions used in calculating 

elliptical projections for each sensing region depicted in Figure 7-10. 
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Figure 7-10: Elliptical surface projections of (i) the estimated range of dimensions for ‘active’ 
sensing regions shaded green, (ii) the most probable range of dimensions for ‘active’ sensing 
regions shaded in red, (iii) always ‘active’ sensing regions shaded in orange, and (iv) always 
‘inactive’ measurement regions shaded blue. The ellipse minor axis diameters used for 
calculating these projections are provided in Table 7-3 where the minor axis diameter is approx. 
41% of the major axis diameter. 
 

Table 7-3. Ellipse minor axis diameters used for calculating the projected ‘active’ sensing regions 
depicted in Figure 7-10. (* CA represents cone angle. ** LSR represents the light source radius in 
cm). 
 

Estimated Range Most Probable Range 
CA* LSR** CA LSR CA LSR CA LSR CA LSR 

 

1° 0.0859 3° 0.1697 1° 0.1278 2° 0.0859 2° 0.1278 
Location 

(mm) 
Minor Axis 

(mm) 
Minor Axis 

(mm) 
Minor Axis 

(mm) 
Minor Axis 

(mm) 
Minor Axis 

(mm) 
6 1.80 3.65 2.64 1.89 2.73 

18 2.10 4.54 2.94 2.48 3.32 
30 2.40 5.43 3.23 3.08 3.91 
42 2.69 6.32 3.53 3.67 4.51 
54 2.99 7.21 3.83 4.26 5.10 
66 3.29 8.10 4.12 4.85 5.69 
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The projected two-dimensional sensing regions represent an ideal experimental scenario, and the 

accuracy is inherently constrained by the one-dimensional experimental analysis. Improved two-

dimensional architectures of the ‘active’ sensing regions may be achieved in future experiments 

by incorporating imaging effects of instrument and ATR accessory optics as well as accounting 

for all radiation components projected onto and vignetted from the detector element. In addition, 

more complex simulation environments that precisely model the overall optical system (including 

the radiation profile) can facilitate highly accurate two-dimensional modeling of sensing regions 

for specific systems and aid efficient instrument design for dedicated IR-ATR applications. 

 7.3.3.3 Error Considerations 

Experimental PSCB deposits were comparatively reproducible with an average diameter of 

2.49 mm ± 0.098 mm. Therefore, minimal experimental error is expected from variance in 

residue dimensions. The most significant source of experimental error was the accuracy of 

PSCB/toluene aliquot deposition at the center of marked locations. The estimated error for 

physically depositing spots at their designated location was approx. 1 mm. The accuracy and 

precision of depositing concentric PSCB spots at desired location is of substantial importance as 

the IR absorption is dependent upon the spatial overlap of the PSCB deposit with the evanescent 

field. In addition, integration of PSCB spectral features can lead to a variance of approx. 10% for 

the experimental PAs. Considering potential sources and magnitudes of experimental error, 

calculated peak centers, the extrapolated internal reflection angle, and the position of in-coupled 

radiation were in very close agreement with expected values from ray optic considerations for the 

defined radiation path. 

For a combination of light source radius (0.1278 cm) and cone angle (2°), entire simulation series 

were repeated five times to confirm the quality of information determined from single trials was 

not compromised considering the potential gain in signal-to-noise ratio via averaging of multiple 

trials. The average standard deviation for 120 spectral data points from five consecutively 

executed trials was < 4 %. There are a few nominal deviations from the direct comparison of 
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simulation results (either CCA or CLSR from Figure 7-7) with the experimental results. The 

most apparent deviations occur at locations of 20 mm and 56 mm from the in-coupling facet. 

These deviations have been primarily attributed to artifacts from deposition of polymer droplets 

exactly at their intended locations. 

Additional variations from the direct comparison of experimental results with data generated 

using a simulation environment resembling an ideal optical system are expected. Inherent 

differences between the experimental setup and simulated apparatus are apparent in the capability 

of extracting exact through-coupled radiation parameters from the simulations. Considering such 

limitations, a relatively small range of through-coupled cone angles (2º ± 1º) extrapolated from 

the comparative analysis are quantitatively consistent with values obtained from the experimental 

iris diaphragm measurements. Furthermore, small TRE values obtained from the direct 

comparison of experimental and simulation data indicate an overall consistency between the two 

systems. Therefore, the simulation apparatus provides a viable approximation of the real-world 

measurement situation in this study. 

 

7.4 Conclusions 

A brief summary of progress towards the development of a 2nd generation of deep-sea FT-IR 

sensor, ‘Sphere-IR’, was included in this chapter. To date, the general design concept for 

incorporating a Bruker IRcube spectrometer into a spherical glass instrument housing has been 

established. CAD modeling and design facilitated the completion of the electronics sub-system. 

Although a fully functional system was not realized in this work due to an incomplete optics 

compartment, all primary optical components have been modeled to scale to assist final 

alignments for construction of an optics baseplate. Additional discussion was provided regarding 

the advantages and disadvantages of the current ‘Sphere-IR’ concept. A variety of issues surround 

the use of spherical glass housings; however, realization of the proposed instrument should 

facilitate further demonstration as to the value of deep-sea MIR chemical sensing platforms. 
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For ‘Sphere-IR’, a high-pressure sensor probe incorporating a trapezoidal ZnSe waveguide is 

desirable for performance; however, this material and geometry present an engineering challenge. 

Hence, complementary experimental and simulation procedures were explored to identify and 

evaluate localized IR-ATR signal generation for common trapezoidal HATR elements through 

the identification of ‘active’ measurement regions via evanescent field interactions with discrete 

deposits of IR active residues. The presented methods enabled direct insight into the two-

dimensional architectures of individual sensing regions along a multi-reflection ATR element. 

Accurate emulation of the experimental setup was demonstrated by the consistent comparison of 

normalized experimental and simulated spectral data. Hence, the experimentally validated 

simulation apparatus and methods provide a powerful analytical approach for characterizing 

signal generation from individual ‘active’ sensing regions expandable to a vast array of IR-ATR 

configurations. In context of this thesis, a virtual environment has been established to facilitate 

development of robust high-pressure sensor probes by enabling optically efficient design of 

crystal dimensions, crystal mounting, and selection and alignment of secondary optical 

components to manipulate radiation beam geometry and propagation. 

 

7.5 Outlook 

A variety of deep-sea spectrometers have been reported in the literature. Currently, the 

application of submersible chemical sensors is still in a state of infancy, which is anticipated to 

continuously improve in great strides with broader recognition and demonstration of their value 

in long-term monitoring and expeditionary oceanic research. The development and application of 

FT-IR spectrometers for deep-sea research currently lags behind that of Raman and mass 

spectrometers; however, the collective works presented in Chapters 4, 5, and 6 of this thesis have 

established the analytics and application feasibility for investigating gas hydrates and carbonate 

mineralogy ideally suited for in situ investigation with MIR chemical sensors. However, the 
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development of a deep-sea FT-IR spectrometer capable of operating at depths ≥ 1000 m is 

required to facilitate extensive investigations on such topics. 

With consideration of experimental works described in this thesis, the greatest factor currently 

limiting realized deployment and application of submersible MIR chemical sensing platforms is 

system engineering. With two well-defined measurement objectives described in this thesis, the 

engineering of MIR sensors can be focused and tailored to facilitate operation for a specific 

application in a particular type of environment (i.e., sediment characterization or water column 

monitoring). The presented ray tracing simulation environment enabled accurate mimicking of 

signal generation for IR-ATR experiments; hence, virtual optimization of sensor probes and 

optical configurations for deep-sea FT-IR systems should assist platform engineering through the 

rational design and fabrication of viable submersible MIR sensors for monitoring applications in 

harsh, deep-sea environments. 
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CHAPTER 8 
 

CONCLUSIONS AND OUTLOOK 
 
 
 

The main objective for this thesis was the development of IR spectroscopic measurement and data 

evaluation strategies for monitoring and evaluating chemical signals encountered within oceanic 

gas hydrate ecosystems. This thesis has demonstrated the application of fiber-optic evanescent 

field spectroscopy for monitoring gas hydrate growth dynamics in solution, including the 

establishment of initial quantification strategies and efficacy for real-world application. The 

potential of MIR chemical sensors for ocean exploration was further exemplified with the 

elucidation of spectral signatures corresponding to the detection of localized formation of 

authigenic carbonates in fine marine sediment fractions inundated with coccolith calcite. 

 

8.1 IR Spectroscopic Monitoring of Gas Hydrates 

Fiber-optic evanescent field spectroscopy was utilized to monitor the formation and dissociation 

of simple gas hydrates grown in solution with methane, ethane, and propane gases. This was 

achieved by tracking spectral changes in the IR absorption of water during the liquid-to-hydrate 

and hydrate-to-liquid phase transitions. Data evaluation strategies included peak area analyses for 

the O-H stretch, H-O-H bend, and the libration modes, and the assessment of peak shifts in the 3rd 

libration overtone. Utilizing the Beer-Lambert law, a first approximation based on the peak 

position of the 3rd libration overtone was derived for quantifying the percent of gas hydrate in the 

total water volume interacting with the evanescent field. 

In addition to establishing the first principles for IR spectroscopic monitoring and quantification 

of gas hydrate growth dynamics, the developed strategies were utilized to monitor methane 

hydrate growth in solution for approx. 23 days at simulated hydrostatic pressures corresponding 

to ocean depths approaching 500 m. IR monitoring of gas hydrate formation and dissociation was 

also achieved for time periods extending upwards of 29 days, illustrating the potential for long-
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term spectroscopic monitoring objectives in isolated oceanic gas hydrate ecosystems. Efficacy for 

real-world deep-sea monitoring applications was verified by the determination of minimal 

spectral interferences with the IR absorption features of water from sediment matrix constituents 

in samples collected at the MC118 gas hydrate site in the GoM. 

Furthermore, anticipated power restrictions that would limit long-term, uninterrupted operation of 

MIR chemical sensing platforms in isolated oceanic gas hydrate ecosystems was considered. 

With an artificially imposed reduction in the temporal resolution of spectroscopic data generated 

during a 29 day hydrate measurement campaign by a factor of 100 (i.e., 5450 spectra reduced to 

55 spectra), the major formation and dissociation events of that trial were still captured. This was 

attained by the collection of approx. 1.8 IR spectra per day with an estimated instrument 

operation time of approx. 18.3 hrs required to facilitate comparable data generation with a 29 day 

deployment of a deep-sea MIR chemical sensing platform. Hence, the studies described in this 

thesis demonstrate the initial practical feasibility for utilizing IR spectroscopy to monitor the 

dynamics gas hydrate within hydrate-bearing sediments in oceanic environments. 

 

8.2 Characterizing Deep-Sea Carbonates with IR Spectroscopy 

An IR-ATR spectral database was generated for 10 of the most common anhydrous carbonate 

minerals in this thesis to facilitate the characterization of carbonate minerals in marine sediments 

and authigenic carbonate nodules collected from two gas hydrate systems in the Mississippi 

Canyon region of the GoM. Calcite was found to be the most prevalent carbonate species in 

marine sediments evaluated in this thesis. In addition, an unexpected and peculiar IR spectral 

profile for the ν3 carbonate vibration was observed in most surficial sediment samples 

surrounding the MC118 site. This IR signature was traced to the regional sedimentation of 

coccolith calcite produced in the photic zone by thriving, single-celled photosynthetic 

coccolithophores throughout the GoM. 
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Spectroscopic analysis revealed a diverse array of carbonate mineral compositions for authigenic 

carbonate nodules recovered from the MC118 site. The broad ν3 carbonate absorption features 

characteristic to recovered authigenic nodule samples were additionally observed in the IR 

spectra of several sediment samples, which were frequently coincident with nodule 

accumulations. Hence, spectral broadening of the ν3 carbonate profile in sediments with abundant 

and regionally distributed coccolith calcite was linked to the occurrence of localized authigenic 

carbonate formation driven by chemosynthetic communities associated with cold hydrocarbon 

seepage at the MC118 site. This link was further confirmed with carbon isotope analysis of 

carbonates within select sediment and nodule samples that exhibited strong depletions in 13C from 

the inheritance of carbon from the chemosynthetic oxidation of seeping hydrocarbons. 

Semi-quantitative evaluation of the relative mass percentages of calcite and dolomite in the total 

carbonate composition of sediment samples collected in the GoM were additionally performed. A 

wide range of dolomite mass fractions were observed in the various sediment amples. Although 

inhomogeneous particle sizes and spectral interferences from quartz, clay, and Mg-calcite limited 

precise quantitative characterization, the semi-quantitative analysis facilitated an initial 

spectroscopic assessment to the composition and variability of dolomite presence in sediments 

encountered within gas hydrate ecosystems in the GoM. In addition, this particular evaluation 

provided insight into specific issues that must be considered to further improve the application of 

IR-ATR spectroscopy for quantitative assessment of carbonate minerals in complex marine 

sediment matrices. 

Within the scope of this thesis, the assessment of non-manipulated sediment samples in their 

native hydrated state was of particular interest. The strong ν3 carbonate absorption was accessible 

in all examined hydrated sediment samples, which enabled rapid characterization (i.e., several 

minutes) to the presence of authigenic carbonate in sediment samples. This demonstrates the 

feasibility for in situ IR spectroscopic detection of authigenic carbonate formation, which is 
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anticipated to facilitate improved characterization and assessment of the significance and spatial 

distribution of authigenic carbonates throughout the fine sediment fractions surrounding oceanic 

gas hydrate ecosystems. Furthermore, the presented qualitative and semi-quantitative 

characterization strategies are well-suited for rapid on-ship sediment analyses (hydrated and dried 

sediments and nodules). 

 

8.3 Outlook for Improving the Application of IR Spectroscopy for Hydrate Monitoring and 

Carbonate Analysis 

With exception to the realization of a capable MIR sensing platform, improved characterization 

of the influences from pressure, salinity, pH, and perhaps alkalinity on the IR absorption features 

of water over environmentally relevant values should facilitate more precise extraction of hydrate 

composition information within the analytical volume probed via the evanescent field for oceanic 

monitoring of gas hydrates. To improve the IR spectroscopic quantification of carbonate minerals 

(i.e., calcite and dolomite) in dried marine sediments, improved assessment and compensation for 

spectral interferences from quartz, clay, and Mg-calcite with multivariate data evaluation routines 

should facilitate more robust quantification strategies. In addition, the adherence to strict 

measurement protocols (i.e., grinding and particle size uniformity) is essential to ensure 

reproducible and accurate mineral quantification. However, an initial qualitative/semi-

quantitative analysis of non-manipulated sediment samples should be implemented, as this rapid 

evaluation strategy can provide valuable composition information prior to more laborious sample 

preparation treatments and costly analysis (i.e., XRD and carbon isotopes). 

 

8.4 Can IR Spectroscopy Currently Contribute to Deep-Sea Research and the Scientific 

Goals of the GOMGHRC? 

The studies described in this thesis demonstrated a variety of applications for IR spectroscopy to 

contribute to both short and long-term goals of the GOMGHRC and deep-sea research in general. 
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At current status, the most significant application of IR spectroscopy for supporting the 

GOMGHRC is the qualitative and semi-quantitative evaluation and characterization of carbonate 

minerals in sediment and nodule formations in the laboratory and on-ship. IR spectroscopy is 

anticipated to facilitate guided and collective studies for assessing potential correlations in the 

variability and diversity of microbiological, biogeochemical, and geologic processes surrounding 

the MC118 site. This is expected to be achieved most readily by implementing IR analysis as a 

first analytical characterization tool, on-ship, and immediately following the recovery of 

sediments during coring operations. 

In addition to qualitative and semi-quantitative sediment analyses, the characterization of 

carbonate mineral diversity in nodule samples may reveal trends in the spatial and/or temporal 

dynamics at the MC118 site (i.e., pore water conditions and chemosynthetic activities). Initial 

nodule characterization revealed three general composition classifications; however, a continuum 

of diverse carbonate mineral compositions of authigenic nodules surrounding hydrate ecosystems 

is anticipated. Thus, improved tertiary (calcites, dolomite, and aragonite) and/or quaternary 

(calcite, dolomite, aragonite, and Mg-calcite) compositional analyses with IR-ATR spectroscopy 

may facilitate more insightful characterization of the carbonate diversity and potential trends at 

the MC118 site, as well as inter-site variability within the GoM and other gas hydrate systems. 

Although the initial principles for gas hydrate monitoring have been established, a submersible 

MIR sensing platform capable of operating at the MC118 site has yet to be realized. With 

conclusion of this thesis, the greatest limiting factor for the application of IR spectroscopy to 

fulfill long-term in situ monitoring goals of the GOMGHRC is the lack of a robust MIR sensing 

platform. From the work performed in this thesis, two primary applications are readily accessible 

upon realization of such an instrument. First, in situ characterization of the spatial distribution of 

authigenic carbonates is anticipated to improve assessments in the variability and significance of 

authigenic carbonate within the fine sediment fractions surrounding the MC118 hydrate system. 

Second, in situ spectroscopic monitoring of gas hydrates at MC118 is anticipated to provide 
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direct insight into the dynamics of hydrate formation and dissociation. This is of particular 

interest to assess the influence of warm-water eddies from the Gulf Loop current and other 

environmental factors (i.e., pressure changes with tidal cycles and seismic activity) that could 

stimulate wide-spread dissociation events by disrupting the stability of gas hydrates within 

hydrate-bearing sediments. 

In general, the application of IR spectroscopy for monitoring and evaluating hydrates and 

carbonates should be widely applicable for assisting the characterization of other oceanic gas 

hydrate ecosystems. However, it is prudent to acknowledge that the application of IR 

spectroscopy as a tool by itself can only provide a fraction of the information required to fully 

characterize the complexity of such ecosystems. The establishment of seafloor observatories, 

such as that envisioned by the GOMGHRC, for long-term, in situ monitoring by integrated sensor 

networks with multiple sensor technologies, including optical sensors (IR-ATR and Raman), 

mass spectrometers, temperature, salinity, oxygen, pH, accelerometers, and acoustics, should 

provide a wealth of complementary information that will facilitate significant advances in current 

knowledge regarding the spatiotemporal dynamics of complex oceanic gas hydrate ecosystems. 

Furthermore, the IR spectroscopic characterization of carbonate minerals is anticipated to have 

more universal application for investigating carbonate minerals and carbonate cycles in oceanic 

environments resulting from the diversity, complexity, and wide-spread global distributions, 

whereas the occurrence of gas hydrate is spatially restricted to the presence of appropriate 

hydrocarbon guests at thermodynamically suitable conditions. Ultimately, the development of 

appropriate MIR chemical sensing platforms for both on-ship and in situ measurements has 

significant potential for supporting deep-sea oceanic research following the demonstrated 

applications in this thesis. 
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APPENDIX A 
 
 
 

A-1 Carbon Isotope Analysis of Sediment and Nodule Samples 

Carbon isotope analysis of carbonates from selected sediment and nodule samples were 

performed to verify the direct connection of IR spectroscopic detection of chemosynthetically 

driven carbonate precipitation. Initial sample preparations were performed at Georgia Tech, and 

sample analyses were conducted under contract by the Stable Isotope Lab, INSTAAR, University 

of Colorado, Boulder (Lab Manager, Bruce Vaughn). 

 

A-1.1 Sample Preparation and Sample Analysis 

Ample portions (~300 mg) of sediment samples selected for isotope analysis were isolated and 

dried at room temperature for at least 7 days. Nodule samples were rinsed with DI water and 

allowed to dry for at least 48 hours. After drying, individual samples were hand ground with a 

ceramic mortar and pestle into a fine powder. Following, samples were placed in labeled glass 

centrifuge tubes and treated with a 6% hypochlorite solution for approx. 24 hrs to remove organic 

carbon. Samples were then mixed and centrifuged for approx. 30 mins before removing the 

hypochlorite solution. Ground specimens were then rinsed 3 times with a KOH solution (pH 

~9.5) by: (1) filling centrifuge tube with approx. 12 mL and mixing with vial contents, (2) 

centrifuging vials for approx. 30 mins, and (3) removing and discarding KOH supernatant. After 

performing this 3 times (no scent of hypochlorite), ground samples were transferred to 

polystyrene weigh boats and dried at 60 °C for approx. 14 hrs. Once dried, samples were re-

ground with a ceramic mortar and pestle and stored in labeled, plastic storage vials until isotopic 

characterization. 

Carbon isotope analysis of carbonates within the selected sediment and nodule samples were 

performed by reacting 2 to 4 mg of sample with 100% phosphoric acid in an acid bath carousel 

system. CO2 released during the reaction of acid and carbonate was then analyzed a Micromass 
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SIRA Series II Dual Inlet mass spectrometer. All results are presented on the Vienna-Pee Dee 

Belemnite (V-PDB) scale. 

 

A-1.2 Results 

Table A-1.1: Carbon isotope data for carbonate analysis of selected sediment and nodule samples 
from gas hydrate ecosystems in the GoM. Additional considerations to this data are provided in 
Chapter 5 and Chapter 6. 
 

Sample Type δ13C SD δ13C 
BC1C Bot Sediment -5.8 0.285 
BC5B Bot Sediment -18.7 0.562 
BC7A Bot Sediment 0.4 0.029 
BC9A Bot Sediment -2.3 0.367 

BC11A Top Sediment 0.6 0.031 
BC12A Bot Sediment -22.6 0.300 

Core 21 Sediment -1.0 0.144 
Core 26 Sediment -11.1 0.690 

6m MD02-2570 Sediment -4.0 0.268 
BC3 Nod Nodule -26.6 0.057 
BC5 Nod Nodule -24.0 0.096 

Core 21 Nod Nodule -34.0 0.105 
Core 26 Nod Nodule -31.3 0.506 

BC9 Mollusk Shell Shell 2.8 0.268 
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A-2 IR-ATR Spectral Database for Anhydrous Normal Carbonate Minerals 

Each of the following carbonate mineral IR-ATR spectra were collected on a Bruker 55 FT-IR 

spectrometer with measurement procedures and specimens described in Section 5.2. All spectra 

were the average of 100 sample scans collected from 4000 – 400 cm-1 at a spectral resolution of 

1 cm-1. Only the spectral region from 1650 – 600 cm-1 has been selected for graphical display. 

Quick Figure Reference: 

Figure A-2.1: Calcite 

Figure A-2.2: Magnesite 

Figure A-2.3: Siderite 

Figure A-2.4: Rhodochrosite 

Figure A-2.5: Smithsonite 

Figure A-2.6: Aragonite 

Figure A-2.7: Witherite 

Figure A-2.8: Strontianite 

Figure A-2.9: Cerussite 

Figure A-2.10: Dolomite 
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Figure A-2.1: IR-ATR spectrum of calcite, CaCO3. 
 

 
 
Figure A-2.2: IR-ATR spectrum of magnesite*, MgCO3 (* very minor dolomite contamination). 
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Figure A-2.3: IR-ATR spectrum of siderite, FeCO3. 
 

 
 
Figure A-2.4: IR-ATR spectrum of rhodochrosite, MnCO3. 
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Figure A-2.5: IR-ATR spectrum of smithsonite: ZnCO3. 
 

 
 
Figure A-2.6: IR-ATR spectrum of aragonite: CaCO3. 
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Figure A-2.7: IR-ATR spectrum of witherite, BaCO3. 
 

 
 
Figure A-2.8: IR-ATR spectrum of strontianite*, SrCO3 (* very minor dolomite contamination). 
 



 285

 
 
Figure A-2.9: IR-ATR spectrum of cerussite, PbCO3. 
 

 
 
Figure A-2.10: IR-ATR spectrum of dolomite, CaMg(CO3)2. 
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A-3 Sediment Collections from GOMGHRC Cruise to MC118 during June 2006 

Table A-3.1 provides a summary of sediments collected from MC118 box cores obtained during 

the GOMGHRC cruise in June 2006. Push-core designations (A, B, C) refer to duplicate/triplicate 

samples collected from the same box core. Sub-samples (S-S) were stored in plastic bags with 

designations T = Top, M = Middle, and B = Bottom where depth below seafloor follows the order 

T < M1 < M2 <B. See Section 5.1.3 for additional sample collection details. 

 
Table A-3.1: List of sediments collected from the MC118 gas hydrate site during a GOMGHRC 
cruise in June 2006. 
 

Location Push-Core Sub-Samples S-S Designations P-C Length (cm) 
BC1A 1 bag T NA 
BC1B 3 bags T, M, B NA BC1 
BC1C 3 bags T, M, B NA 
BC2A 3 bags T, M, B NA BC2 BC2B 3 bags T, M, B NA 

BC3 BC3 No PCs, Mud Spilled, Nodules were Collected for Dr. Rogeer Sassen 
BC4A 3 bags T, M, B NA BC4 BC4B 2 bags T, B NA 
BC5A 2 bags T, B 16 BC5 BC5B 2 bags T, B 13 
BC6A 2 bags T, B 22 BC6 BC6B 2 bags T, B 27 
BC7A 2 bags T, B 14 BC7 BC7B 2 bags T, B 16 
BC8A 4 bags T, M1, M2, B 24 BC8 BC8B 4 bags T, M1, M2, B 25 
BC9A 2 bags T, B 25 BC9 BC9B 2 bags T, B 24 

BC10 BC10 Did Not Collect From this Core 
BC11A 3 bags T, M, B 29 BC11 BC11B 3 bags T, M, B 26 
BC12A 2 bags T, B 18 BC12 BC12B 2 bags T, B 20 

BC13 BC13 BC Did Not Trip 
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A-4 IR-ATR Analysis of Calcite-Dolomite Standard and Blind Samples 

See Section 5.5 for more additional sample preparation and evaluation information. 

 
Table A-4.1: IR-ATR analytical results from the evaluation of carbonate standards with 90% 
dolomite and 10% calcite. 
 

90D:10C Standard D C    
 Target 90 10    
 Mass (g) 1.6068 0.1796    
 Mass % 89.95 10.05    
 D PA D Stdev C PA C Stdev D/(D+C) C/(D+C) 

Trial 1 0.9959 0.0028 0.0944 0.0020 0.9134 0.0866 
Trial 2 0.9287 0.0026 0.0819 0.0019 0.9189 0.0811 
Trial 3 0.9277 0.0034 0.0839 0.0030 0.9171 0.0829 

 0.9508 Average 0.0867 Average 0.9165 0.0835 
 0.0391 StDev 0.0067 Stdev 0.0028 0.0028 
 4.12 % RelStDev 7.75 % RelStDev 0.31 3.36 

 

Table A-4.2: IR-ATR analytical results from the evaluation of carbonate standards with 70% 
dolomite and 30% calcite. 
 

70D:30C Standard D C    
 Target 70 30    
 Mass (g) 1.2611 0.5504    
 Mass % 69.62 30.38    
 D PA D Stdev C PA C Stdev D/(D+C) C/(D+C) 

Trial 1 0.8475 0.0025 0.3391 0.0021 0.7142 0.2858 
Trial 2 0.7427 0.0023 0.3009 0.0021 0.7116 0.2884 
Trial 3 0.7833 0.0029 0.3111 0.0020 0.7157 0.2843 

 0.7912 Average 0.3171 Average 0.7139 0.2861 
 0.0529 StDev 0.0198 Stdev 0.0021 0.0021 
 6.68 % RelStDev 6.23 % RelStDev 0.29 0.72 

 

Table A-4.3: IR-ATR analytical results from the evaluation of carbonate standards with 50% 
dolomite and 50% calcite. 
 

50D:50C Standard D C    
 Target 50 50    
 Mass (g) 0.9003 0.9001    
 Mass % 50.01 49.99    
 D PA D Stdev C PA C Stdev D/(D+C) C/(D+C) 

Trial 1 0.5346 0.0025 0.5288 0.0025 0.5027 0.4973 
Trial 2 0.5298 0.0031 0.5392 0.0022 0.4956 0.5044 
Trial 3 0.4579 0.0023 0.4754 0.0020 0.4906 0.5094 

 0.5074 Average 0.5145 Average 0.4963 0.5037 
 0.0429 StDev 0.0342 Stdev 0.0061 0.0061 
 8.46 % RelStDev 6.65 % RelStDev 1.22 1.20 
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Table A-4.4: IR-ATR analytical results from the evaluation of carbonate standards with 30% 
dolomite and 70% calcite. 
 

30D:70C Standard D C    
 Target 30 70    
 Mass (g) 0.5433 1.2603    
 Mass % 30.12 69.88    
 D PA D Stdev C PA C Stdev D/(D+C) C/(D+C) 

Trial 1 0.3461 0.0026 0.7945 0.0018 0.3034 0.6966 
Trial 2 0.3188 0.0028 0.7441 0.0021 0.3000 0.7000 
Trial 3 0.2863 0.0030 0.6753 0.0019 0.2978 0.7022 

 0.3171 Average 0.7379 Average 0.3004 0.6996 
 0.0299 StDev 0.0598 Stdev 0.0029 0.0029 
 9.43 % RelStDev 8.11 % RelStDev 0.95 0.41 

 

Table A-4.5: IR-ATR analytical results from the evaluation of carbonate standards with 10% 
dolomite and 90% calcite. 
 

10D:90C Standard D C    
 Target 10 90    
 Mass (g) 0.1805 1.6135    
 Mass % 10.06 89.94    
 D PA D Stdev C PA C Stdev D/(D+C) C/(D+C) 

Trial 1 0.1239 0.0021 1.0642 0.0021 0.1043 0.8957 
Trial 2 0.1059 0.0023 0.9315 0.0021 0.1021 0.8979 
Trial 3 0.1072 0.0019 0.9411 0.0027 0.1023 0.8977 

 0.1123 Average 0.9789 Average 0.1029 0.8971 
 0.0100 StDev 0.0740 Stdev 0.0012 0.0012 
 8.91 % RelStDev 7.56 % RelStDev 1.17 0.13 
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Table A-4.6: IR-ATR analytical results from the evaluation of blind carbonate samples. 
 

 Blind Sample Analysis: Sum(C+D) = 100% Sample Mass  
 Mass (g) Mass (%) PA StDev D/(C+D) Pred % (C or D) Actual % (C or D) Abs. % Error 

ID D C D C D D D D C D C (C or D) 
BS1 0.5786 1.2246 32.09 67.91 0.3375 0.0023 0.3370 33.47 66.53 32.09 67.91 1.38 

BS2* 0.8298 0.9738 46.01 53.99 0.5402 0.0023 0.4750 46.94 53.06 46.01 53.99 0.93 
BS3 0.1163 1.6821 6.47 93.53 0.0809 0.0019 0.0690 7.30 92.70 6.47 93.53 0.83 
BS4 1.4033 0.3937 78.09 21.91 0.9469 0.0030 0.7822 76.94 23.06 78.09 21.91 1.15 

     PA StDev C/(C+D)      
    ID C C C      
    BS1 0.6640 0.0025 0.6630      
    BS2* 0.5971 0.0022 0.5250      
    BS3 1.0907 0.0019 0.9310      
    BS4 0.2636 0.0020 0.2178      
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A-5 IR-ATR Analysis of Calcite-Dolomite Composition Relative to the Total Carbonate 

Mass in Marine Sediment Samples from the GoM 

See Section 5.5 for full experimental details and discussion. 

 
Table A-5.1: IR-ATR analysis of calcite and dolomite in BC1 sediments. 
 

BC1          
Sample Sub D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 
BC1C Top 0.0012 0.0026 0.1643 0.0026 0.0070 0.9930 1.25 98.75 Low 
BC1C Top 0.0014 0.0023 0.1549 0.0020 0.0087 0.9913 1.41 98.59 Low 
BC1C Top 0.0006 0.0017 0.1392 0.0020 0.0043 0.9957 0.99 99.01 Low 
BC1B Top 0.0021 0.0025 0.1766 0.0030 0.0119 0.9881 1.72 98.28 Low 
BC1B Top -0.0003 0.0014 0.1142 0.0017 -0.0023 1.0023 0.34 99.66 V Low 
BC1B Top 0.0020 0.0015 0.1241 0.0018 0.0158 0.9842 2.11 97.89 Low 
BC1B Top -0.0004 0.0013 0.1119 0.0011 -0.0033 1.0033 0.24 99.76 V Low 
BC1C Mid 0.0116 0.0031 0.2238 0.0039 0.0491 0.9509 5.36 94.64 Clear 
BC1C Mid 0.0066 0.0021 0.2124 0.0015 0.0302 0.9698 3.51 96.49 Clear 
BC1C Mid 0.0021 0.0019 0.1822 0.0020 0.0112 0.9888 1.66 98.34 Low 
BC1B Mid 0.0041 0.0021 0.1389 0.0029 0.0286 0.9714 3.36 96.64 Low 
BC1B Mid -0.0048 0.0015 0.0898 0.0013 -0.0564 1.0564 -4.94 104.94 ND 
BC1B Mid -0.0044 0.0015 0.1327 0.0022 -0.0345 1.0345 -2.80 102.80 ND 
BC1C Bot 0.0121 0.0023 0.1236 0.0028 0.0889 0.9111 9.24 90.76 Clear 
BC1C Bot 0.0078 0.0019 0.1182 0.0018 0.0621 0.9379 6.63 93.37 Clear 
BC1C Bot 0.0187 0.0020 0.1672 0.0020 0.1005 0.8995 10.38 89.62 Clear 
BC1B Bot 0.0093 0.0022 0.1978 0.0040 0.0450 0.9550 4.96 95.04 Low 
BC1B Bot 0.0029 0.0020 0.1764 0.0024 0.0162 0.9838 2.15 97.85 Low 
BC1B Bot 0.0027 0.0024 0.1930 0.0036 0.0138 0.9862 1.92 98.08 Low 

 

Table A-5.2: IR-ATR analysis of calcite and dolomite in BC2 sediments. 
 

BC2          
Sample Sub D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 
BC2A Top -0.0065 0.0029 0.2504 0.0030 -0.0268 1.0268 -2.05 102.05 ND 
BC2A Top -0.0016 0.0010 0.0637 0.0011 -0.0256 1.0256 -1.94 101.94 ND 
BC2A Mid -0.0032 0.0037 0.2395 0.0038 -0.0135 1.0135 -0.75 100.75 ND 
BC2A Bot -0.0045 0.0021 0.3411 0.0036 -0.0134 1.0134 -0.75 100.75 ND 

 

Table A-5.3: IR-ATR analysis of calcite and dolomite in BC4 sediments. 
 

BC4          
Sample Sub D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 
BC4A Top -0.0031 0.0028 0.1990 0.0035 -0.0156 1.0156 -0.96 100.96 ND 
BC4A Mid -0.0027 0.0025 0.1869 0.0025 -0.0147 1.0147 -0.87 100.87 ND 
BC4A Bot -0.0011 0.0027 0.1919 0.0028 -0.0057 1.0057 0.01 99.99 ND 
BC4A Bot -0.0048 0.0043 0.1987 0.0029 -0.0246 1.0246 -1.84 101.84 ND 
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Table A-5.4: IR-ATR analysis of calcite and dolomite in BC5 sediments. 
 

BC5          
Sample Sub D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 
BC5A Top -0.0067 0.0025 0.0481 0.0033 -0.1609 1.1609 -15.15 115.15 ND 
BC5A Top -0.0059 0.0012 0.0577 0.0015 -0.1141 1.1141 -10.58 110.58 ND 
BC5A Top -0.0064 0.0010 0.0633 0.0008 -0.1117 1.1117 -10.34 110.34 ND 
BC5A Bot -0.0133 0.0027 0.1446 0.0039 -0.1011 1.1011 -9.31 109.31 ND 
BC5A Bot -0.0101 0.0018 0.0579 0.0012 -0.2104 1.2104 -19.98 119.98 ND 
BC5A Bot -0.0116 0.0018 0.0735 0.0028 -0.1883 1.1883 -17.82 117.82 ND 
BC5A Bot -0.0026 0.0012 0.0206 0.0010 -0.1451 1.1451 -13.61 113.61 ND 
BC5B Bot -0.0207 0.0037 0.0936 0.0039 -0.2834 1.2834 -27.10 127.10 ND 
BC5B Bot -0.0203 0.0025 0.0686 0.0031 -0.4205 1.4205 -40.49 140.49 ND 
BC5B Bot -0.0292 0.0020 0.0919 0.0015 -0.4660 1.4660 -44.93 144.93 ND 
BC5B Bot -0.0333 0.0023 0.0992 0.0024 -0.5055 1.5055 -48.79 148.79 ND 

 

Table A-5.5: IR-ATR analysis of calcite and dolomite in BC6 sediments. 
 

BC6          
Sample Sub D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 
BC6A Top -0.0059 0.0033 0.2328 0.0046 -0.0260 1.0260 -1.97 101.97 ND 
BC6A Top -0.0065 0.0038 0.2977 0.0034 -0.0225 1.0225 -1.63 101.63 ND 
BC6A Bot -0.0063 0.0025 0.3653 0.0041 -0.0176 1.0176 -1.15 101.15 ND 

 

Table A-5.6: IR-ATR analysis of calcite and dolomite in BC7 sediments. 
 

BC7          
Sample Sub D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 
BC7A Top -0.0057 0.0027 0.1082 0.0021 -0.0560 1.0560 -4.90 104.90 ND 
BC7A Top -0.0080 0.0014 0.1707 0.0017 -0.0491 1.0491 -4.23 104.23 ND 
BC7A Top -0.0064 0.0017 0.1616 0.0015 -0.0413 1.0413 -3.46 103.46 ND 
BC7A Bot -0.0048 0.0022 0.2737 0.0039 -0.0179 1.0179 -1.18 101.18 ND 
BC7A Bot -0.0083 0.0019 0.2409 0.0020 -0.0355 1.0355 -2.90 102.90 ND 
BC7A Bot -0.0100 0.0020 0.2497 0.0019 -0.0417 1.0417 -3.51 103.51 ND 

 

Table A-5.7: IR-ATR analysis of calcite and dolomite in BC8 sediments. 
 

BC8          
Sample Sub D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 
BC8A Top -0.0032 0.0029 0.1139 0.0027 -0.0287 1.0287 -2.24 102.24 ND 
BC8A Mid1 -0.0055 0.0026 0.1441 0.0027 -0.0400 1.0400 -3.34 103.34 ND 
BC8A Mid2 -0.0021 0.0030 0.1049 0.0034 -0.0203 1.0203 -1.42 101.42 ND 
BC8A Bot -0.0041 0.0035 0.1988 0.0041 -0.0212 1.0212 -1.50 101.50 ND 

 

Table A-5.8: IR-ATR analysis of calcite and dolomite in BC9 sediments. 
 

BC9          
Sample Sub D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 
BC9A Top -0.0045 0.0018 0.0276 0.0016 -0.1949 1.1949 -18.47 118.47 ND, Oil 
BC9A Bot 0.0008 0.0018 0.0090 0.0018 0.0784 0.9216 8.22 91.78 ND, Oil 
BC9A Bot 0.0006 0.0007 0.0016 0.0007 0.2603 0.7397 25.98 74.02 ND, Oil 
BC9A Bot 0.0008 0.0007 0.0022 0.0009 0.2591 0.7409 25.86 74.14 ND, Oil 
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Table A-5.9: IR-ATR analysis of calcite and dolomite in BC11 sediments. 
 

BC11          
Sample Sub D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 
BC11A Top -0.0032 0.0022 0.0616 0.0018 -0.0552 1.0552 -4.82 104.82 ND 
BC11A Mid -0.0044 0.0033 0.3063 0.0030 -0.0145 1.0145 -0.85 100.85 ND 
BC11A Bot -0.0072 0.0036 0.4985 0.0056 -0.0147 1.0147 -0.87 100.87 ND 

 

Table A-5.10: IR-ATR analysis of calcite and dolomite in BC12 sediments. 
 

BC12          
Sample Sub D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 
BC12A Top 0.0052 0.0025 0.0120 0.0014 0.3032 0.6968 30.17 69.83 Yes, Oil 
BC12A Top 0.0017 0.0018 0.0156 0.0016 0.0973 0.9027 10.06 89.94 Yes, Oil 
BC12A Top 0.0040 0.0008 0.0119 0.0007 0.2529 0.7471 25.25 74.75 Yes, Oil 
BC12A Top 0.0150 0.0012 0.0359 0.0010 0.2943 0.7057 29.30 70.70 Yes, Oil 
BC12A Bot 0.0096 0.0023 0.0196 0.0017 0.3276 0.6724 32.55 67.45 Yes, Oil 
BC12A Bot 0.0028 0.0021 0.0111 0.0016 0.2031 0.7969 20.40 79.60 Yes, Oil 
BC12A Bot 0.0058 0.0008 0.0414 0.0012 0.1224 0.8776 12.51 87.49 Yes, Oil 
BC12A Bot 0.0057 0.0007 0.0296 0.0010 0.1615 0.8385 16.34 83.66 Yes, Oil 

 

Table A-5.11: IR-ATR analysis of calcite and dolomite in MC118 gravity core 21 sediments. 
 

MC118 Core 21          
Sample Trial D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 

21 1 0.1588 0.0020 0.1486 0.0022 0.5166 0.4834 51.01 48.99 High 
21 2 0.1544 0.0033 0.1487 0.0023 0.5094 0.4906 50.30 49.70 High 
21 3 0.1342 0.0016 0.1285 0.0024 0.5108 0.4892 50.44 49.56 High 

 

Table A-5.12: IR-ATR analysis of calcite and dolomite in MC118 gravity core 26 sediments. 
 

MC118 Core 26          
Sample Trial D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 

26 1 0.0586 0.0017 0.0823 0.0016 0.4156 0.5844 41.15 58.85 High 
26 2 0.1084 0.0017 0.0983 0.0018 0.5244 0.4756 51.77 48.23 High 
26 3 0.0596 0.0019 0.0499 0.0026 0.5442 0.4558 53.70 46.30 High 

 

Table A-5.13: IR-ATR analysis of calcite and dolomite in MC118 gravity core 38 sediments. 
 

MC118 Core 38          
Sample Trial D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 

38 1 -0.0153 0.0014 0.1698 0.0014 -0.0992 1.0992 -9.12 109.12 V Low (?) 
38 2 -0.0125 0.0019 0.2083 0.0026 -0.0637 1.0637 -5.66 105.66 V Low (?) 
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Table A-5.14: IR-ATR analysis of calcite and dolomite in MD02-2570 piston core sediments. 
 

MD02-2570          
Sample Trial D PA D SD C PA C SD D/(D+C) C/(D+C) % D % C D Vis. ID 

1 m 1 0.0341 0.0019 0.0144 0.0014 0.7035 0.2965 69.26 30.74 High 
6 m 1 0.0532 0.0034 0.0113 0.0025 0.8246 0.1754 81.08 18.92 High 
6 m 2 0.0665 0.0024 0.0082 0.0022 0.8896 0.1104 87.43 12.57 High 
6 m 3 0.0406 0.0011 0.0022 0.0013 0.9481 0.0519 93.14 6.86 High 
9 m 1 0.0563 0.0025 0.0441 0.0035 0.5608 0.4392 55.32 44.68 High 
12 m 1 0.0540 0.0028 0.1066 0.0035 0.3362 0.6638 33.39 66.61 High 
15 m 1 0.0616 0.0046 0.0521 0.0042 0.5417 0.4583 53.45 46.55 High 
18 m 1 0.0453 0.0047 0.0277 0.0030 0.6212 0.3788 61.21 38.79 High 
18 m 2 0.0760 0.0078 0.0536 0.0050 0.5866 0.4134 57.84 42.16 High 
18 m 3 0.0541 0.0026 0.0346 0.0022 0.6096 0.3904 60.09 39.91 High 
21 m 1 0.0754 0.0030 0.0550 0.0024 0.5784 0.4216 57.04 42.96 High 
21 m 2 0.2014 0.0051 0.1001 0.0055 0.6681 0.3319 65.79 34.21 High 
21 m 3 0.1021 0.0026 0.0660 0.0024 0.6074 0.3926 59.87 40.13 High 
24 m 1 0.0366 0.0018 0.0541 0.0019 0.4040 0.5960 40.01 59.99 High 
27 m 1 0.0690 0.0031 0.0576 0.0030 0.5447 0.4553 53.75 46.25 High 

27+ m 1 0.2477 0.0102 0.0946 0.0084 0.7236 0.2764 71.21 28.79 High 
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A-6 Spectral Ray Tracing Simulation Settings for SPRAY Software 

Additional information for spectral ray tracing simulations can be found in Section 7-3. 

 
Table A-6.1: SPRAY values for dielectric function models for optical materials. 
 

Dielectric Function (DF) Models for Optical Materials 
Material DF Model Points Range (cm-1) Value 

Air Constant Refractive Index 20 4000-400 1.0003 
ZnSe Constant Refractive Index 20 4000-400 2.44 

 

Table A-6.2: SPRAY values for dielectric properties of simulated absorbers. 
 

Simulated Absorber Dielectric Function Properties 
DF Model Value Oscillator Strength Damping Constant 

Dielectric Background 1.4   
Harmonic Oscillator 1443 cm-1 30 1 

 

Table A-6.3: SPRAY values for simulated object interfaces. 
 

Simulated Object Interfaces 
Interface Type Material Thickness 

Thinfilm Absorber 10 nm 
Halfspace ZnSe  Simulated Absorber 

Interface 
Halfspace ZnSe  
Halfspace Air  ATR Crystal 

Interfaces Halfspace ZnSe  

 

Table A-6.4: SPRAY parameters for simulated objects. 
 

Simulated Object Parameters 
Location (x,y,z) Vector 1 (x,y,z) Vector 2 (x,y,z) Vector 3 (x,y,z) Angle ATR 

Crystal 0, 0, 0 3.4, 0, 0 0, 0.5, 0 0, 0, 0.3 45 
Location (x,y,z) Surface Normal (x,y,z) Cone Angle Radius Circular Light 

Source -3.4, 0, 0.1 1, 0, -1 1.0° – 16.0° 0.00215 – 0.25 cm 
Location (x,y,z) Radius Vector Axis Vector Absorbing 

Cylinder -2.5 – 2.3, 0, -0.297 0.125, 0, 0 0, 0, 0.001 
Location (x,y,z) Vector 1 (x,y,z) Vector 2 (x,y,z) Surface Imaging 

Screen 0, 0, -0.29995 3.6, 0, 0 0, 0.5, 0 
Location (x,y,z) Vector 1 (x,y,z) Vector 2 (x,y,z) Rectangular 

Detector 5, 0, 2 0, -2, 0 -1.5, 0, 1.5 
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