26 research outputs found

    Atmospheric constraints on global emissions of methane from plants

    Get PDF
    We investigate whether a recently proposed large source of CH4 from vegetation can be reconciled with atmospheric measurements. Atmospheric transport model simulations with and without vegetation emissions are compared with background CH4, delta C-13-CH4 and satellite measurements. For present - day CH4 we derive an upper limit to the newly discovered source of 125 Tg CH4 yr(-1). Analysis of preindustrial CH4, however, points to 85 Tg CH4 yr(-1) as a more plausible limit. Model calculations with and without vegetation emissions show strikingly similar results at background surface monitoring sites, indicating that these measurements are rather insensitive to CH4 from plants. Simulations with 125 Tg CH4 yr(-1) vegetation emissions can explain up to 50% of the previously reported unexpectedly high CH4 column abundances over tropical forests observed by SCIAMACHY. Our results confirm the potential importance of vegetation emissions, and call for further research

    A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements

    Get PDF
    This study investigates the use of total column CH<sub>4</sub> (<i>X</i>CH<sub>4</sub>) retrievals from the SCIAMACHY satellite instrument for quantifying large-scale emissions of methane. A unique data set from SCIAMACHY is available spanning almost a decade of measurements, covering a period when the global CH<sub>4</sub> growth rate showed a marked transition from stable to increasing mixing ratios. The TM5 4DVAR inverse modelling system has been used to infer CH<sub>4</sub> emissions from a combination of satellite and surface measurements for the period 2003–2010. In contrast to earlier inverse modelling studies, the SCIAMACHY retrievals have been corrected for systematic errors using the TCCON network of ground-based Fourier transform spectrometers. The aim is to further investigate the role of bias correction of satellite data in inversions. Methods for bias correction are discussed, and the sensitivity of the optimized emissions to alternative bias correction functions is quantified. It is found that the use of SCIAMACHY retrievals in TM5 4DVAR increases the estimated inter-annual variability of large-scale fluxes by 22% compared with the use of only surface observations. The difference in global methane emissions between 2-year periods before and after July 2006 is estimated at 27–35 Tg yr<sup>−1</sup>. The use of SCIAMACHY retrievals causes a shift in the emissions from the extra-tropics to the tropics of 50 ± 25 Tg yr<sup>−1</sup>. The large uncertainty in this value arises from the uncertainty in the bias correction functions. Using measurements from the HIPPO and BARCA aircraft campaigns, we show that systematic errors in the SCIAMACHY measurements are a main factor limiting the performance of the inversions. To further constrain tropical emissions of methane using current and future satellite missions, extended validation capabilities in the tropics are of critical importance

    Evaluation and Analysis of the Seasonal Cycle and Variability of the Trend from GOSAT Methane Retrievals

    Get PDF
    Methane ( CH 4) is a potent greenhouse gas with a large temporal variability. To increase the spatial coverage, methane observations are increasingly made from satellites that retrieve the column-averaged dry air mole fraction of methane (XCH 4). To understand and quantify the spatial differences of the seasonal cycle and trend of XCH 4 in more detail, and to ultimately help reduce uncertainties in methane emissions and sinks, we evaluated and analyzed the average XCH 4 seasonal cycle and trend from three Greenhouse Gases Observing Satellite (GOSAT) retrieval algorithms: National Institute for Environmental Studies algorithm version 02.75, RemoTeC CH 4 Proxy algorithm version 2.3.8 and RemoTeC CH 4 Full Physics algorithm version 2.3.8. Evaluations were made against the Total Carbon Column Observing Network (TCCON) retrievals at 15 TCCON sites for 2009&#8211;2015, and the analysis was performed, in addition to the TCCON sites, at 31 latitude bands between latitudes 44.43&#176;S and 53.13&#176;N. At latitude bands, we also compared the trend of GOSAT XCH 4 retrievals to the NOAA&#8217;s Marine Boundary Layer reference data. The average seasonal cycle and the non-linear trend were, for the first time for methane, modeled with a dynamic regression method called Dynamic Linear Model that quantifies the trend and the seasonal cycle, and provides reliable uncertainties for the parameters. Our results show that, if the number of co-located soundings is sufficiently large throughout the year, the seasonal cycle and trend of the three GOSAT retrievals agree well, mostly within the uncertainty ranges, with the TCCON retrievals. Especially estimates of the maximum day of XCH 4 agree well, both between the GOSAT and TCCON retrievals, and between the three GOSAT retrievals at the latitude bands. In our analysis, we showed that there are large spatial differences in the trend and seasonal cycle of XCH 4. These differences are linked to the regional CH 4 sources and sinks, and call for further research

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    Small Interannual Variability of Global Atmospheric Hydroxyl

    No full text
    The oxidizing capacity of the global atmosphere is largely determined by hydroxyl (OH) radicals and is diagnosed by analyzing methyl chloroform (CH3CCl3) measurements. Previously, large year-to-year changes in global mean OH concentrations have been inferred from such measurements, suggesting that the atmospheric oxidizing capacity is sensitive to perturbations by widespread air pollution and natural influences. We show how the interannual variability in OH has been more precisely estimated from CH3CCl3 measurements since 1998, when atmospheric gradients of CH3CCl3 had diminished as a result of the Montreal Protocol. We infer a small interannual OH variability as a result, indicating that global OH is generally well buffered against perturbations. This small variability is consistent with measurements of methane and other trace gases oxidized primarily by OH, as well as global photochemical model calculations

    The carbonate system in the Ligurian Sea

    No full text
    Chapter 4International audienceThe study of the oceanic carbonate system is linked to two important environmental issues: ocean CO2_2 uptake and ocean acidification and its impact on organisms, ecosystems and ecosystem services. This chapter mainly focuses on the seasonal cycles and long‐term trends of the ocean carbonate system based on a synthesis of data collected in the Ligurian Sea from 1998 to 2016. In addition to the effect of potential T (theta) on CO2_2 solubility, the distribution of dissolved inorganic carbon CT in the water column is driven by the antagonistic effects of the biological carbon pump that increases the vertical gradient of CT (lowering CT at the surface and increasing it in the ocean interior) and the exchange of CO2_2 at the air–sea interface. The chapter also presents the seasonal cycle of the carbonate system and ancillary variables in the surface water
    corecore