18 research outputs found

    Water Demand and Allocation in the Mara River Basin, Kenya/Tanzania in the Face of Land Use Dynamics and Climate Variability

    Get PDF
    The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (\u3e95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds

    Evolving Discourses on Water Resource Management and Climate Change in the Equatorial Nile Basin

    Get PDF
    Transboundary water resources management in the Equatorial Nile Basin (EQNB) is a politically contested issue. There is a growing body of literature examining water-related discourses which identifies the ability of powerful actors and institutions to influence policy. Concern about the effects of future climate change has featured strongly in research on the Nile River for several decades. It is therefore timely to consider whether and how these concerns are reflected in regional policy documents and policy discourse. This study analyzes discourse framings of water resources management and climate change in policy documents (27, published between 2001 and 2013) and as elicited in interviews (38) with water managers in the EQNB. Three main discursive framings are identified which are present in the discourses on both subjects: a problem-oriented environmental risk frame and two solution-oriented frames, on governance and infrastructure development. Climate change discourse only emerges as a common topic around 2007. The framings found in the water resources management discourse and the climate change discourse are almost identical, suggesting that discursive framings were adopted from the former for use in the latter. We infer that the climate change discourse may have offered a less politically sensitive route to circumvent political sensitivities around water allocation and distribution between riparian countries in the EQNB. However, the climate change discourse does not offer a lasting solution to the more fundamental political dispute over water allocation. Moreover, in cases where the climate change discourse is subsumed within a water resources management discourse, there are dangers that it will not fully address the needs of effective adaptation

    The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis

    Get PDF
    Background Lymphatic filariasis is a neglected tropical disease that can cause permanent disability through disruption of the lymphatic system. This disease is caused by parasitic filarial worms that are transmitted by mosquitos. Mass drug administration (MDA) of antihelmintics is recommended by WHO to eliminate lymphatic filariasis as a public health problem. This study aims to produce the first geospatial estimates of the global prevalence of lymphatic filariasis infection over time, to quantify progress towards elimination, and to identify geographical variation in distribution of infection. Methods A global dataset of georeferenced surveyed locations was used to model annual 2000–18 lymphatic filariasis prevalence for 73 current or previously endemic countries. We applied Bayesian model-based geostatistics and time series methods to generate spatially continuous estimates of global all-age 2000–18 prevalence of lymphatic filariasis infection mapped at a resolution of 5 km2 and aggregated to estimate total number of individuals infected. Findings We used 14 927 datapoints to fit the geospatial models. An estimated 199 million total individuals (95% uncertainty interval 174–234 million) worldwide were infected with lymphatic filariasis in 2000, with totals for WHO regions ranging from 3·1 million (1·6–5·7 million) in the region of the Americas to 107 million (91–134 million) in the South-East Asia region. By 2018, an estimated 51 million individuals (43–63 million) were infected. Broad declines in prevalence are observed globally, but focal areas in Africa and southeast Asia remain less likely to have attained infection prevalence thresholds proposed to achieve local elimination. Interpretation Although the prevalence of lymphatic filariasis infection has declined since 2000, MDA is still necessary across large populations in Africa and Asia. Our mapped estimates can be used to identify areas where the probability of meeting infection thresholds is low, and when coupled with large uncertainty in the predictions, indicate additional data collection or intervention might be warranted before MDA programmes cease

    Effects of sea-level rise and freshwater management on long-term water levels and water quality in the Florida Coastal Everglades.

    No full text
    Since the 1880s, hydrological modification of the Greater Florida Everglades has reduced water levels and flows in Everglades National Park (ENP). The Comprehensive Everglades Restoration Program (CERP) began in 2000 to restore pre-drainage flows and preserve the natural landscape of the Everglades. However, sea-level rise (SLR) was not considered in the development of CERP. We used long-term data (2001-2016) from the Florida Coastal Everglades-Long Term Ecological Research Program to quantify and model the spatial dynamics of water levels, salinity, and nutrients in response to changes in climate, freshwater management and SLR in the Shark River Slough (SRS), ENP. Results indicate that fresh-to-marine head difference (FMHD) was the single most important factor affecting marine-to-freshwater hydrologic connectivity and transport of salinity and phosphorous upstream from the Gulf of Mexico. Sea-level has increasingly exceeded ground surface elevation at the most downstream freshwater site in SRS, thereby reducing the FMHD. We showed a higher impact of SLR in the dry season when there was practically no freshwater inflow to raise FMHD. We also demonstrated effectiveness of inflow depends more on the monthly distribution than the total annual volume. Hence, the impact per unit volume of inflow is significantly higher in the dry season in preventing high salinity and marine-derived nutrient levels. We advocate that FMHD needs to be factored into water management decisions to reduce adverse and likely irreversible effects of SLR throughout the Everglades landscape
    corecore