208 research outputs found

    Moisture-induced buckling of paper sheets

    Get PDF

    Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation

    Get PDF
    Selenocysteine (Sec)-decoding archaea and eukaryotes employ a unique route of Sec-tRNASec synthesis in which O-phosphoseryl-tRNASec kinase (PSTK) phosphorylates Ser-tRNASec to produce the O-phosphoseryl-tRNASec (Sep-tRNASec) substrate that Sep-tRNA:Sec-tRNA synthase (SepSecS) converts to Sec-tRNASec. This study presents a biochemical characterization of Methanocaldococcus jannaschii PSTK, including kinetics of Sep-tRNASec formation (Km for Ser-tRNASec of 40 nM and ATP of 2.6 mM). PSTK binds both Ser-tRNASec and tRNASec with high affinity (Kd values of 53 nM and 39 nM, respectively). The ATPase activity of PSTK may be activated via an induced fit mechanism in which binding of tRNASec specifically stimulates hydrolysis. Albeit with lower activity than ATP, PSTK utilizes GTP, CTP, UTP and dATP as phosphate-donors. Homology with related kinases allowed prediction of the ATPase active site, comprised of phosphate-binding loop (P-loop), Walker B and RxxxR motifs. Gly14, Lys17, Ser18, Asp41, Arg116 and Arg120 mutations resulted in enzymes with decreased activity highlighting the importance of these conserved motifs in PSTK catalysis both in vivo and in vitro. Phylogenetic analysis of PSTK in the context of its ‘DxTN’ kinase family shows that PSTK co-evolved precisely with SepSecS and indicates the presence of a previously unidentified PSTK in Plasmodium species

    Functional and spatial proteomics profiling reveals intra- and intercellular signaling crosstalk in colorectal cancer

    Get PDF
    Precision oncology approaches for patients with colorectal cancer (CRC) continue to lag behind other solid cancers. Functional precision oncology—a strategy that is based on perturbing primary tumor cells from cancer patients—could provide a road forward to personalize treatment. We extend this paradigm to measuring proteome activity landscapes by acquiring quantitative phosphoproteomic data from patient-derived organoids (PDOs). We show that kinase inhibitors induce inhibitor- and patient-specific off-target effects and pathway crosstalk. Reconstruction of the kinase networks revealed that the signaling rewiring is modestly affected by mutations. We show non-genetic heterogeneity of the PDOs and upregulation of stemness and differentiation genes by kinase inhibitors. Using imaging mass-cytometry-based profiling of the primary tumors, we characterize the tumor microenvironment (TME) and determine spatial heterocellular crosstalk and tumor-immune cell interactions. Collectively, we provide a framework for inferring tumor cell intrinsic signaling and external signaling from the TME to inform precision (immuno-) oncology in CRC.Molecular tumour pathology - and tumour genetic

    Measurement of energetic single-photon production at LEP

    Get PDF

    Energy and particle flow in three-jet and radiative two-jet events from hadronic Z decays

    Get PDF

    B^{*} production in Z decays at LEP

    Get PDF

    Search for R-Parity Breaking Sneutrino Exchange at LEP

    Get PDF
    We report on a search for R--parity breaking effects due to supersymmetric tau--sneutrino exchange in the reactions e+e- to e+e- and e+e- to mu+mu- at centre--of--mass energies from 91~{\GeV} to 172~{\GeV}, using the L3 detector at LEP. No evidence for deviations from the Standard Model expectations of the measured cross sections and forward--backward asymmetries for these reactions is found. Upper limits for the couplings λ131\lambda_{131} and λ232\lambda_{232} for sneutrino masses up to m_{\SNT} \leq 190~\GeV are determined from an analysis of the expected effects due to tau sneutrino exchange
    corecore