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SUMMARY

Precision oncology approaches for patientswith colorectal cancer (CRC) continue to lag behind other solid
cancers. Functional precision oncology—a strategy that is based on perturbing primary tumor cells from
cancer patients—could provide a road forward to personalize treatment. We extend this paradigm to
measuring proteome activity landscapes by acquiring quantitative phosphoproteomic data from pa-
tient-derived organoids (PDOs). We show that kinase inhibitors induce inhibitor- and patient-specific
off-target effects and pathway crosstalk. Reconstruction of the kinase networks revealed that the
signaling rewiring is modestly affected by mutations. We show non-genetic heterogeneity of the PDOs
and upregulation of stemness and differentiation genes by kinase inhibitors. Using imaging mass-cytom-
etry-based profiling of the primary tumors,we characterize the tumormicroenvironment (TME) anddeter-
mine spatial heterocellular crosstalk and tumor-immune cell interactions. Collectively, we provide a frame-
work for inferring tumor cell intrinsic signaling and external signaling from the TME to inform precision
(immuno-) oncology in CRC.

INTRODUCTION

In the past two decades, tremendous advances have been made in both cancer biology by identifying recurrent mutations in oncogenic

signaling pathways using sequencing technologies and therapeutics by developing targeted drugs specific for these mutations. In colorectal

cancer (CRC), one of the major cancers with high incidence and where mortality rates are still high,1 progress in targeted therapy has been

limited, relative to other solid cancers like lung cancer or melanoma.2 The genetic heterogeneity3 as well as paucity of druggable targets

(nearly 50% of all CRCs are driven by undruggable oncogenes of the RAS family with the exception of 3% who harbor KRASG12Cmutation)2

poses considerable challenges for developing precision oncology approaches for patients with CRC. Moreover, CRC seems to be refractory

to therapy with immune checkpoint blockers (ICBs) with the notable exception of CRC tumors characterized by mismatch-repair deficiency or
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Figure 1. Schematic outline of the overall concept used in this study

Multi-modal profiling and multi-omic profiling of tumor specimens and PDOs in a cohort of CRC patients. See also Table S1.
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POLE proofreading mutations.4 This is somehow paradoxical since CRCs, irrespectively of mismatch-repair status, are known to be under

immunological control, as we have shown in the past.5

In precision oncology the paradigm is emerging that genomic profiling of the tumor assessed at early intervention (biopsy or resection)

does not provide sufficient information to guide therapy. A diagnostic approach that is functional, i.e., measuring responses to perturbations

with living cells derived from the specific tumor is expected to provide immediately translatable, personalized treatment information.6 Such

functional precision medicine approach requires patient-derived models representing the tumors from affected individuals like patient-

derived xenografts (PDXs) or patient-derived organoids (PDOs).7 However, despite earlier encouraging reports,8,9 conflicting results have

been reported regarding the capability of PDOs to predict tumor responses to specific drugs.10Moreover, a recent study showed that despite

sensitivity of the PDOs to selected kinase inhibitors, CRC patients from whom these cells originated did not demonstrate objective clinical

response to the treatment.11 A number of reasons can be attributed to the limited value of PDOs as a tool for functional precision oncology.

These include PDOculture success rate, ineligibility of the patients, or limited set of drugs tested.11While improvements formore streamlined

experimental design are conceivable and could accelerate the implementation of PDOs to guide treatment decisions,major limitations of this

drug-screening approach remain. The readouts of the assays for testing in vitro response are based on growth rates of the cells and do not

measure changes in the levels of functional status of the corresponding proteins and hence do not provide insights into the mechanisms un-

derlying sensitivity or resistance to a specific drug. Moreover, given the large number of available approved drugs, testing existing drugs for

novel therapeutic strategies (drug repurposing) or testing novel combinations even for a limited number of single agents becomes

impractical. Thus, an improved approach is needed that identifies key cancer cell vulnerabilities and provides rationale to select drugs/

drug combinations. Given the fact that dysfunctional signaling in tumors arises from rewiring of signaling pathways and that nearly all molec-

ularly targeted therapeutics are directed against signaling molecules,12 a strategy that focuses on cancer cell signaling measurements in

PDOs could offer an alternate road forward.

Such a functional precision oncology strategy based on comprehensive dissection of tumor cell signaling depends on obtaining quantita-

tively accurate and consistent phosphoproteomics profiles. Recently, data-independent acquisition (DIA) methods emerged as a technology

that combines deep proteome coverage with quantitative consistency and accuracy. Specifically, a variant of DIA methods called sequential

window acquisition of all theoretical mass spectra (SWATH-MS)13 was developed in which all ionized peptides within a specified mass range

are fragmented for each sample in a systematic manner14 and thereby enable reproducible high-throughput identification and quantification

of proteomes across many samples. We reasoned that functional precision profiling using PDOs and SWATH-MS-based quantitative phospho-

proteomics would enable patient-level reconstruction of kinase signaling networks and shed light on the intrinsic biology of the CRC cells.

We therefore first established a living biobank of PDOs from CRC patients and carried out steady-state proteogenomic characterization

using DNA and RNA sequencing (RNA-seq), and SWATH-MS-based proteomics (Figure 1). We then developed a functional precision

oncology approach based on perturbation experiments of the PDOs with kinase inhibitors, quantitative phosphoproteomic measurements,

and integration of a priori knowledge. We show that kinase inhibitors induce profound off-target effects that impact oncogenic and immu-

ne-related pathways. Reconstruction of the topologies of kinase signaling networks showed that patient-specific rewiring ismodestly affected
2 iScience 26, 108399, December 15, 2023
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Figure 2. Proteogenomic analysis of PDOs from CRC patients

(A) Genetic profiles of the PDOs ordered according to the mutational load (ML). MMR: mismatch-repair. ML: mutational load. CNV: copy number variation.

(B) Analysis of the cancer pathways of the PDOs using bulk RNA-seq data and PROGENy. The pathway activity scores are z-scaled and clustered hierarchically by

euclidean distance and complete linkage.

(C) Pathway analysis of the hallmark gene sets fromMSigDB of the PDOs using proteomic data (SWATH-MS). The heatmap shows z scores of enrichment scores

derived from Gene Set Variation Analysis (GSVA) and clustered hierarchically by Pearson correlation as distance metric and complete linkage.

(D) Correlation analysis between RNA-seq data and proteomics data. The histogram shows gene-wise Pearson correlation between transcriptome and proteome

levels. Denoted are driver genes (black) and immune-related genes (red). The average gene-wise Pearson correlation is 0.29 (dashed line).

(E) Protein complexes ranked according to the co-abundance observed for complex members. Shaded areas, left: stable complexes (top 25%), right: variable

complexes (bottom 25%). MCM: mini chromosome maintenance. COP9: constitutive photomorphogenesis 9.

(F) Variance of the protein levels of the 26S proteasome subunits across all PDOs.
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by mutations. Moreover, we show non-genetic heterogeneity of the PDOs and upregulation of stemness and differentiation genes by kinase

inhibitors. Finally, we complemented our functional precision profiling by IMC-based analysis of the primary tumors that enabled us to quan-

tify spatial heterocellular crosstalk and tumor-immune cell interactions.

RESULTS

Proteogenomic characterization of a living biobank

We generated and molecularly characterized a living biobank using organoid technology15 as the basis for the subsequent analyses. Tumor

samples from 15 CRCpatients (Table S1), includingmicrosatellite instable (MSI) andmicrosatellite stable (MSS) tumors were used to generate

PDOs which were then characterized using exome sequencing, transcriptome sequencing, and SWATH-MS-based proteomics. Genomic

characterization including CRC driver genes16 and a panel of immune-related genes frequently mutated in CRC reaffirmed previously re-

ported somatic alterations17 and showed that the biobank is representative of CRC (Figure 2A; Figure S1A). As expected, MSS PDOs have

few targetablemutations whereasmutations in immune-related genes includingmutations in human leukocyte antigen (HLA) class I and class

II genes were almost entirely detectable in MSI PDOs (Figure 2A; Table S2). WNT signaling (CTNNB1 (b-catenin)) and transforming growth

factor b (TGF-b) signaling genes (SMAD2, SMAD4) weremutated in both subtypes. The concordance of variants betweenprimary tumor tissue

and the corresponding organoids was in line with previously published datasets (Figure S1B).18 The genetic representativeness of PDOs has

been previously reported,19,20 but whether organoids can also reflect non-genetic heterogeneity has not been established so far. Therefore,

we performed a side-by-side comparison of cell type marker expression in tumor samples and the corresponding PDOs (n = 30) using bulk

RNA-seq data from our recent study18 (Figures S1C and S1D). The results indicate representativeness of the PDOs (with respect to the epithe-

lial subsets) with their respective tumors of origin.

We then predicted the presence of potential neoantigens including antigens derived from missense mutations and from fusion genes

RNA-seq data and our recently developed tool for predicting neoantigens,21 using whole exome sequencing (WES) data from organoids

and matching peripheral blood mononuclear cells (PBMCs) from the patients and RNA-seq data from the organoids (Figure 2A). Both

HLA class I and class II-associated neoantigens from gene fusions were mostly detectable in MSS PDOs. Analyses of the neoantigen land-

scape showed that neoantigens from tandemduplications from acid ceramidase (ASAH1) were predicted in 25% of the PDOs (Table S2), sug-

gesting that this public neoantigen can be used for developing therapeutic vaccination using off-the-shelf vaccine for this CRC cohort.

Analysis of the steady-state transcriptomic data revealed expression of genes involved in chemokine-mediated signaling pathways, indi-

cating possible crosstalk with immune cells (Figure S2A). We then assembled a panel of genes associated with cancer immunity and immune

evasion mechanisms including checkpoint molecules, antigen processing and presentation genes, specific chemokines and cytokines, and

tumor cell-specific interferon g (IFNg)-related genes.22 The expression of these genes was highly heterogeneous in theMSI andMSS samples

with HLA class I genes showing increased expression in MSI relatively to MSS PDOs, albeit not statistically significant (Figure S2B). Analysis of

cancer pathways using transcriptomic data showed heterogeneous pathway activity and partitioning of the profiles in two main subgroups,

one of which was predominantly MSI subtype related with one exception, CRC17 (Figure 2B). This is in concordance with a previous report

showing that a small fraction ofMSS tumors is transcriptionally more similar to theMSI-H tumors than to theMSS group.23We then performed

consensus molecular subtype classification for the traditional (CMS1-CMS4) and for the intrinsic (iCMS2/iCMS3) subtypes and classified

CRC17 to the CMS1 and iCMS3 subtype, respectively (Table S1).

Analysis of the protein expression data following SWATH-MS of the PDOs showed 3,723 unique proteins across the samples (Figure S2C).

Principal-component analysis and pathway analysis using protein expression data showed partitioning related to the MSI and MSS subtypes

(Figure 2C; Figure S2D) with notable exception of CRC13 from theMSI group andCRC17 from theMSSgroup.Within theMSI group there was

a tendency for coordinated upregulation of the immune-related pathways, IFNa response, IFNg response, and IL2/STAT5 (Figure 2C). Gene-

wise correlation analysis between RNA and protein expression (average gene-wise Pearson correlation 0.29, Figure 2D) showed that RNA

expression is a poor predictor of protein expression for CRC driver genes and for immune-related genes.

As proteins generally exert their function in coordination with other proteins and often form complexes with correlated subunit abun-

dances,24,25 we analyzed the co-abundance for complex members of 78 complexes with at least 5 protein members across all PDOs

(Table S3). Complexes with variable subunit composition included TNFa/NF-kB signaling complex 7 and kinase maturation complexes 1

and 2 (Figure 2E). In our analysis, complexes with invariant subunit composition included spliceosome-A, mini chromosome maintenance

(MCM) complex, and 26S proteasome. However, within the 26S proteasome, large variability was observed for the protein complex subunits
4 iScience 26, 108399, December 15, 2023
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Figure 3. Functional profiling experiments of the PDOs with targeted drugs

(A) PCA of the phosphoproteomic data.

(B) UpSet plot of regulated phosphopeptides (|log2FC|>1, FDR<0.05) following treatment with specific kinase inhibitors.

(C) Heatmap of normalized enrichment scores (NESs) of phosphorylation signatures from PTMSigDB27 and SIGNOR28 with at least five phosphorylation sites

representing changes in kinase activities following treatment of PDOs with specific kinase inhibitors or TNFa (FDR<0.05), clustered by complete linkage of

Euclidean distances. Significant changes and mutations are highlighted with circles and squares, respectively.

(D) Normalized enrichment scores (NESs) of phosphorylation signatures representing changes in pathway activities following treatment of PDOs with specific

kinase inhibitors or TNFa (FDR<0.05, database and number of phosphorylation sites shown in brackets). Significant changes are highlighted with black circles.
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PSMB9 and PSMB8 of the immunoproteasome (Figure 2F), the expression of which is associated with immune response to ICBs in mela-

noma.26 Noteworthily, the protein level of PSMB9 was decreased in a large fraction of the organoids (Figure S2E).

In summary, steady-state multi-omics profiling of the PDOs revealed molecular heterogeneity within the clinical subgroups of MSI and

MSS tumors and showed a number of altered signaling pathways that could determine cellular responses to drug treatment. However, based

solely on thesemulti-omic data, the identification of themechanisms that shape key tumor vulnerabilities and determine response to targeted

therapy remained elusive.

Functional precision profiling of PDOs reveals off-target effects and pathway crosstalk

In order to investigate the effects of the targeted drugs on specific pro-tumorigenic pathways as well as to identify potential signaling cross-

talk with antitumorigenic pathways, we used perturbation experiments and quantitative phosphoproteomic profiling. We carried out pertur-

bation experiments on six PDOs using a panel of kinase inhibitors (BRAFi, MEKi, mTORi, PI3Ki, TAKi, TBKi, Figures S3A and S3B) and one

stimulus (TNFa) followed by RNA-seq and SWATH-MS phosphoproteomics measurements. SWATH-MS phosphoproteomics data of the

signaling perturbation experiments were highly reproducible (coefficient of variation <10%) and comprised 10,664 phosphopeptides that

weremapped to 7,778 unique phosphosites (Figures 3A and S3C). Unsupervised clustering of perturbation-induced changes in the identified

phosphosites showed that the responses were mostly specific for PDOs (Figure S3C), suggesting patient-specific rather than treatment-spe-

cific phosphoproteomes. The overlap of the regulated phosphopeptides between the treatments was in the lower percentile range (Fig-

ure 3B) even for treatments with inhibitors targeting kinases in the same pathway (e.g., the inhibition of BRAF and MEK in the mitogen-acti-

vated protein kinase [MAPK] pathway).

We then analyzed 103 kinases using 508 phosphosites that matched phosphosites in a curated database of phosphosite-specific pathway

signatures (PTMsigDB)27 (Table S3). The analysis revealed highly diverse responses to the perturbations in the PDOs (Figure 3C; Figure S3D).

We then analyzed the common treatment effects shared across organoids (Figure S3E). This indicated the expected downregulation ofmTOR

upon mTORi, of AKT upon PI3Ki, and of ‘‘MAPK Signaling Pathway’’ upon MEKi treatment, and an upregulation of the phosphorylation sig-

natures of TORIN1 uponmTORi treatment and of LY294002 following PI3Ki treatment. However, there were extensive off-target effects of the

inhibitors including activation of kinases in non-targeted cascades that were specific for both PDOs and kinase inhibitors. For example, we

observed an activation of CDK1 following TAKi treatment in CRC04 and increased CSNK2A1 activity upon MEK inhibition in CRC02 and

CRC04 (Figure 3C). Notably, upregulation of CDK129 or CSNK2A130 is associated with worse prognosis in multiple cancer types as well as

with suppression of anti-tumor immunity and can thus be considered an unintended adverse off-target effect. Set enrichment analyses

with the phosphosite-specific signatures (PTMsigDB)27 revealed crosstalk with a number of immune-related pathways, like IL-11, IL-6, and

IL-33 pathway (Figure 3D). The pathway crosstalk was PDO- and inhibitor-specific and included increased and reduced pathway activity.

Mutations are only partially responsible for kinase networks rewiring

The observed off-target activation of kinases in non-targeted cascades and the resulting pathway crosstalk necessitates detailed character-

ization of the signal transduction network in order to identify optimal targets for effectivemodulation of the respective pathways. Signal trans-

duction networks are highly adaptable and dynamic, the properties of which are primarily determined by the network topology.31 In an

attempt to reconstruct signaling networks in individual patients, we developed a computational method using the phosphoproteomic

data and a priori knowledge of protein-protein interactions (see STARMethods). Briefly, we assigned kinase activities to nodes and phospho-

sites to edges of the SIGNOR 2.0 signaling network.28 To identify subnetworks probed by the perturbations with kinase inhibitors, only nodes

with differential kinase activity based on the enrichment score calculated using PTMSEA27 and edges differentially phosphorylated were

considered, and the largest module was extracted (see STAR Methods). The individual subnetworks resulting from each perturbation

were then amalgamated into a combined kinase signaling network for the corresponding PDO. The kinase signaling networks showed a large

extent of heterogeneity with varying numbers of nodes and edges as well as kinase activities and target site phosphorylations (Figure 4A;

Figure S4). Strikingly, we found no significant association of mutations with PDO networks (CRC02 pval = 0.18, CRC03 pval = 0.63, CRC04

pval = 1.00, CRC13 pval = 0.61, CRC26 pval = 0.26, CRC26LM pval = 1.00, Fisher’s exact test), suggesting that mutations are only partially

responsible for the kinase networks rewiring. In the 5 MSS PDOs harboring between 116 and 230 mutations (coding variants), there were

zero (CRC03, CRC26LM), one (CRC04, CRC26), and two nodes (CRC02) with mutated proteins. Even in the MSI PDO (CRC13) with a large

number of mutations (2,850 coding variants) there was no significant association of the mutations with the edges in the signaling kinase

network (pval = 0.61).

It has been previously shown that graph-based centralitymetrics are correlatedwith the importance of nodes inmaintaining network integ-

rity.32 We therefore performed comparative analysis of the kinase signaling networks for the PDOs using degree and eigenvector centrality
6 iScience 26, 108399, December 15, 2023
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Figure 4. Comparative analysis of the kinase network topologies for the perturbed PDOs

(A) Visual representation of the reconstructed kinase networks. Highlighted in color are kinases directly targeted by inhibitors.

(B) Eigenvector and degree centrality measures of kinase nodes in the networks shown in (A). Color indicates the number of subgraphs that share a particular

node.
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(i.e., the number of edges and the connectivity to highly connected nodes, respectively) values (Figure 4B). As expected, high centrality values

were observed for targeted kinases (e.g., mTOR) and for the kinases in the EGFR-RAS-MAPK pathway (e.g., MAPK1), which were present in all

of the PDO networks. However, additional nodes like PRKACA or PTPN7 had high centrality values only in some PDOs, further supporting the

notion of extensive off-target effects and pathway crosstalk.

Overall, using quantitative phosphoproteomic data from PDOs perturbed with kinase inhibitors, we were able to reconstruct kinase

signaling networks at the patient level. Albeit heterogeneous between PDOs, the kinase signaling network topologies revealed intrinsic re-

wiring that was modestly affected by harboring mutations.

Single-cell analysis shows phenotypic and differentiation heterogeneity of PDOs

Non-genetic mechanisms like phenotypic plasticity and differentiation status of the tumor cells might have a large impact on adapting the

signaling circuitry and leading to disease phenotypes. According to the cancer stem cell hypothesis, tumors are organized in cell hierarchies
iScience 26, 108399, December 15, 2023 7
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Figure 5. Single-cell analysis of PDOs from CRC patients

(A) UMAP plot of batch-corrected scRNA-seq dataset from all organoids, colored by cell type. RNA velocity vectors are projected on top of the UMAP plot.

(B) UMAP plot from (A) colored by gene expression (log(CPM)) of the markers for stem cells (LGR5), WNT target (AXIN2), goblet cells (TFF3), and enterocytes

(FABP1).

(C) Cellular composition of the PDOs as measured by scRNA-seq.

(D) Analysis of cancer pathways activation in specific epithelial cell types using PROGENy.38

(E) qPCR measurements represented in a heatmap of stem cell and differentiation gene markers following treatments with different kinase inhibitors for 72 h.

Each drug treatment was performed in triplicates. Fold change in expression of target genes was calculated by 2�DDCT method39 using DMSO control for

normalization, and GAPDH as an endogenous control. *p < 0.01; Gene expression fold change values were tested for normality using Shapiro-Wilk test,

which showed no deviation from normality. Differences in mean fold change between treated and control were computed by one-way ANOVA with post hoc

Dunnet’s test. The resulting p values were corrected for false discovery rate (Benjamini-Hochberg) for the number of target genes.
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similar to normal tissues, with stem cells at the apex, giving rise to transient amplifying (TA) progenitor cells that undergo differentiation into

several cell lineages.33 The revised cancer stem cells model postulates that cancer cells can dynamically shift between a differentiated state

and a stem-like state34 which in CRC is tightly linked to changes in WNT signaling. Noteworthily, disrupted differentiation is integral to colon

carcinogenesis and is a regulator of cellular plasticity. Most CRCs are diagnosed as moderately differentiated35 with some cell types being

implicated in therapy response. For example, it has been shown that enteroendocrine progenitors support BRAF-mutant CRC.36 Hence, it

appears that the hierarchically organized tumor cell heterogeneity and cell plasticity play key roles in both CRC progression and therapy

response as shown recently.37 We therefore aimed to determine the hierarchically organized tumor cell heterogeneity in our PDOs and em-

ployed single-cell RNA sequencing.

We generated transcriptomic profiles from 37,924 cells (after quality control and filtering) which clustered according to the PDOs with

CRC26 (primary tumor) and CRC26LM (liver metastasis) being the closest (Figure S5A). We identified 8 clusters (Figure 5A) which were anno-

tated using curated panels of genes (Figure 5B; Figures S5B and S5C). The PDOs included moderately differentiated stem-like cells, TA-like

cells, goblet-like cells, and M-like cells according to the respective markers (Figure 5C; Figures S5B and S5C). The PDOs were highly hetero-

geneous with respect to the fractions of different cell types, with TA-like cells being most and M-like cells being least abundant (Figure 5C).

Analyses of RNA velocity indicated cell hierarchies according to the cancer stem cell hypothesis, with stem cells at the apex, giving rise to TA

progenitor cells that undergo differentiation into several cell lineages (Figure 5A). Using a compendium of pathway-responsive gene sets, we

then assigned activities of 14 canonical cancer pathways to the individual cell types. The cancer pathway activities were variable between the

secretory cells and other cell types, and between the PDOs (Figure 5D). For example,MAPK activity was consistently low in enterocyte/goblet-

like and enteroendocrine-like cells, and activated in stem/TA-like and TA-like cells. As CRC26 had a high proportion of enterocyte/goblet-like

and enteroendocrine-like cells, this may explain the low and heterogeneous effects of inhibitors onMAP kinases in CRC26 compared to other

PDOs (see Figure 3C).

Kinase inhibitors modulate stemness and differentiation pathways

The phenotypic and differentiation plasticity of the tumor cells shown here can have profound effects on the tumor formation, malignant pro-

gression, and response to therapy. For example, it has been shown that MEK inhibitors activateWNT signaling and induce stem cell plasticity

in CRC.37 Similarly, experimental evidence was provided showing that therapies targeting the MAPK pathway can redirect developmental

trajectories of CRC and can be associated with therapy resistance.40 However, both studies focused on the inhibitors targeting kinases within

the canonical MAPK pathway, i.e., MEK and EGFR/BRAF/MEK. Given the extensive pathway crosstalk in our PDOs, we askedwhat is the effect

of other inhibitors on the phenotypic and differentiation plasticity. We therefore carried out experiments and treated the PDOs for 72 h with

the used kinase inhibitors (BRAFi, MEKi, mTORi, PI3Ki, TAKi, TBKi) and analyzed expression of markers for stemness and differentiation with

qPCR. The results show heterogeneous effects of the MEKi and BRAFi confirming previous studies.37,40 Moreover, these effects were also

observable for other inhibitors including mTORi, PI3Ki, TBKi, and TAKi (Figure 5E). For example, in CRC02 MEKi induced upregulation of

the stemness markers LGR5, CTNNB1, AXIN2, and ASCL2 (Figure 5E), whereas in CRC03 mTORi induced both upregulation of all stemness

and differentiationmarkers with the exception ofMUC2 (Figure 5E). Similar diversity was observed for other kinase inhibitors and other PDOs.

Quantifying heterocellular signaling crosstalk using spatial single-cell proteomics profiling of tumors

Several PDOs showed upregulation of immune pathways following treatment with specific kinase inhibitors, suggesting possible synergistic

effects of kinase inhibitors with ICBs. An effective antitumor response following combination therapy of kinase inhibitors and anti-PD-1 or anti-

PD-L1 antibodies requires both the presence of CD8+ T cells in the tumor microenvironment (TME) and CD8+ T cell-tumor cell interactions.

We therefore used IMC-based multidimensional imaging of the tumor samples to quantify the densities of immune cell subpopulations and

identify heterocellular interactions. We previously developed and evaluated a panel of antibodies for IMC (Table S4) on formalin-fixed,

paraffin-embedded (FFPE) samples for a comprehensive overview of the TME and cancer-immune cell interactions,41 including lineage

and functional immune cell markers, surrogates of cancer cell states (proliferation, apoptosis), and structural markers (epithelium, stroma, ves-

sels) (Figure S6A). We used this panel and FFPE samples from five primary tumors and one liver metastasis of the CRC patients. Following

data-driven identification of single-cell phenotypes (Figure S6B), segmentation, and image analysis, we identified 197,454 cells and quantified

the densities of five major classes: myeloid, lymphoid, epithelial, fibroblasts, and endothelial cells, which could be further granulated into 41

different cell types (Figure 6A). The cell densities were highly heterogeneous, with CD8+ T cells being most abundant in MSI CRC (Figure 6B;
iScience 26, 108399, December 15, 2023 9
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Figure 6. Spatial proteomics of tumor samples using imaging mass cytometry

(A) Cellular composition of the TME using 41 cell phenotypes from six tumor tissues from the respective patients.

(B) Cell densities of CD8+, CD4+, CD45RO+, and Tregs.

(C) Cell densities of PD1+ tumor cells and PD-L1+ immune cells.

(D) Example subsection (200 3 200 mm) of cell neighborhood analysis using Voronoi diagrams. Upper panel: original image. Lower panel: map following cell

phenotype identification and building of Voronoi diagrams.

(E) Example subsection (650 3 460mm) of the cell neighborhood analysis for PD1+ tumor cells and PD-L1+ immune cells interactions in CRC13 (left) and CRC03

(right).
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Figure S6C). The analyses of the co-expression of immunomodulatory molecules PD-1, PD-L1, ICOS, LAG3, TIM3, and IDO showed hetero-

geneous populations of immune and tumor cells (Figures 6C and S6D). The densities of PD-1+ immune cells and PD-L1+ tumor cells were

highest in tumors from patients CRC03 and CRC13 (Figure 6C), suggesting that these patients are candidates for immunotherapy with

anti-PD-1/anti-PD-L1 antibodies.

In order to generate higher-order information beyond cell densities, we investigated spatial cell-cell interactions. We applied cell neigh-

borhood analysis by defining cell nuclei and associating polygons (Voronoi diagram) to each nucleus (Figure 6D), thereby allowing cells of

different sizes and distances to be assessed as neighbors.42 We used a permutation approach to identify pairwise interactions between

cell phenotypes that occurred more or less frequently than expected by chance. This spatial information revealed a number of significant

cell-cell interactions, with cell pairs being close neighbors (cell-cell attraction) (Figure S6E) or distant neighbors (cell-cell avoidance) (Fig-

ure S6F). Cellular attractions across all tumors were detectable within the lineages of myeloid, lymphoid, epithelial, fibroblasts, and endothe-

lial cells as well as within the classes (Figure S6E). Importantly, neighborhood analysis of PD-L1+ cells and PD1+ cells (defined as direct

neighborhood of at least one PD-L1+ tumor cell with at least one PD1+ immune cell) showed that in patient CRC13 there were PD-L1+ tumor

cells/PD-1+ immune cells interactions whereas in patient CRC03, despite the relatively high densities of both PD-L1+ tumor cells and PD-1+

immune cells, there were no significant cell-cell interactions (Figures 6C–6E; Table S5). Hence, based on the spatial interaction analysis only

patient CRC13 would be amenable for a therapy with anti-PD1 or anti-PD-L1 antibodies.

DISCUSSION

We developed a functional precision oncology approach using PDOs and quantitative phosphoproteomic profiling and applied this method

to demonstrate the feasibility of dissecting tumor cell signaling in individual CRCpatients. The information content that can be extracted from

these datasets is superior compared to the information content obtained using alternative approaches. Static (i.e., unperturbed) approaches

using biopsies or surgical specimens coupled with phosphoproteomic analysis of tumor tissues43,44 resemble the assessment of the steady

state of the phosphoproteome and are of limited value for inferring kinase signaling networks. Previous functional approaches using phos-

phoproteomic measurements to construct cancer signaling networks employed cell lines45,46 and were based on mathematical models that

are inherently limited to a small number of molecular interactions.45 Recently developed platform using ex vivo tumor fragments47 could be a

viable alternative to the PDOs; however, given the limited amount of material that can be obtained, the phosphoproteome coverage is sub-

stantially reduced and the number of possible drugs that can be tested highly restricted. Hence, the ‘‘next-generation’’ functional tests shown

here enable comprehensive investigation of the intrinsic CRC biology for successfully personalizing treatment.

The results of our functional precision profiling provide new biological insights and have important translational relevance. First, andmost

importantly, we show that the patient-specific rewiring of the kinase signaling network is modestly affected by mutations in CRC. Our results

suggest that the responses to targeted therapy are additionally determined by non-genetic mechanisms such as those conveyed by pheno-

typic plasticity.48 Single-cell RNA sequencing of the PDOs showed heterogeneous pathway activation in epithelial cell subsets, further sup-

porting the notion of non-genetic mechanisms determining cellular response to drug treatment.We also provide experimental evidence that

kinase inhibitors targeting canonical and non-canonical pathways modulate stemness and differentiation pathways, implicating that also re-

purposed drugs are re-routing developmental trajectories of CRC. This finding is supported by a growing body of literature suggesting that

cancer phenotypes and the responses to therapy are determined by non-geneticmechanisms, in addition to themutation-drivenmechanisms

commonly considered. For example, a CRC classification system previously proposed associates epithelial cellular phenotypes like stem-like,

Goblet-like, or enterocyte cells with responses to cetuximab and standard-of-care chemotherapy.49 Similarly, recent work using PDX models

showed that EGFR inhibition in CRC tumors induces Paneth-like phenotypic rewiring,50 suggesting that cellular plasticity is shaping drug

response in cancer. Hence, in vivo data using preclinical models and clinical data from large cohorts provide additional evidence for the

importance of CRC tumor cell plasticity for the response to targeted therapy. In fact, phenotypic plasticity and disrupted differentiation

have been recently proposed as discrete hallmark capability of cancer.48

Second, we show that kinase inhibitors can induce profound off-target effects resulting in themodulation of both oncogenic and immune-

related pathways. These off-target effects might explain lack of efficacy of targeted therapies as well as failure of combination therapies with

ICBs. Off-target effects due to signaling crosstalk, feedback, and feedforward mechanisms, as well as signaling network adaptations, have

been previously reported in a variety of cancers and model systems.31 However, predicting such off-target effects of specific kinase inhibitors

for individual patients based on static multi-omic measurements is not possible. Hence, information-rich assays based on perturbation exper-

iments and phosphoproteomic measurements as presented here are required.

Third, complementing our functional precision profiling with extrinsic information from histology using IMC of the primary tumors enabled

us to quantify spatial heterocellular crosstalk and tumor-immune cell interactions and hence provides rationale for combination therapy with
iScience 26, 108399, December 15, 2023 11
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ICBs. Thus, our tour de force work based on functional precision profiling and single-cell spatial analysis might serve as a blueprint for devel-

oping next-generation functional precision oncology platforms for predicting combination therapy response in individuals with metastatic

CRC and possibly also other cancers.
Limitations of the study

Our work has several limitations that can be addressed in future studies. One limitation of our method for inferring kinase network topologies

is the use of literature-mined networks. Literature-mined networks are biased towardwell-known kinases and pathways as evident by the num-

ber of kinases used in our downstream analyses. Given the limited annotations in the public repositories, wewere able to use about 10%of the

phosphoproteomic data (approx. 600 phosphopeptides out of 6,000 measured). A promising method for revealing new information on ki-

nase-kinase relationships based on chemical phosphoproteomics was recently published32 and can be used to infer additional kinase-kinase

interactions. Another limitation of our study is the small number of patients and PDOs. Large-scale efforts are needed to investigate big co-

horts of patients and potentially identify patterns for patient stratification. Global analysis of the phosphoproteomic data here showed clus-

tering according to patients rather than treatments. Hence, it is intriguing to speculate that there is a limited number of signaling states that

could be consequently exploited to stratify patients and ultimately inform therapy. Noteworthily, we used only bulk phosphoproteomic data

and could not assign signaling pathways/states to specific epithelial cell subsets. However, technological developments using ultra-high sen-

sitive mass spectrometers are improving51 and could in the near future enable single-cell proteome measurements to gain insights into the

cellular heterogeneity. Finally, due to the limitations of the phosphoproteomic measurements and the requirement for large amounts of ma-

terial, we used only a single time point perturbation. Analysis of multiple time points would be extremely valuable, and we advocate that this

type of studies can be carried out using more targeted approaches. Our study may serve as blueprint for in-depth investigation based on

multiple time points that would be necessary to establish a diagnostic platform.

In summary, the conceptual advances and the insights from the deep molecular and cellular phenotyping we show here challenge the

notion that the information flow following kinase inhibition occurs only within specific signaling cascades. We also provide a unique resource

of high-quality multi-omics and multi-modal data as well as the corresponding living biobank that can be exploited for both investigation of

intrinsic biology of CRC cells as well as the development of novel methods for interrogating intra- and intercellular crosstalk. Finally, our multi-

modal profiling approach could provide the basis for the development of a platform for informing precision (immuno-) oncology in CRC.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-chromogranin A Santa Cruz Biotechnology Cat#sc-393941; RRID:AB_2801371

Anti-lysozyme Abcam Cat#ab108508; RRID:AB_10861277

Anti-mucin 2 Santa Cruz Biotechnology Cat#sc-515032; RRID:AB_2815005

Anti-EpCAM R&D Cat#AF960-SP; RRID:AB_355745

Anti-Ki67 Abcam Cat#ab92742; RRID:AB_10562976

Anti-Lgr5 Abcam Cat#ab75732

Anti-SOX9 Sigma Cat#AB5535; RRID:AB_2239761

Anti-Phalloidin Abcam Cat#ab176759

Goat anti-rabbit Alexa Fluor 488 Thermo Scientific Cat#A11034; RRID:AB_2576217

Goat anti-rabbit Alexa Fluor 594 Thermo Scientific Cat#A11037; RRID:AB_2534095

Goat anti-mouse Alexa Fluor 488 Thermo Scientific Cat#A-11029; RRID:AB_2534088

Donkey anti-goat Alexa Fluor 546 Thermo Scientific Cat#A-11056; RRID:AB_2534103

Donkey anti-rabbit Alexa Fluor 568 Thermo Scientific Cat#A10042; RRID:AB_2534017

Anti-GAPDH Santa Cruz Biotechnology Cat#sc-47724; RRID:AB_627678

Anti-phospho mTOR Cell Signaling Cat#5536T; RRID:AB_10691552

Anti-phospho AKT Cell Signaling Cat#4060S; RRID:AB_2315049

Anti-phospho ERK1/2 Cell Signaling Cat#4377S; RRID:AB_331775

Anti-phospho-p38 MAPK Invitrogen Cat#36-8500; RRID:AB_2533281

Anti-phosho-MEK1 Invitrogen Cat#MA5-32165; RRID:AB_2809454

Anti-mTOR Cell Signaling Cat#2983; RRID:AB_2105622

Anti-AKT Cell Signaling Cat#4691; RRID:AB_915783

Anti-ERK1/2 Cell Signaling Cat#4695; RRID:AB_390779

Anti-MEK1 Cell Signaling Cat#2352; RRID:AB_10693788

Anti-p38 Cell Signaling Cat#8690; RRID:AB_10999090

Biological samples

Human colorectal cancer tissue This paper N/A

Human liver metastasis tissue This paper N/A

Human blood samples This paper N/A

Chemicals, peptides, and recombinant proteins

Advanced DMEM/F12 Thermo Scientific Cat#12634028

B27 supplement Thermo Scientific Cat#17504044

Glutamax Thermo Scientific Cat#3550061

HEPES Sigma Cat#H0887

Penicillin-Streptomycin Sigma Cat#P4333

Noggin conditioned medium In-house production N/A

R-spondin conditioned medium In-house production N/A

N-acetyl-L-cysteine Sigma Cat#A9165

Recombinant human EGF Peprotech Cat#AF-100-15

A83-01 Tocris Cat#2939

Y-27632 dihydrochloride Abmole Cat#M1817
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SB202190 Sigma Cat#S7067

Primocin Invivogen Cat#ant-pm-2

DMEM Thermo Scientific Cat#21969035

Fetal Bovine Serum Sigma Cat#F7524

G 418 disulfate salt Sigma Cat#A1720

Zeocin Thermo Scientific Cat#R25001

Trypsin-EDTA Sigma Cat#T4174

TrypLE Express Enzyme Thermo Scientific Cat#12604013

Trypan Blue solution Sigma Cat#T8154

Geltrex� LDEV-Free Reduced Growth Factor

Basement Membrane Matrix

Thermo Scientific Cat#A1413202

Cell Recovery Solution Corning Cat#7340107

Recovery Cell Culture Freezing Medium Thermo Scientific Cat#12648010

Liberase� DH Research Grade Roche Cat#5401054001

StemPro� hESC SFM Thermo Scientific Cat#A1000701

RBC Lysis Buffer Biolegend Cat#B420301

Dimethyl sulfoxide Sigma Cat#D8418

DPBS Thermo Scientific Cat#14190169

AZD6244 Biomol Cat#LKT-S1846.1

AZD6482 Biomol Cat#Cay15250-1

AZD8055 Eubio Cat#SYN-1166-M001

BX-795 hydrochloride Sigma Cat#SML0694

PLX4720 Biomol Cat#Cay15142-1

5Z-7-Oxozeaenol Sigma Cat#O9890

Recombinant Human TNF-a Peprotech Cat#AF-300-01

Triton X-100 Sigma Cat#T9284

Paraformaldehyd Sigma Cat#16005

Vectashield Antifade Mounting Medium with DAPI Vectrolabs Cat#H-2000-2

Goat serum Sigma Cat#G9023

Complete mini EDTA-free Protease I Sigma Cat#11836170001

Phosphatase inhibitor cocktail 3 Sigma Cat#P0044

Phenylmethanesulfonyl fluoride solution Sigma Cat#93482

Phosphatase inhibitor cocktail 2 Sigma Cat#P5726

iRT peptides Biognosys Cat#Ki-3002-1

Sequencing Grade Modified Trypsin Promega Cat#V5113

Lysyl Endopeptidase, Mass Spectrometry Grade (Lys-C) Wako Cat#121-05063

Tris(2-carboxyethyl)phosphine hydrochloride Sigma Cat#C4706

Iodoacetamide Sigma Cat#I1149

Urea Sigma Cat#33247

Ammonium bicarbonate Sigma Cat#09830

Ammonium hydroxide solution Sigma Cat#338818

TiO2 Titanspheres GL Sciences Cat#5020-75000

Glycolic acid Sigma Cat#124737

C8 extraction discs 3M Empore Cat#12145002

IHC Antigen Retrieval Solution - Low pH Thermo Scientific Cat#00-4955-58

SuperBlock (PBS) Blocking Buffer Thermo Scientific Cat#37515

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

PureLink Genomic DNA Mini Kit Thermo Scientific Cat#K182001

RNeasy Plus Mini Kit Qiagen Cat#74134

SuperScriptIII first-strand synthesis system Invitrogen Cat#18080051

Platinum� SYBR� Green qPCR SuperMix-UDG w/ROX Invitrogen Cat#11744500

BCA Protein Assay Kit Thermo Scientific Cat#23225

NEST MicroSpin Columns The Nest Group, Inc. Cat#SEMSS18V

NEST UltraMicroSpin columns The Nest Group, Inc. Cat#SUMSS18V

Sep-pak tC18 Waters AG Cat#WAT36820

Deposited data

Baseline expression data This paper ProteomeXChange: PXD019124

Total cell lysate in cancer vs. metastasis data This paper ProteomeXChange: PXD018922

Perturbation expression data This paper ProteomeXChange: PXD018913

Spectral library for phosphopeptides This paper ProteomeXChange: PXD018862

Spectral library for total cell lysate This paper ProteomeXChange: PXD018835

All processed data This paper Zenodo: 7015015

(https://doi.org/10.5281/zenodo.7015015)

RNA-seq data of organoids and corresponding

tumor tissue

Farin et al., 202318 EGA accession number: EGAS0000100730

Experimental models: Cell lines

Colorectal cancer organoids lines This study N/A

Liver metastasis organoids lines This study N/A

Cell line for production of Noggin Hubrecht Institute N/A

HA-R-Spondin1-Fc 293T Cells for production of

R-spondin

Amsbio Cat#AMS.RSPO1-CELLS

Oligonucleotides

Primers for qPCR Table S6 N/A

Software and algorithms

R version 4.1.3 The R Project for

Statistical Computing

https://www.r-project.org/

Spectronaut Pulsar Professional+ version 14 Biognosys, Schlieren,

Switzerland.

https://biognosys.com

mapDIA version 3.1.0 Teo et al., 201552 https://sourceforge.net/projects/mapdia/

PTM-SEA version 1.9.0 Krug et al., 201927 https://github.com/broadinstitute/ssGSEA2.0

MaxQuant version 1.5.2.8 Max Planck Institute of

Biochemistry, Germany

https://www.maxquant.org/

Python version 3.8.8 https://www.python.org/

nf-core RNA-seq workflow version 1.4.2 Ewels et al., 202053 https://github.com/nf-core/rnaseq

scanpy version 1.8.1 Wolf et al., 201854 https://github.com/scverse/scanpy

cellranger version 5.0.0 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/what-is-cell-ranger

velocyto.py version 0.17.17 La Manno et al., 201855 https://velocyto.org/velocyto.py/

nextNEOpi Rieder et al., 202221 https://github.com/icbi-lab/nextNEOpi

Other

Code for data analyses This paper https://github.com/icbi-lab/plattner_2023
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to the lead contact, Zlatko Trajanoski (zlatko.trajanoski@i-

med.ac.at).

Materials availability

There are restrictions to the availability of PDOs generated during this study. An MTA is required for the transfer of the material between the

Medical University of Innsbruck and another party.

Data and code availability

� Data: The processed data supporting the findings of this study (including exome sequencing, RNA-sequencing, proteomics, phospho-

proteomics, single-cell RNA-sequencing, high-dimensional TIFF images, single-cell spatial information and phenotypes) are available

online at Zenodo (https://doi.org/10.5281/zenodo.7015015). TheMSdata whichwere used to generate the SWATH spectral library, the

SWATH raw files and the quantitative results from the SWATH-MS analysis reported in this paper have been deposited in the PRIDE

proteomics data repository (https://www.ebi.ac.uk/pride/archive/) under the following accession numbers: PXD019124 (baseline

expression experiment), PXD018922 (total cell lysate in cancer vs. metastasis), PXD018913 (perturbation expression experiment),

PXD018862 (spectral library for phosphopeptides), PXD018835 (spectral library for total cell lysate) and is publicly available as of the

date of publication.
� Code: The code used to produce the results of this study is available at https://github.com/icbi-lab/plattner_2023.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human subjects

Histologically verified primary and metastatic colorectal tumor tissues and blood samples were obtained from patients undergoing surgical

resection at the Medical University Hospital of Innsbruck. Samples were obtained from adult female or male patients who were treatment-

naı̈ve, with the exception of patient CRC26 who received FOLFOX and cetuximab before surgery. Written informed consent for research

was obtained from patients prior to tissue acquisition. The medical ethical committee of the Medical University of Innsbruck approved pro-

tocol AN2016-0194 366/4.9 for the establishment of colorectal cancer PDOs cultures. Details regarding the patient’s clinical information are

provided in Table S1.

METHOD DETAILS

Tumor cells isolation

Tumors were washed three times with DPBS (Thermo Scientific, Cat#14190169) containing 100 mg/mL Primocin (Invivogen, Cat#ant-pm-2) and

10 mL/L Penicillin-Streptomycin (Sigma, Cat#P4333), minced finely and incubated with 25 ng/mL Liberase (Roche, Cat#5401054001) in

StemPro hESC SFM (Thermo Scientific, Cat#A1000701) for 1 h at 37�C. After incubation, StemPro hESC SFM containing 10% FBS (Sigma,

Cat#F7524) was added and the mixture was put over a 400 mM and a 100 mM cell strainers (pluriSelect, # 43-50100-51 and 43-50400-03) to

remove large fragments. Cells were spun at 1000 rpm for 4 min, pellet was resuspended in 1x RBC Lysis Buffer (Biolegend, Cat#B420301)

and incubated for 10 min at room temperature. Cells were spun at 1500 rpm for 5 min and pellet was washed three times with DPBS followed

by centrifugation at 1500 rpm for 3 min.

PDOs culture

Isolated tumor cells were seeded at a density of 1.5x105 in 30 mL droplets of 70%Geltrex (Thermo Scientific, Cat#A1413202). The composition

of PDO culture medium was: Advanced DMEM/F12 (Thermo Scientific, Cat#12634028) supplemented with 10 mM HEPES solution (Sigma,

Cat#H0887), 10 mL/L Penicillin-Streptomycin solution, 2 mM GlutaMAX (Thermo Scientific, Cat#3550061), 20% Rspondin conditioned me-

dium, 10% Noggin conditioned medium, 20 mL/L B-27 supplement (Thermo Scientific, Cat#17504044), 1.25 mM N-Acetylcysteine (Sigma,

Cat#A9165), 0.5 nM A83-01 (Tocris, Cat#2939), 10 mM SB202190 (Sigma, Cat#S7067), 50 ng/mL human EGF (Peprotech, Cat#AF-100-15),

100 mg/mL Primocin (Invivogen, Cat#ant-pm-2), and 10 mM Y27632 (AbMole, Cat#M1817). PDO culture medium was refreshed every two

days. To passage the PDOs, Geltrex was broken with a cell scraper and PDOs were collected in a tube. The PDOs were centrifuged at

1500 rpm for 5 min, medium was removed, the pellet was resuspended in TripLE Express (Thermo Scientific, Cat#12604013) and incubated

for 5 min at 37�C. Advanced DMEM/F12 was added and cells were spun down at 1500 rpm for 5 min. The pellet was resuspended in 70%

Geltrex and plated in 30 mL droplets on 6 wells-plates (Sarstedt, #83.3920), 4 drops each well. After allowing Geltrex to solidify, PDO culture

medium was added to the plates and PDOs were incubated at 37�C with 5% CO2.
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Perturbation experiments with PDOs

PDOs were cultured and expanded to forty-eight 30 mL culture-droplets for each condition. At 2 h before collection, PDOs were treated with

single inhibitors (or DMSO as solvent control) or at 1 h before collection were stimulated with ligand (or solvent control H2O). The following

inhibitors and ligand were used as previously evaluated45: MEKi AZD6244 (4 mmol/L, Biomol, #LKT-S1846.1), PI3Ki AZD6482 (10 mmol/L, Bio-

mol, #Cay15250-1), mTORi AZD8055 (2 mmol/L, Eubio, #SYN-1166-M001), TBK1i BX-795 (10 mmol/L, Sigma, #SML0694), BRAFi PLX4720

(5 mmol/L, Biomol, #Cay15142-1), TAK1i 5Z-7-Oxozeaenol (5 mmol/L, Sigma, O9890), and TNFa (10 ng/mL, Peprotech, AF-300-01). After treat-

ment, cultivation dishes were placed on ice and PDOs culture-droplets were washed twice with ice-cold DPBS. Culture-droplets were disrup-

ted in Cell Recovery Solution (Corning, #7340107), collected in a tube and incubated for 1 h on ice. After incubation, PDOs were spun at

1500 rpm for 10min at 4�C, washed twicewith ice-coldDPBS and PDOpellets were snap-frozen in liquid nitrogen and stored at�80�C. Pertur-
bation experiments samples were prepared in duplicates.

PDOs preparation for proteomics analysis

PDOs were cultured and expanded to six 30 mL culture-droplets for each sample. At the time of collection, cultivation dishes were placed on

ice and PDOs culture-droplets were washed twice with ice-cold DPBS. Culture-droplets were disrupted in Cell Recovery Solution (Corning,

#7340107), collected in a tube and incubated for 1 h on ice. After incubation, PDOswere spun at 1500 rpm for 10min at 4�C, washed twice with

ice-cold DPBS and PDO pellets were snap-frozen in liquid nitrogen and stored at�80�C. Proteomics experiments samples were prepared in

triplicates.

DNA and RNA sequencing

PDOs were harvested, snap-frozen and their DNA were extracted using the PureLink Genomic DNA Mini Kit (Thermo Scientific, #K182001)

following manufacturer instructions. Germline DNA were extracted from frozen peripheral blood mononuclear cells (PBMCs) using

PureLink Genomic DNAMini Kit (Thermo Scientific, #K182001) following manufacturer instructions. Exome-sequencing was performed using

SureSelect all human V6 capture kit and Illumina sequencing (GATC, Konstanz, Germany and GENEWIZ, Leipzig, Germany). Total RNA was

isolated from frozen PDO pellets using the RNeasy Plus Mini Kit (Qiagen, #74134) following manufacturer’s instruction and submitted to total

transcriptome full-length mRNA sequencing (GATC, Konstanz, Germany, Medical University of Innsbruck).

Single cell sequencing

PDO culture-droplets were washed once with warm DPBS, disrupted with a cell scraper and collected in a tube followed by centrifugation at

1500 rpm for 5 min at room temperature. PDO pellets were resuspended in Trypsin-EDTA (Sigma, Cat#T4174) using 500 mL for each culture-

droplet used, resuspended 5 times with a 1000 mL tip and incubated for 5 min at 37�C. An equal volume of Advanced DMEM/F12 was added

and PDOswere further dissociatedmechanically by resuspending 10 times using a 200 mL pipette tip placed on top of a 1000 mL tip. Cells were

filtered through a 40 mm cell strainer and centrifuged at 1500rpm for 5 min at 4�C. Supernatant was removed and cell pellets were resus-

pended in 1 mL ice-cold 0.04% BSA in DPBS. Cells were counted with a hemocytometer (Marienfeld Neubauer, Cat#0640010) and viability

was assessed using Trypan-blue solution (Sigma, Cat#T8154). Single cell suspensions of freshly isolated cells were converted to indexed

scRNAseq libraries, using the Chromium Single Cell 3’GEX V3.1 technology from 10x Genomics, aiming for 8.000 cells per library. The result-

ing Libraries were sequenced with Illumina Novaseq technology (sequencing performed at Genewiz, Leipzig, Germany).

Immunofluorescence

PDO samples for immunofluorescence were prepared as described.56 Briefly, PDOs were freed from Geltrex by incubation in Cell Recovery

Solution (Corning, #7340107) for 1 h on ice, fixed in 4% PFA (Sigma, #16005) in PBS for 1 h at RT and permeabilized in 1% Triton X-100 (Sigma,

#T9284) for 30min at RT. PDOs were incubated in Blocking Buffer (10% goat serum (Sigma, #G9023), 0.2% Triton X-100, 5% BSA in PBS) for 1 h

at RT and with primary antibodies in Blocking Buffer overnight at 4�C. PDOs were washed twice with PBS, incubated with secondary anti-

bodies in Blocking Buffer for 2 h at RT in the dark, washed twice with PBS and mounted in Vectashield Antifade Mounting Medium with

DAPI (#H-2000-2). Following primary antibodies were used: anti-chromogranin A (Santa Cruz Biotechnology, #sc-393941, 1:500), anti-lyso-

zyme (Abcam, #ab108508, 1:500), anti-mucin 2 (Santa Cruz Biotechnology, #sc-515032, 1:500), anti-EpCAM (R&D, #AF960-SP, 1:20), anti-

Ki67 (Abcam, #ab92742, 1:500), anti-Lgr5 (Abcam, #ab75732, 1:100), anti-SOX9 (Sigma, #AB55351:500), Phalloidin-iFluor 647 (Abcam,

#ab176759, 1:1000). All secondary antibodies were used 1:800. Immunofluorescence images were captured with an Operetta CLS High-

Content Analysis System (PerkinElmer).

Western blotting

PDOs were lysed in RIPA buffer with 1x EDTA-free protease inhibitor cocktail (Sigma, #11836170001), 1% v/v phosphatase inhibitor cocktail

(Sigma, #P0044) and 2mM PMSF (Sigma, #93482). Protein concentration was measured by BCA Protein Assay Kit (Thermo Scientific, #23225),

proteins were separated on 7%, 10% or 12% precast polyacrylamide gels (NuPAGE) following the manual. Blotting was performed using the

InvitrogenNovex XCell SureLock Blot-Modul (Invitrogen) according to themanufacturer instructions. Following primary antibodies were used

according to manufacturer’s protocol: GAPDH (Santa Cruz Biotechnology, #sc-47724, 1:1000 and Invitrogen, #AM4300, 1:10000), phospho-

mTOR (Cell Signaling, #5536T, 1:2000), phospho-AKT (Cell Signaling, #4060S, 1:1000), phospho-ERK1/2 (Cell Signaling, #4377S, 1:1000),
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phosho-MEK1 (Invitrogen, #MA-32165, 1:1000), phospho-p38MAPK (Invitrogen, #36-8500, 1:1000), mTOR (Cell Signaling, #2983, 1:1000), AKT

(Cell Signaling, #4691, 1:1000), ERK1/2 (Cell Signaling, #4695, 1:1000), MEK1 (Cell Signaling, #2352, 1:1000), p38 MAPK (Cell Signaling, #8690,

1:1000). Chemiluminescence was recorded using the Image Quant Las4000 imaging system (GE Healthcare).

mRNA expression analysis of selected genes by RT-qPCR

PDOs were cultured in 6 well flat bottom plates and treated with kinase inhibitors (5 mM BRAFi, 4 mM MEKi, 2 mM mTORi, 10 mM PI3Ki, 5 mM

TAKi, 0.25 mM TBKi) and vehicle control (DMSO) for 72 h. After the treatment, organoid pellets were harvested by washing twice in cold PBS,

snap frozen in liquid N2 and stored at�80�C before RNA extraction. Total RNAwas isolated using RNeasy PlusMini Kit (Qiagen, cat#: 74134).

cDNA was synthesized using SuperScriptIII first-strand synthesis system for RT-PCR (Invitrogen) with 1 mg of total RNA as a template. Quan-

titative PCR (qPCR) was performed inMicroAmpOptical 384-Well Reaction Plates with Barcode (Applied Biosystems, cat#: 4309849) on ViiA 7

Real-Time PCR System (Applied Biosystems) using Platinum SYBR Green qPCR SuperMix-UDG w/ROX (Invitrogen, cat#: 11744500). The final

volume for qPCR reaction was 6 mL containing 4 ng of cDNA, 0.2 mM of each primer and 1X Platinum SYBR Green qPCR SuperMix. Cycling

conditions for qPCRwere as follows: 2min at 50�C, 10min at 95�C followedby 40 cycles of 15 s at 95�Cand 60 s at 60�C. Primers used for qPCR

are listed in Table S6.

Sample preparation for mass spectrometric analyses

Pelleted and frozen PDOs were lysed in 8 M Urea (Sigma, #33247) in 100 mM ammonium bicarbonate (Sigma, #09830) and with sonication for

10 min. For the perturbation experiments, 1:100 phosphatase inhibitor cocktails (Thermo Scientific #P5726 and Sigma #P0044) were added to

the lysis buffer. To reduce and alkylate the disulfide bonds, the lysate was reduced using 5 mM tris(2-carboxyethyl)phosphine (TCEP) for

30 min at 37�C and alkylated using 40 mM Iodacetamide (IAA) for 45 min at 25�C in the dark. The protein amount was measured using

the Bicinchoninic acid (BCA) assay (ThermoScientific, #23225) and the appropriate protein amount (60 mg for baseline expression experiments

and 1 mg for perturbation experiments) was digested with LysC (1:100, Wako, #121-05063) for 4 h and Trypsin (1:75, Promega, #V5113)

overnight. For the digestion with LysC and Trypsin, the samples were diluted to 6 M and 1.5 M Urea (Sigma, #33247) in 100 mM ammonium

bicarbonate respectively using 100 mM ammonium bicarbonate (Sigma, #09830). The digestion was stopped the following day by acidifica-

tion with trifluoroacetic acid to pH 2–3.

For the baseline expression experiments, the digested peptides were desalted using NEST C18 MicroSpin columns by washing with 2%

acetonitrile 0.1% trifluoroacetic acid and eluting with 50% acetonitrile 0.1% trifluoroacetic acid. The eluted peptides were dried in a vacuum

concentrator, reconstituted in 60 mL 2% acetonitrile 0.1% formic acid in H2O, and spiked with iRT peptides (Biognosys, #Ki-3002-1) prior to

injection into the mass spectrometer.

For the perturbation experiments, the digested peptideswere desalted usingWaters Sep-pakC18 columns bywashingwith 0.1% trifluoro-

acetic acid in H2O and eluting with 50% acetonitrile and 0.1% trifluoroacetic acid in H2O. The eluted peptides were subsequently dried in a

vacuum concentrator. Before drying fully, an aliquot (1:20) was taken for the corresponding total cell lysate samples. The aliquot was dried and

the peptides were dissolved in 2% acetonitrile and 0.1% formic acid in H2O and spiked with iRT peptides (Biognosys, #Ki-3002-1) prior to

injection into a mass spectrometer. The remaining part of the sample was destined for phosphoenrichment and dried in a vacuum

concentrator.

To enrich for phosphopeptides, the peptides were first dissolved in a tube with loading buffer (1 M glycolic acid, 5% trifluoroacetic acid,

80% acetonitrile in H2O) by shaking 10 min and sonicating for 10 min. For phosphoenrichment, stage tips were constructed placing two C8

plugs into an empty 300 mL tip. These stage tips were placed in a tube using a connector and centrifuged on a table top centrifuge at around

800 g for all subsequent washes. The stage tips were washedwith 200 mLmethanol to condition the filter. To the washed tips, 80 mL TiO2 bead

slurry (2.5 mg TiO2 beads in 50% acetonitrile, 0.1% trifluoroacetic acid) were added and the beads were equilibrated with 200 mL loading

buffer. The peptides were loaded by starting with a low centrifugation force of 100 g that was progressively increased until all peptides

were loaded. The loaded peptides were washed once with 100 mL loading buffer, once with 100 mL 80% acetonitrile and 0.1% trifluoroacetic

acid in H2O, and once with 100ul 50% acetonitrile and 0.1% trifluoroacetic acid in H2O. The peptides were eluted with 250 mL 0.3 M NH3OH

and a subsequent elution of 20 mL 50% acetonitrile and 0.1% trifluoroacetic acid in H2O to elute peptides from the filter paper. The phospho-

peptides were eluted directly in a tube with trifluoroacetic acid to reach pH 2. The phosphopeptides were then desalted using NEST

UltraMicroSpinTM C18 columns and eluted with 50% acetonitrile, 0.1% trifluoroacetic acid in H2O. The buffer was evaporated in a vacuum

concentrator and the peptides were dissolved in 2% acetonitrile and 0.1% formic acid in H2O and spiked with iRT peptides (Biognosys,

#Ki-3002-1) prior to injection of samples into a mass spectrometer.

Acquisition of samples using mass spectrometry

For the perturbation experiments, the peptides were analyzed on an Orbitrap Fusion Lumosmass spectrometer (Thermo Scientific, San Jose,

CA) connected to an Easy-nLC 1200 (Thermo Scientific, San Jose, CA) HPLC system. Between 1 mL and 4 mL of peptide solution was separated

by nano-flow liquid chromatography using a 120 min gradient from 5 to 37% buffer B in buffer A (Buffer A: 2% acetonitrile, 98% H2O, 0.1%

formic acid; Buffer B: 80% acetonitrile, 20% H2O, 0.1% formic acid) on an Acclaim PepMap RSLC 75 mm 3 25cm column packed with C18

particles (2 mm, 100 Å) (Thermo Scientific, San Jose, CA). The peptides were ionized using a stainless steel nano-bore emitter (#ES542; Thermo

Scientific) using 2000 V in positive ion mode.
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To build the spectral libraries, the samples were acquired in data-dependent acquisition (DDA) mode. The DDA method consisted of

a precursor scan followed by product ion scans using a 3 s cycle time. The precursor scan was an Orbitrap full MS scan (120’000 resolution,

23 105 AGC target, 100msmaximum injection, 350–1500m/z, profilemode). The product ion scans were performed usingQuadrupole isola-

tion and HCD activation using 27% HCD Collision Energy. The Orbitrap was used at 30’000 resolution and setting the RF Lens at 40%. The

AGC Target was set to 5 3 105 and 50 ms maximum injection time. Charge states of 2–5 were targeted and the dynamic exclusion duration

was 30s.

To quantify the peptide abundance, the samples were acquired in data-independent acquisition (DIA) mode. The DIA method consisted

of a precursor scan followed by product ion scans using 40 windows between 400 m/z and 1000 m/z. The precursor scan was an Orbitrap

full MS scan (120,000 resolution, 2 3 105 AGC target, 100 ms maximum injection, 350–1500 m/z, profile mode). The product ion scans

were performed usingQuadrupole isolation andHCD activation using 27%HCDCollision Energy. TheOrbitrap was used at 30,000 resolution

using a scan range between 200 and 1800 and setting the RF Lens at 40%. The AGC Target was set to 5 3 105 and 50 ms maximum injec-

tion time.

For the baseline expression experiments, the peptides were measured on a Sciex TripleTOF 5600 mass spectrometer with a 90 min

gradient and the mass spectrometer was operated in SWATH mode. The precursor peptide ions were accumulated for 250 ms in 64 over-

lapping variable windows within an m/z range from 400 to 1200. Fragmentation of the precursor peptides was achieved by Collision Induced

Dissociation (CID) with rolling collision energy for peptides with charge 2+ adding a spread of 15eV. The MS2 spectra were acquired in high-

sensitivity mode with an accumulation time of 50 ms per isolation window resulting in a cycle time of 3.5 s. The samples from the different

PDOs were injected consecutively in a block design to prevent any possible confounding effects due to deviation in machine performance.

CRC03 andCRC26 were acquired at a later time point, but some original samples were reinjected in parallel to assess that the performance of

the machine was similar.
Building the spectral library for the perturbation experiments

The raw spectra were analyzed usingMaxQuant version 1.5.2.8 that matched each spectrum against a FASTA file containing 20,386 reviewed

human (downloaded onAugust 13, 2018 fromwww.uniprot.org) and iRT peptides and enzyme sequences. Carbamidomethyl was defined as a

fixed modification, and Oxidation (M) as variable modifications. StandardMaxQuant settings for Orbitrap were used (e.g., peptide tolerance

20 ppm for first search and 4.5 for main search). In total, two searches were performed involving 54 injections of peptides and they resulted in

the identification of 42’424, peptides from 4’239 protein groups, respectively. The four searches were imported into Spectronaut Pulsar

(version 14.0.200309.43655 (Copernicus) Biognosys, Schlieren) to build spectral libraries with the following settings: PSM FDR Cut off of

0.01, fragment m/z between 200 and 1’800, peptides with at least 3 amino acids, fragment ions with a relative intensity of at least 5, precursors

with at least 5 fragments. Moreover, an iRT calibration was performed with a minimum root-mean-square error of 0.8 and segmented regres-

sion. The spectral library for the total cell lysates contained coordinates for 54’551 precursor peptides from 4’223 protein groups. The spectral

library for the phosphopeptide contained coordinates for 30’969 precursor peptides from 4’605 protein groups.
Extraction of quantitative data from the mass spectrometry spectra

For the perturbation experiments, quantitative data were extracted from the acquired SWATH-MS maps using Spectronaut Pulsar (version

14.0.200309.43655 (Copernicus) Biognosys, Schlieren) (version 14). As SWATH Spectral library, we used our in-house compiled spectral li-

braries for the PDOs (see above). We used standard settings (they include a dynamic MS1 and MS2 mass tolerance strategy, a dynamic

XIC RT Extraction Window with a non-linear iRT calibration strategy, and identification was performed using a precursor and protein Q value

cutoff of 0.01). The quantified intensities for each fragment were extracted from 104 (phospho-enriched samples), 99 (total cell lysate) SWATH-

MS injections and the fragment intensities were exported for further statistical analysis to R. Only quantities for fragments that have been

detected at least two times in a given conditionwere selected. Further filteringwas performedwithmapDIAwhere a standard deviation factor

of 2 and a minimal correlation of 0.25 were used to filter for reliable fragments.

For the baseline expression experiments, the SWATH-MS data was quantified using the OpenSWATH workflow on the in-house iPortal

platform using the PanHuman Library.57 An m/z fragment ion extraction window of 0.05 Th, an extraction window of 600 s, and a set of 10

different scores were used as described before. To match features between runs, detected features were aligned using a spline regression

with a target assay FDR of 0.01. The aligned peaks were allowed to be within 3 standard deviations or 60 s after retention time alignment. The

data was then further processed using the R/Bioconductor package SWATH2stats.
Variant calling, copy number variation and neoantigen prediction

Somatic mutations, copy number alterations, Class I and II HLA types and neoantigens were called by running our previously published neo-

antigen prediction pipeline nextNEOpi21 (version 1.1).

Briefly, we used the pipelines’ default options but enabled automatic read trimming to remove adapter sequence contamination from raw

WES and RNAseq reads and we disabled NetChop and NetMHCstab. Further, we created a panel of normals from the healthy PBMCs and

used it to identify recurrent technical artifacts in order to improve the results of the variant calling analysis. Finally, predicted neoantigens were

filtered and prioritized using the ‘‘relaxed’’ filter set from nextNEOpi.

The MSI status was determined with MSIsensor58 and the scores were plotted as bar plots.
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RNA-sequencing data analysis

Sequence reads were preprocessed and mapped to the human genome GRCh38/hg38 and GENCODE v33 annotations using the nf-core

RNAseq pipeline version 1.4.2 (git revision ff4759e).53 In brief, reads were mapped using STAR v2.7.1a59 and gene expression quantified

with RSEM v1.3.3.60 Pathway activity scores were estimated from normalized raw counts using the PROGENy (Pathway RespOnsive GENes)

method.38 CMS subtypeswere predictedwith the CMScaller R package v.2.0.1 using raw counts as an input. The intrinsic consensusmolecular

subtypes (iCMS) were predicted as described in the original paper.23 In brief, z-scores of log2-transformed TPM values were used as an input

for the nearest template prediction function, implemented in the CMScaller package. The template was created from the 715 iCMS marker

genes previously definedby Joanito et al.23 GOenrichment analysis was performedusing the R packageClusterProfiler.61 Eightmajor clusters

were defined and annotated by the GO enrichment results. Heatmaps for visualization of RNAseq results were generated using the

ComplexHeatmap.62

Single-cell RNA-sequencing data analysis

The single-cell RNA sequencing reads were mapped to GRCh38-2020-A reference provided by 10x Genomics using the CellRanger pipeline

(v5.0.0). Cellranger’s pre-filtered count matrices were loaded into scanpy54 and filtered based on the following quality control cutoffs:R2000

genes, 2000 % counts %75,000, <25% mitochondrial reads. Doublets were removed using SOLO63 v0.6.0. The 5000 most highly variable

genes (HGVs) were detected with scanpy.highly_variable_genes with flavor=’’seurat_v3’’ and batch_key=’’organoid’’. Batch effects were

removed using scvi-tools v0.11.064 based on the HVGs and using PDOs as the batch key. A neighborhood graph and UMAP embedding65

were calculated with scanpy based on the SCVI latent representation and otherwise default parameters. Unsupervised clustering with the

leiden-algorithm66 based on the SCVI-corrected neighborhood graph (resolution = 0.5) yielded 12 clusters. Marker genes for each cluster

were detected using scvi-tools differential gene expressionmodule67 and clusters manually assigned to 7 epithelial cell types based on these

marker genes. For visualization, gene expressionwasCPM-normalized and log1p-transformed, before computing an additional (uncorrected)

neighborhood graph and UMAP embedding. RNA velocity was estimated using velocyto.py (v0.17.17)55 based on cellranger outputs using

the run10x command and subsequently loaded into scvelo68 for visualization. We performed single-cell pathway analysis using PROGENy.38

Scores were computed using the progeny-py package v1.0.6. The top 1,000 target genes of the progenymodel were used, as recommended

for single-cell data.

Proteomic data analysis

After quality control steps the median intensity value of baseline proteomic triplicates was retrieved for downstream analysis. Non-uniquely

identified proteins were also discarded from further analyses. Differential abundance analysis was done usingmapDIA version 3.1.0.52 Single-

sample enrichment analysis of baseline protein expression levels was performed with the GSVA R package version 1.42.069 using HALLMARK

gene sets (version 7.5.1) imported with msigdbr 7.5.1 from MSigDB.70 All samples, including replicates were transformed to log2 scale and

resulting enrichment scores were then averaged per organoid. GO enrichment analysis was performed the same way as for the RNAseq data

(8 major clusters). Heatmaps for visualization of proteomics results were generated using the ComplexHeatmap 2.9.0 R package.62

Correlation between mRNA and protein abundance

In total, the dataset comprises 3723 overlapping genes and proteins, but only those which were present in at least four out of the 12matching

samples were considered for correlation analysis (n = 3536). Log2 transformed TPM-values for mRNA and log2-transformed protein abun-

dances were used to calculate the Pearson correlation coefficient for each gene. The average correlation between mRNA and protein abun-

dance is 0.29. The results were visualized in a histogram using the ggplot2 R package.

Protein complexes

The list of manually curated protein complexes was retrieved fromOri et al.71 Human protein complexes with aminimumof five proteins were

selected and Pearson correlations within complexes were calculated across PDOs. The top 25% of the protein complexes were considered as

variable, whereas the bottom25%were defined as stable protein complexes. For the 26S proteasome the variancewas calculated for all mem-

bers of the complex, ignoring missing values. The results were visualized as a barplot using the ggplot2 R package.

Phosphoproteomic data analysis

Phosphopeptide fragment data were prefiltered for intensities above 2000 and peptides with at least five measured fragments. Missing repli-

cate values were replaced by the 20% value of the minimum of the corresponding fragment abundance. Differential abundance analysis was

done using mapDIA version 3.1.0.52 Protein sequences and gene symbols were retrieved from UniProt72 using the UniProt.ws 2.36.5 R pack-

age. Phosphopeptide sequences were matched to protein sequences to determine phosphosite positions. If multiple phosphopeptides

mapped to the same phosphosite, we selected the site with the higher mean signal in control samples. Phosphosite readouts for kinases

directly targeted by the inhibitors we used were taken from the SIGNOR 2.0 database.28 Posttranslational modification set enrichment anal-

ysis (PTM-SEA) was performed using the ssGSEA 2.0 R script (ssgsea-cli.R) and the PERT-, PATH- and KINASE-signature categories of the

PTMsigDB v1.9.0 database27 and kinase/phosphatase signatures derived from SIGNOR. We used fold-change-signed log10-transformed

FDR values from mapDIA as input scores and protein-centric phosphosite positions as identifiers. Peptides with multiple phosphorylated
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residues were demultiplexed as suggested in the original publication. Normalized enrichment scores (NES) and global false-discovery-rate-

adjusted p values (FDR) were calculatedwith the number of permutations set to 100000, ‘‘area.under.RES’’ as the test statistic, a weight of one,

no additional normalization and aminimumoverlap of twomeasured sites per signature. For the additional analysis of the common treatment

effects that are shared across organoids, we used a linear model in limma 3.50.3 with PDO, treatment and their interaction on the log2-trans-

formed normalized phosphosite abundances frommapDIA. The fold-change-signed log10-transformed p values were used as input for PTM-

SEA. Heatmaps for visualization of phosphoproteomics results were generated using the ComplexHeatmap 2.9.0 R package.62 The numbers

of shared differential abundant phosphopeptides were visualized in R with the UpSetR package.

Kinase signaling network analysis

Network analysis and visualization was performed with the igraph 1.3.2, tidygraph 1.2.1 and ggraph 2.0.5 R packages.73 We mapped normal-

ized enrichment scores of kinase signatures from PTMsigDB to nodes and phosphosite log-fold-changes to edges of the global human

SIGNOR 2.0 signaling network (retrieved on 23.04.2021).28 Perturbation subnetworks were identified from perturbed nodes (kinase signature

FDR % 0.05) and perturbed edges (phosphosite FDR % 0.05). Briefly, we calculated all shortest paths with a maximum length of two edges

between perturbed nodes, combined them with perturbed edges and filtered for the largest connected component. The subnetworks were

further refined by pruning them of redundant shortest paths according to whether they could be annotated with measured phosphosites. We

further combined the resulting treatment-specific subnetworks into PDO-specific networks and calculated degree and eigenvector central-

ities of all nodes. To check if the mutations occur with the same frequencies as in the global signaling network we tested for overrepresen-

tation of coding mutations using a two-sided Fisher’s Exact Test.

Imaging mass cytometry

Four mm tissue sections were placed on silane-coated glass slides, dried overnight at 37�C and stored at 4�C. Carrier-free IgG antibodies

(Table S4) were conjugated to purified lanthanide metals with the MaxPar antibody labeling kit and protocol (Fluidigm) as described by Ijs-

selsteijn et al.41 Imaging mass cytometry immunodetection was performed following the protocol described previously by Ijsselsteijn et al.41

In short, tissue sections were deparaffinized through immersion in xylene for 3 times 5 min and rehydrated in decreasing concentrations of

ethanol. 10x low pH antigen retrieval solution (Thermo Scientific, #00-4955-58) was diluted in purified water and preheated for 10 min in a

microwave. The sections were rinsed in unheated 1x low pH antigen retrieval solution, boiled for 10 min in the preheated buffer and cooled

down to room temperature for 1 h. Sections were rinsed with PBS-TB (PBS supplemented with 0.05% Tween and 1% BSA) and incubated for

30 min with 200 mL Superblock blocking buffer (Thermo Scientific, #37515). Antibody incubation was split into two steps: a 5 h incubation at

room temperature and an overnight at 4�C incubation. The antibody mix for the 5 h incubation was prepared by diluting the first half of an-

tibodies (Table S4) in PBS-TB after which 100 mL of antibodymix was added to the tissue sections and incubated for 5 h at room temperature in

a humid chamber. The sections were washed three times for 5 min with PBS-TB and incubated overnight at 4�C in a humid chamber with the

remaining antibodies (Table S4) diluted in PBS-TB. The sections were washed three times with PBS-TB and incubated for 5 min at room tem-

perature with 100 mL Intercalator Ir (1.25 mM diluted in PBS-TB). Tissue sections were washed two times for 5 min with PBS-TB and once with

purified water for 5 min. Finally, the sections were dried under an air flow and stored at RT until ablation. For each tissue, 8 regions of interest

were chosen based on hematoxylin and eosin staining on consecutive sections that were representative for the whole tissue. The Hyperion

imagingmass cytometry system (Fluidigm) was calibrated using a 3-element tuning slide (Fluidigm) following themanufacturers settings with

an extra threshold of 1500 mean duals detected for 175Lu. In total, 40 ROIs of 10003 1000mmwere ablated after which 3 ROIs were excluded

due to poor quality.

Imaging mass cytometry data analysis

Data was exported as .MCD files and for each ROI color TIFF images were created containing the DNA, vimentin and keratin signal using the

Fluidigm MCD viewer. These were used to segment the images into nucleus, membrane and background using a random forest classifier in

Ilastik.74 The exported probability maps were used to create cell masks in cell profiler.75 Simultaneously, the MCD files were transformed to

.OME.TIFF files using the FluidigmMCD-viewer. In Ilastik, pixels were assigned to either ‘signal’ or ‘background’ per marker to train a random

forest classifier, which was applied to the entire dataset. Data was exported as binary segmentation masks for each marker where the ‘back-

ground’ pixels were set to 0 and the ‘signal’ pixels to 1. These signal masks together with the cell masks and ome.tiff files were loaded into

ImaCytE76 to create FCS files containing per cell the mean pixel intensity for each marker. HSNE clustering on the FCS files of all images was

performed in Cytosplore77 to generate phenotype clusters which were mapped back onto the images in IMACyte. Each cluster was visually

confirmed using the original .MCD files and combined when similar clusters were observed. The phenotype clusters were further processed

using R to calculate cell densities (cells/mm2), composition of present immune cells and to investigate the expression of selected markers of

interests in specific phenotype clusters for each sample. Threshold of 10%was set for themarker values, i.e., a cell is considered as positive for

a certain marker if in at least 10% of its area the marker was positively detected. The Spearman pairwise correlation heatmaps of cell pheno-

types were also calculated for each sample separately. To assess the spatial organization and cell-cell interactions Voronoi diagrams were

created and all cell-cell interactions (direct neighbors) were counted. To test whether the number of direct interactions of each pairwise

cell type combination is significantly different than expected by chance, aMonte Carlo simulation with 1000 iterations was performed in which

the location of the cells from the imaged slide was randomly permuted, while keeping the number of cells from each type constant and the

overall cellular positions fixed. Then a Z score and p value was calculated to assess avoidance or attraction (Z score <2, Z score >2, p < 0.01).
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A combined cohort Z score was then calculated using the Stouffer’s Z score method for overall meta analysis and plotted as heatmaps

(Figures S6E and S6F). PD1+/PDL1+microaggregates (min. 1 PDL1+ tumor cell andmin. 1 PD1+ immune cell) were identified by finding con-

nected components in a graph created from the Voronoi diagram. These microaggregates were color marked with the respective cell type

colors and plotted as Voronoi diagrams (Figures 6D and 6E). To test if the number of PD1+/PDL1+ microaggregates per tumor was signif-

icantly different than expected by chance, we again performed a Monte Carlo simulation as described above and calculated z-scores and

p values (Table S5).
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis for qPCR results was performed inGraphPad Prism v9 software and the statistical test used is indicated in the relevant figure

legend. For (phospho-)proteomics, single-cell and imaging mass cytometry data analyses the statistical tests used are described in the

respective methods details section and have been performed in R or Python.
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