
 Eindhoven University of Technology

MASTER

Moisture-induced buckling of paper sheets

de Böck, R.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f7c1bac8-b14e-4695-afe2-7a70713bf8eb


Moisture-induced buckling of paper sheets

Rien de Böck
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Abstract

The effect of a change in moisture content on the geometry of a sheet of paper is investigated with
two approaches. A theoretical model based on geometrically nonlinear elasticity theory is formulated and
analytical results are presented for two reference problems: a circular plate wetted in the center, and a
rectangular plate wetted at the edges. The circular case is solved directly, for the rectangular case variational
methods are used. Furthermore, commercially available finite element software is used to simulate the plates.
This numerical method is compared to the analytical method for both reference problems and the influence
of parameters affecting the change in geometry is investigated.
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Chapter 1

Introduction

1.1 Motivation for this research

In the process of making ever-faster industrially used sheet-fed printers, Océ has recently released the Var-
ioprint i300. This colossal machine, shown in Figure 1.1, can print up to 17500 A4 images per hour on
various types of paper [1]. It incorporates the inkjet printing technique in a way that a sheet surface passes

Figure 1.1: The Varioprint i300 unit

underneath the ink nozzles only once. This means that at full speed 80 million droplets of ink per second
have to be dropped on the paper sheets. Great precision is required here; a deviation of only 0.01 mm, a
tenth of the thickness of a paper sheet, is visible to the naked eye and should be avoided. This ambitious
technical demand makes it desirable to align the ink nozzles as closely as possible to the sheet surface.
However, paper sheets are not entirely flat. To design the printer such that it is capable of handling paper
sheets with thickness variations, research into paper deformations is required. This thesis focuses on the
deformations caused by moisture absorption. The goal is to gain insight in the underlying physical process
and the influence of the relevant parameters.

1.2 Paper as an engineering material

Paper as we know it today is a widely used material due to its desirable properties for writing and printing.
Unfortunately, from an engineering standpoint, paper is an impracticable material, [2], [3]. Its physical
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properties are difficult to model, because of its complex micro-scale structure. Paper mainly consists of a
network of slender wood fibres with a length and width in the range of 1-3 mm and 20-40 µm, respectively.
Since paper is only approximately 0.1 mm thick, the network is planar and almost two-dimensional. The
physical properties of paper depend on the in-plane direction chosen. In order to get a better understanding
of this property, known as anisotropy, we briefly consider the manufacturing process.

The first step is to cut wood into chips and then to disintegrate it into so-called pulp. This leaves slender
pulp fibres. Next the pulp is bleached and it undergoes a process called beating, which causes the fibres to
become more flexible so they can eventually bond better to form a tight web.

A mixture of about 99% water and 1% pulp enters the paper machine on a conveyor belt. This causes
the pulp to mix uniformly, which results in increased homogeneity of the end product. In the paper machine
the water is extracted from the mix in multiple ways and at the end of the machine a roll of paper comes
out.

Figure 1.2: Machine direction (MD) and cross direction (CD) on a roll of paper

Despite the efforts to create a roll of paper to be as homogeneous as possible, the effects of heterogeneity
on the end product cannot be neglected. Also, speed differences in the paper machine cause the fibres to be
oriented more in the longitudinal direction of the roll than in the other directions. This is the direction in
which the paper travels through the machine and is therefore referred to as machine direction (MD). The
perpendicular direction is referred to as cross direction (CD), as shown in Figure 1.2. This fibre orientation
causes differences in physical properties of paper between CD and MD. One of the differences of great
importance to this research is the swelling of paper fibres when absorbing water. The fibres swell more in
width than in length by a factor of 20, which at macro-scale results in a difference with a factor of 5.

1.3 Moisture content

To research the water-induced deformations of paper we need some measure of the amount of water contained
in the sheet. The moisture content (MC) serves this purpose. It is defined as the mass percentage of the
paper that originates from the water it contains.

When the source of the water in the sheet is moisture exchange with the air, the relative humidity (RH)
is an important quantity. It is defined as the amount of water vapor the air contains, as a percentage of what
it could maximally contain. When paper is transported to an area with new environmental circumstances
it will adapt to the new humidity until it reaches an equilibrium. The relationship between the RH and the
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Figure 1.3: The sorption isotherm of a typical paper sheet.

corresponding equilibrium value of MC is given by a sorption isotherm. This has been researched by Océ in
the past [4], a characteristic example of such a sorption isotherm is given in Figure 1.3. As we can see, the
change in moisture content caused by absorption from the air could be up to 10 %.

1.4 Solution approach

To research out-of-plane deformations of paper, we consider a homogeneous single sheet of paper initially
in equilibrium with its environment, exposed to an increase of moisture content in a certain region of the
sheet. There are three ways to conduct research on such a physical situation: experimentation, theoretical
analysis and numerical simulation. Experimentation has proven to be complicated and time-consuming,
environmental conditions need to be controlled and the dynamic measurement of the shape of a paper
sheet is complicated. Considering the amount of possible influential parameters many experiments have
to be executed and due to the heterogeneity of paper, it is difficult to distinguish between effects due to
parameters and those due to randomness. Therefore this report will focus on the latter two methods. For
the theoretical research the paper is modeled as an orthotropic elastic medium. For the numerical solution
method the commercially available software packages Marc/Mentat [14] and MATLAB [15] will be used;
Matlab for the pre- and postprocessing and Marc/Mentat for the finite element calculations.

We will consider two reference problems; an isotropic circular plate, wetted at the center and a rectangular
orthotropic plate, exposed to a rise in moisture content along the edges. Much emphasis will be on comparing
the results obtained from the theory and from the simulation with regard to the solution of these reference
problems.
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1.5 The phenomenon of buckling

When holding a piece of paper at opposite ends and moving the ends together, we see that the paper deforms
out of its flat position, even though virtually no force is applied in this direction. This behavior is caused
by a phenomenon called buckling, an instability of the initial flat position due to compressing forces. When
partially wetting a paper sheet, the constrained growth of the fibres in the wet part of the sheet induces
compressing forces resulting in buckling as well.

Mathematically, the initial flat position is stable up until a certain threshold of forces is reached, after
which buckling occurs, resulting in out-of-plane deformations with the order of magnitude of the thickness
of the sheet. Since the initial position is not perfectly flat and the paper is not homogeneous the unstable
position cannot be maintained after the buckling threshold is reached.

Determining the shape after deformation of a paper sheet under the influence of external factors essentially
comes down to a minimization problem. Once the potential energy due to bending out-of-plane exceeds the
potential energy due to stretching, buckling occurs and the paper takes the shape that minimizes the total
potential energy.

In the remainder of this report, much emphasis is on describing the behavior of the sheet up to and
including the onset of buckling. We use the knowledge gained about the pre-buckling situation to compare
the results obtained by the theory and the simulation; the displacement, the stresses, the buckling threshold
and the deflection shape.

1.6 Outline of the report

In Chapter 2 the theory to model large out-of-plane deformations resulting from moisture-induced stresses is
developed, based on geometrically nonlinear elasticity. This theory is used to model two reference problems.
Chapter 3 describes a circular plate wetted at its center and the analytical method used to tackle it and
Chapter 4 does the same for a rectangular orthotropic plate. The numerical simulation is explained in
Chapter 5. The two methods are compared in Chapter 6 for both reference problems and the influence
of the relevant parameters is explored. Chapter 7 lists the results found and links them to the practical
situations encountered in practice.

1.7 Deliverables

Besides the research presented in this report, some software used to model the paper has been delivered. An
input file for Marc/Mentat [14] to model the circular plate is composed and a MATLAB [15] file has been
written to produce such files. A Mathematica [16] file used for the analytical method for the circular plate
as described in Chapter 3 has been written. An existing MATLAB code made at Océ, used to create input
files for Marc/Mentat for rectangular plates has been improved to produce robust simulations, resulting in
solutions agreeing with those of the analytical method. Finally, a Mathematica file has been written to
perform the variational method on a rectangular plate, as described in Chapter 4.

1.8 Results and discussion

The geometrically nonlinear elasticity model derived in this report proved to be solvable directly for the
circular plate. The pre-buckling stress, the buckling threshold and the shape of the plate immediately after
buckling were found in terms of Bessel functions. These results agree well with the simulated results for
various values of the relevant parameters.

The influence of the parameters on the value of the buckling threshold was researched. The sheet’s
Young’s modulus has no effect on the buckling threshold, since the bending and stretching energy both
depend linearly on it. Poisson’s ratio barely influences the buckling threshold, leading to the conclusion that
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the buckling threshold is almost completely defined by the geometry of the plate and the wetted region.
The buckling threshold depends quadratically on the thickness: thinner plates require lower stress levels to
buckle. The buckling threshold is high when the wetted area is either a very large or a very small part of
the plate, and lower for intermediate values.

The reference problem of the rectangular plate is solved using variational methods. The pre-buckling
stress was found and the buckling threshold was approximated using the Rayleigh-Ritz method for four
plates with various properties. The results agree well with the simulation.
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Chapter 2

Derivation of the mathematical model

In this chapter the mathematical model we use to describe the stresses by wetting of paper and the buckling
resulting from it will be built up in steps. First we will introduce the concept of linear elasticity and its
mathematical formulations. Then linear thin plate theory, Kirchhoff theory, will be introduced to reduce
the model to a two-dimensional situation under the assumption that the sheet is thin and that out-of-plane
deformations are small. Also, the model is extended to include stresses that result from wetting. As it
turns out, after buckling this linear theory is not sufficient to describe the large out-of-plane deformations
that occur, therefore the model is extended and von Kármán theory will be introduced to obtain equations
coupling bending and stretching.

2.1 Kinematics, stresses and elasticity theory

2.1.1 Elasticity

The concept of elasticity refers to a material property in which a solid that deforms due to external influences,
returns to its initial, undeformed, configuration when it is no longer exposed to these external influences
[6]. In the case of wetting of paper, elasticity is a valid assumption as long as no effects due to repeated
wetting and drying, hysteresis effects, are considered [3]. In this report a one-time wetting will be considered
and therefore we will model paper as a perfectly elastic material. We will assume that the material is
homogeneous and model it as a continuum, such that a small element of sheet exhibits the same physical
properties as the entire sheet.

2.1.2 Configuration and deformations

We consider a body as a set of material points, P ∈ B, and call its reference configuration GR ∈ R3.
The configuration GR is the region of R3 the body occupies in its initial state. We denote positions in

this region by X ∈ GR,X = {Xα, α = 1, 2, 3}; this represents the undeformed body.
Likewise, we define for the body B a configuration G ∈ R3 and denote positions in this body by x ∈ G,x =
{xi, i = 1, 2, 3}, to represent the deformed body. We assume the body to be continuous, which, according
to the localization theorem means we can assign a nonzero value for the density to each point. The two
coordinate systems are known as Lagrangian and Eulerian, respectively [6].
We assume that a bijection exists between the two coordinate systems, indicating that no cracks or holes
form in the body due to the deformation. We denote this bijection by:

x = ϕ(X), X = Ψ(x). (2.1)

The displacement of a point can be expressed in both coordinate systems and is defined as u := x−X, ũ :=
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ϕ(X)−X,u := x−Ψ(x). We define the deformation gradient by

F :=
∂x

∂X
= I +

∂ũ

∂X
, (2.2)

where I is the identity tensor of suitable dimensions. The components of F are Fiα := ∂xi/∂Xα = xi,α =
δiα+ui,α, using the comma to denote differentiation, and the notational difference between Greek and Latin
letters to distinguish between the coordinate systems, while δij denotes the Kronecker delta.
As a measure for the changes in shape of the body (called pure deformations) we introduce the Cauchy
deformation tensor, also called strain tensor, by E := 1

2 (FTF−I), or component-wise εαβ = 1
2 (FiαFiβ−δαβ),

where we use the Einstein summation convention. The choice for the Cauchy deformation tensor is made
because this deformation tensor is equal to zero if and only if no deformations occur and because it is
rotation-invariant. Using the definition of F , we find

εαβ =
1

2

(
uβ,α + uα,β +

1

2
uk,αuk,β

)
. (2.3)

This is valid in both coordinate systems. We note that this deformation tensor is symmetric by definition
and nonlinear in ∇u. Many applications of elasticity theory involve small deformations, which justifies use
of linear theory. In the following we assume that |∇u| � 1 and that no rigid-body motions occur. As a
consequence of these assumptions we approximate

∂u

∂X
=
∂u

∂x

∂x

∂X
=
∂u

∂x

(
I +

∂u

∂X

)
.
=
∂u

∂x
, (2.4)

where
.
= denotes a linearization. We conclude that under this assumption of linearity we no longer need to

distinguish between the two coordinate systems and therefore we will use the notation (x, y, z) for both sets
of coordinates.

2.1.3 Compatibility equations

Suppose we now know the deformation tensor and want to determine the displacement field, then we have
with (2.3) 6 equation for 3 unknowns {u1, u2, u3}. Hence, the deformation tensor must obey certain conditions
to produce a valid displacement field. These conditions are known as Saint-Venant equations of compatibility
and they can be written as [5], p. 28:

∂2εij
∂xk∂xl

+
∂2εkl
∂xi∂xj

− ∂2εik
∂xj∂xl

− ∂2εjl
∂xi∂xk

= 0. (2.5)

Substitution of the strain tensor (2.3) into this equation shows that it indeed holds for i, j, k, l = 1, 2, 3.
Including all combinations of values for i, j, k, l would result in 34 = 81 equations. When considering that
some are identically satisfied and taking into account that some are duplicates because of symmetry in the
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indices, six remain (taking (x, y, z) = (x1, x2, x3)):

∂2εxx
∂y∂z

=
∂

∂x

(
− ∂εyz

∂x
+
∂εxz
∂y

+
∂εxy
∂z

)
,

∂2εyy
∂x∂z

=
∂

∂y

(∂εyz
∂x
− ∂εxz

∂y
+
∂εxy
∂z

)
,

∂2εzz
∂x∂y

=
∂

∂z

(∂εyz
∂x

+
∂εxz
∂y
− ∂εxy

∂z

)
,

2
∂2εxy
∂x∂y

=
∂2εxx
∂y2

+
∂2εyy
∂x2

, (2.6)

2
∂2εxz
∂x∂z

=
∂2εxx
∂z2

+
∂2εzz
∂x2

,

2
∂2εyz
∂y∂z

=
∂2εyy
∂z2

+
∂2εzz
∂y2

.

2.1.4 Stress

In an elastic material the internal forces acting between parts of the material are of importance to determine
the behavior of the material in response to external factors. Considering two adjacent volume elements of
the material, the internal force per unit area of contact between the elements is quantified by the stress
vector. Let this stress vector t act on an area element with normal n then we can write

t = T n, (2.7)

where T , with components σij , is called the stress tensor. The relation (2.7) is a direct consequence of the
conservation of momentum; see for instance [5], p. 35. For materials such as paper, which are non-polar,
it follows from the conservation of angular momentum that the stress tensor is symmetric: σij = σji. The
stress vector can be decomposed into two parts: normal stress and shear stress. Normal stress, defined as

σn = (t,n) = (n, T n), (2.8)

acting normal to the area element, causes the compression (positive) or expansion (negative) of a volume
element in the direction of the normal. Shear stresses, defined as

τ = t− σnn = T n = T n− (n, T n)n, (2.9)

are perpendicular to normal stress. They act in the plane of the contact surface between the two volume
elements and cause shear deformation. With respect to a Cartesian coordinate system, {x1, x2, x3} the
components σij are defined as

σij := (ei, T ej) = (ej , T ei), (i, j) = (1, 2, 3). (2.10)

Hence, σij is the i-component of the stress vector t acting on a plane with outward normal in the j-direction,
or, since the stress tensor is symmetric, vice versa.

2.1.5 Constitutive equations

Now that we have introduced the notions of stress and strain, we can define elasticity more rigorously. As
mentioned at the start of this chapter an elastic material, which deforms because of an external influence,
returns to its initial, undeformed, configuration when it is no longer exposed to this external influence. This
can be expressed more precisely by stating:
A material is called elastic if the stress T and the (elastic) internal energy Σ at some position x0 in a
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configuration G0 depend only on the deformation tensor at x0 in configuration G0 , i.e.

T (x0) = T (E(x0)), Σ(x0) = Σ(E(x0)). (2.11)

In the case of linear elasticity theory we can relate the stress and strain by means of Hooke’s law. We assume
paper can be modeled as an orthotropic material, which means it has three mutually orthogonal planes of
symmetry in the (x, y, z)-directions. The assumption of orthotropy stems from the assumption that the fibre
alignment is the only factor causing anisotropy. Assuming that the fibre alignment is parallel to an edge of
the sheet, we write Hooke’s law as [8]


εxx
εyy
εzz
εyz
εxz
εxy

 =



1
Ex

−νyx

Ey
−νzxEz

0 0 0

−νxy

Ex

1
Ey

−νzyEz
0 0 0

−νxz

Ex
−νyz

Ey

1
Ez

0 0 0

0 0 0 1
2Gyz

0 0

0 0 0 0 1
2Gxz

0

0 0 0 0 0 1
2Gxy




σxx
σyy
σzz
σyz
σxz
σxy

 . (2.12)

Here, we introduced several material constants: Ei, i = x, y, z, the Young’s moduli in their respective
directions are measures for the tensile stiffness of the material. The shear moduli Gij are measures for
the shear stiffness. The Poisson ratios νij quantify the contraction in direction j caused by the expansion
in direction i. Because of Betti-Maxwell’s reciprocal theorem the matrix in Hooke’s law must be symmetric
[8], §7.2, so we have

νij
Ei

=
νji
Ej
, i 6= j. (2.13)

Hence, of the 12 material constants in (2.12) 9 are independent of one another.

In nonlinear elasticity theory, the constitutive relation is given by

T = ρF ∂Σ

∂E
FT , (2.14)

where ρ denotes the density and Σ(E) the elastic energy density. We will use this formulation in Section 2.3.

2.1.6 Equilibrium equations

Conservation of momentum for an equilibrium state leads to the equilibrium equations [5]:

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ Fx = 0, (2.15)

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ Fy = 0, (2.16)

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

+ Fz = 0. (2.17)

Here, Fi, i = x, y, z represent the body forces directed in each of the directions ([F ] = N/m3), for example,
gravity can be included in the model in this way.

To summarize the results from the past sections; the elastic body is described by 15 variables; 6 stresses,
6 strains and 3 displacements, which are related to one another by 15 equations; 6 strain-displacement re-
lations (2.3), 6 constitutive relations expressed in Hooke’s law (2.12) and the 3 equilibrium equations from
this section.
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2.1.7 Boundary conditions

To complete the system described by the equations in the preceding sections, we need to impose three
boundary conditions on each point at the boundary in the undeformed (reference) state of the elastic body
GR. These boundary conditions can be of the following types [6], p. 66:

• A condition for the stress:

T n = t∗, x ∈ ∂GR, (2.18)

• A condition for the displacements:

D(u) = u∗, x ∈ ∂GR, (2.19)

where D is some (differential) operator, and t∗ and u∗ are precribed vector functions at ∂GR

• Combinations of the two conditions.

2.2 Kirchhoff plate theory

In the case of a thin plate, i.e. one dimension of the body being small compared to the other two, we can
employ the so-called Kirchhoff plate theory to describe the deformations. The small dimension is called
thickness, denoted by 2h. Letting L be a typical dimension of the length and width, we posit h � L.
Kirchhoff plate theory reduces the three-dimensional problem to two dimensions by approximating around
the so-called midplane: the (x, y)-plane at z = 0, the middle of the plate. Hence, the x- and y-coordinate are
in the midplane and the z-coordinate (−h < z < h) is normal to the midplane. We will sometimes refer to
the z-direction as the vertical direction. To employ this theory, we need to impose a number of assumptions,
known as the Kirchhoff hypotheses, [8], §1.3:

1. The material of the plate is elastic and homogeneous.

2. The plate is initially flat.

3. The deflection, i.e. the vertical component of the displacement vector, of the midplane is small com-
pared to the thickness of the plate (w � h). The magnitude of the, dimensionless, slope of the deflected
surface is therefore small and the square of the slope is considered a negligible quantity.

4. Normals to the original configuration of the plate remain straight and normal to the plate after defor-
mation. This means that the vertical shear strains εxz and εyz are considered negligible.

5. The stress normal to the midplane σzz is small compared to the other stress components and may be
neglected in the stress-strain relations.

6. Since the displacements of the plate are small, it is assumed that bending keeps the midplane un-
strained; this means that the in-plane strains are only due to stretching.

Let ux, uy and uz denote the components of the displacements of the plate in x−, y−, and z−direction,
respectively, and u, v, and w the corresponding displacements of the midplane, initially at z = 0. This leads
to the following representation of the displacements:

ux(x, y, z) = u(x, y)− z ∂w(x, y)

∂x
, uy(x, y, z) = v(x, y)− z ∂w(x, y)

∂y
, uz(x, y, z) = w(x, y). (2.20)
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which is essentially a first-order Taylor approximation around the midplane. We follow the assumptions to
reduce Hooke’s law (2.12) to εxxεyy

εxy

 =


1
Ex

−νyx

Ey
0

−νxy

Ex

1
Ey

0

0 0 1
2Gxy


σxxσyy
σxy

 . (2.21)

In the next two sections we make a distinction between stretching and bending of the plate and derive
equations that describe these deformations separately. These two types of deformations will be coupled in
Section 2.4 to model large out-of-plane deformations.

2.2.1 Stretching

To derive an equation describing the stresses relating to stretching of a plate, we consider a plate subject
to an in-plane force at its edges, which causes it to stretch in the (x, y)-plane without bending, i.e. w = 0.
To be able to compose global force relations, we define global forces acting in the midplane. For the forces
acting in the plane, we find ([Nij ] =N/m)NxxNyy

Nxy

 =

∫ h

−h

σxxσyy
σxy

 dz. (2.22)

To obtain the force balances in the x− and y−direction we integrate the equilibrium equations (2.15), (2.16)
over the thickness of the plate and use (2.22) to find:

∂Nxx
∂x

+
∂Nxy
∂y

= 0,

∂Nxy
∂x

+
∂Nyy
∂y

= 0. (2.23)

These equations are trivially satisfied by introducing the so-called Airy stress function ϕ(x, y), [8], Chapter
1:

∂2ϕ

∂y2
= σxx =

Nxx
2h

,
∂2ϕ

∂x∂y
= −σxy = −Nxy

2h
,

∂2ϕ

∂x2
= σyy =

Nyy
2h

. (2.24)

Using Hooke’s law (2.21) to express the relevant compatibility equation (2.6) in terms of stresses, and writing
this in terms of the Airy stress function, we eventually arrive at:

∂2εxx
∂y2

+
∂2εyy
∂x2

− 2
∂2εxy
∂x∂y

=
1

Ex

∂2σxx
∂y2

− νyx
Ey

∂2σyy
∂y2

− νxy
Ex

∂2σxx
∂x2

+
1

Ey

∂2σyy
∂x2

− 1

Gxy

∂2σxy
∂x∂y

=
1

Ey

∂4ϕ

∂x4
+
(

2
νxy
Ex

+
1

Gxy

) ∂4ϕ

∂x2∂y2
+

1

Ex

∂4ϕ

∂y4
= 0. (2.25)

This equation describes the in-plane deformations resulting from in-plane stresses.

2.2.2 Bending

In the case of pure bending we have u = v = 0, such that we find for the strains

εxx = −z ∂
2w

∂x2
, εxy = −z ∂

2w

∂x∂y
, εyy = −z ∂

2w

∂y2
. (2.26)
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Inverting (2.21) yields

σxx =
Ex

1− νxyνyx

(
εxx + νyxεyy

)
= − zEx

1− νxyνyx

(∂2w
∂x2

+ νyx
∂2w

∂y2

)
,

σyy =
Ey

1− νxyνyx

(
νxyεxx + εyy

)
= − zEy

1− νxyνyx

(
νxy

∂2w

∂x2
+
∂2w

∂y2

)
, (2.27)

σxy = 2Gxyεxy = −2zGxy
∂2w

∂x∂y
.

Note that all the stresses due to bending depend linearly upon z. We introduce the bending moments
Mxx,Myy and twisting moment Mxy, ([Mij ] =N), using these expressions:

Mxx

Myy

Mxy

 =

∫ h

−h

σxxσyy
σxy

 zdz = −2h3

3



Ex
1− νxyνyx

(
∂2w

∂x2
+ νyx

∂2w

∂y2

)
Ey

1− νxyνyx

(
νxy

∂2w

∂x2
+
∂2w

∂y2

)

2Gxy
∂2w

∂x∂y


. (2.28)

We note that, because the stress tensor is symmetric we need not introduce Myx.
We define the shear forces as ([Qi] =N/m):[

Qx
Qy

]
=

∫ h

−h

[
σxz
σyz

]
dz. (2.29)

Although the shears εxz and εyz are assumed zero (the fourth Kirchhoff assumption), and hence also the
shear stresses σxz and σyz, according to Hooke’s law, the shear forces Qx and Qy are not taken zero, and
included in the global equilibrium equations. This seems somewhat conflicting, but it has shown to be
consistent within Kirchhoff’s thin plate theory [8].

We now consider a plate subject to a vertical load per unit area q(x, y) ([q] =N/m2). We compose global
force balances for this situation by multiplying equations (2.15) and (2.16) by z and integrating them, along
with (2.17). Expressing this in terms of the shear force and bending and twisting moments, we obtain

∂Mxx

∂x
+
∂Mxy

∂y
= Qx,

∂Mxy

∂x
+
∂Myy

∂y
= Qy, (2.30)

∂Qx
∂x

+
∂Qy
∂y

= q.

Eliminating Qx, Qy from these expressions, we find

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
= q. (2.31)

Using equations (2.27) and (2.28), we obtain an expression for the deflection w resulting from the load q:

2h3

3

(
Ex

1− νxyνyx
∂4w

∂x4
+ 2

(
νyxEx

1− νxyνyx
+Gxy

)
∂4w

∂x2∂y2
+

Ey
1− νxyνxy

∂4w

∂y4

)
= q. (2.32)

This equation describes the out-of-plane deformations resulting from an external force, provided they remain
small.
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2.2.3 Moisture-induced stresses

In the literature often the deformations resulting from a rise in temperature are discussed [7], [8]. The effect
of water uptake is modeled in the same manner, by adding a term to Hooke’s law (2.21):εxxεyy

εxy

 =


1
Ex

−νyx

Ey
0

−νxy

Ex

1
Ey

0

0 0 1
2Gxy


σxxσyy
σxy

+

εhxxεhyy
0

 . (2.33)

where εhxx = βxχ(x, y) and εhyy = βyχ(x, y) denote the water-induced strains. The change in moisture content
is χ(x, y) and βi, i = x, y, denotes the so-called hygroexpansivity coefficient, which quantifies the relative
growth of the fibres per percent increase of moisture content.

2.3 Linearization about an intermediate state

To model large out-of-plane displacements, as occur in the case of moisturized paper, we need a nonlinear
version of the equilibrium equations given in Section 2.1.6. To this end, we consider a plate deforming from
an initial configuration GR to a configuration G, through an intermediate configuration GI :

X ∈ GR → ξ := X + u0 ∈ GI → x := ξ + u ∈ GR. (2.34)

We assume the second deformation to be small, which we quantify by ||∇u|| = ε� 1. Keeping the nonlinear
theory from Section 2.1.5 and (2.14) in mind, we find:

F0 =
∂ξ

∂X
, E0 =

1

2

(
F0TF0 − I

)
, σ0 = ρ0F0

(∂Σ

∂E

)0
F0T . (2.35)

Here we denote the intermediate state of the variables by a superscript 0. The equilibrium equation for the
intermediate state reads

∇ · σ0 + F 0
i = 0, (2.36)

where F 0
i denotes the external body force. Using this notation, we obtain the deformation gradient for the

composition of the two deformations

F =
∂x

∂X
=

∂ξ

∂X
+
∂u

∂X
=

∂ξ

∂X
+
∂u

∂ξ

∂ξ

∂X
= F0 +

∂u

∂ξ
F0. (2.37)

The change in density can be expressed in terms of the deformation gradient. Denoting the density in
successively GR,GI ,G by ρ0, ρ

0, ρ, we have:

ρ0 =
ρ0
J 0

, ρ =
ρ0
J

= ρ0
J 0

J
, (2.38)

where J = detF ,J 0 = detF0. We approximate

J = detF = det
(
F0 +

∂u

∂ξ
F0
)
.
= J 0

(
1 + tr

(∂u
∂ξ

))
. (2.39)

Linearizing (2.14) , we arrive at the constitutive equation:

σ = ρF ∂Σ

∂E
FT =

ρ0

1 + tr
(
∂u
∂ξ

) (F0 +
∂u

∂ξ
F0

)[(∂Σ

∂E

)0
+
( ∂2Σ

∂E∂E

)0(
E − E0

)](
F0T +

∂u

∂ξ
F0T

)
. (2.40)
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or component-wise:

σij =

(
ρ0
( ∂Σ

∂εαβ

)0
F 0
iαF

0
jβ

)
+

(
ρ0
( ∂2Σ

∂εαβ∂εγδ

)0
FiαFjβ

(
εγδ − ε0γδ

))
+ ρ0

( ∂Σ

∂εαβ

)0(
− uk,kF 0

iαF
0
jβ + ui,lF

0
lαF

0
jβ + uj,lF

0
iαF

0
lβ

)
= T 0

ij + tij +
(
− δklT 0

ij + δikT
0
lj + δjkT

0
il

)
uk,l, (2.41)

with

T 0
ij = ρ0

(
∂Σ

∂εαβ

)0

F 0
iαF

0
jβ , tij = ρ0

(
∂2Σ

∂εαβ∂εγδ

)0

F 0
iαF

0
jβ

(
εγδ − ε0γδ

)
. (2.42)

If we substitute

εγδ − ε0γδ =
1

2
(uk,l + ul,k)F 0

kγF
0
lδ, cijkl := ρ0

(
∂2Σ

∂εαβ∂εγδ

)0

, (2.43)

into (2.41) we recover the linear version of the constitutive equations, Hooke’s law

tij = cijklεkl. (2.44)

Finally with (2.41) we rewrite the equilibrium equations, yielding:

∂σij
∂xj

+ Fi =
∂σij
∂ξk

∂ξk
∂xj

+ Fi =
∂

∂ξk

(
T 0
ij + (σij − T 0

ij)
)

(δkj − uk,j) + Fi

=
∂T 0

ij

∂ξj
+

∂

∂ξj
(σij − T 0

ij)−
∂T 0

ij

∂ξk
uk,j + tij,j + Fi

= −(T 0
ijuk,k),j + (T 0

jlui,l),j + (T 0
iluj,k),j − T 0

ij,kuk,j + tij,j + Fi

= −T 0
ij,juk,k − T 0

ijukj,j + T 0
lj,jui,l + T 0

ljui,jl + T 0
il,juj,l + T 0

iluj,jl − T 0
ij,kuk,j + tij,j + Fi

= tij,j + T 0
jkui,jk + Fi = 0. (2.45)

This linearized version of the equilibrium equations will be used in the next section to derive the equations
coupling bending and stretching.

2.4 Von Kármán theory for large displacements

2.4.1 Assumptions

To model the situation of a sheet of paper deforming under the influence of a change in moisture content
we need to adapt the Kirchhoff model as discussed in Section 2.2. Since in the situation at hand buckling
will occur and the deflections out of the plane will not be negligible compared with the thickness of the
paper sheet in the post-buckling range of moisture contents, we need to reconsider the assumptions made in
Section 2.2. The third and the sixth assumptions are no longer valid. We will assume a new scaling, using
the small parameter δ = h/L:

w

h
= O(1),

w

L
= O(δ),

( u
L
,
v

L

)
= O(δ2). (2.46)
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Neglecting terms of O(δ3), we obtain from (2.3) and (2.20) the representation for the strains:

εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

− z ∂
2w

∂x2
,

εxy =
1

2

(
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y

)
− z ∂

2w

∂x∂y
,

εyy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

− z ∂
2w

∂y2
. (2.47)

We note that the strains in (2.47) can be decomposed into a part independent of z and a part that depends
linearly on z. The independent parts are the in-plane deformations due to stretching and the linearly
dependent parts are the out-of-plane deformation due to bending. The in-plane strains now depend on w,
which couples the bending and stretching in this theory.

Next we will derive equations for the stretching and bending of plates in the model under consideration,
using an approach similar to the one followed in Sections 2.2.1 and 2.2.2.

2.4.2 Stretching

We invert Hooke’s law (2.33) and use (2.47) to express the stresses in terms of the displacements, resulting
in

σxx =
Ex

1− νxyνyx

(
εxx − εhxx + νyx(εyy − εhyy)

)
=

Ex
1− νxyνyx

((∂u
∂x
− z ∂

2w

∂x2
+

1

2

(
∂w

∂x

)2

− εhxx
)

+ νyx

(∂u
∂y
− z ∂

2w

∂y2
+

1

2

(
∂w

∂y

)2

− εhyy
))

,

σyy =
Ey

1− νxyνyx

(
νxy(εxx − εhxx) + εyy − εhyy

)
(2.48)

=
Ey

1− νxyνyx

(
νxy

(∂u
∂x
− z ∂

2w

∂x2
+

1

2

(
∂w

∂x

)2

− εhxx
)

+
(∂u
∂y
− z ∂

2w

∂y2
+

1

2

(
∂w

∂y

)2

− εhyy
))

,

σxy = 2Gxyεxy = Gxy

(
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
− 2z

∂2w

∂x∂y

)
.

We decompose the stresses into the in-plane part and the out-of-plane part as follows: σij = σ
(0)
ij (x, y) +

zσ
(1)
ij (x, y), (i, j) ∈ (x, y). We proceed as in Section 2.2.1 and integrate the equilibrium equations (2.15),

(2.16) over the thickness of the plate, to obtain∫ h

−h

(
∂σ

(0)
xx

∂x
+
∂σ

(0)
xy

∂y

)
dz =

∫ h

−h

(
∂σ

(0)
xx

∂x
+ z

∂σ
(1)
xx

∂x
+
∂σ

(0)
xy

∂y
+ z

∂σ
(1)
xy

∂y

)
dz

=

∫ h

−h

(
∂σxx
∂x

+
∂σxy
∂y

)
dz =

∂Nxx
∂x

+
∂Nxy
∂y

= 0, (2.49)∫ h

−h

(
∂σ

(0)
xy

∂x
+
∂σ

(0)
yy

∂y

)
dz =

∫ h

−h

(
∂σ

(0)
xy

∂x
+ z

∂σ
(1)
xy

∂x
+
∂σ

(0)
yy

∂y
+ z

∂σ
(1)
yy

∂y

)
dz

=

∫ h

−h

(
∂σxy
∂x

+
∂σyy
∂y

)
dz =

∂Nxy
∂x

+
∂Nyy
∂y

= 0. (2.50)

To satisfy these global equilibrium equations, we again use the Airy stress function (2.24). To derive the
equation for the stretching of the plate, we substitute (2.47) into the fourth compatibility equation (2.6) and
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evaluate this at z = 0, yielding[
∂2εxx
∂y2

− 2
∂2εxy
∂x∂y

+
∂2εyy
∂x2

]
z=0

=

(
∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2
. (2.51)

Writing this in terms of the Airy stress function while keeping in mind Hooke’s law including hygro-expansion,
(2.33), we eventually arrive at

∂2εhxx
∂y2

+
∂2εhyy
∂x2

+
1

Ey

∂4ϕ

∂x4
+

(
1

Gxy
− 2

νxy
Ex

)
∂4ϕ

∂x2∂y2
+

1

Ex

∂4ϕ

∂y4
=

(
∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2
. (2.52)

This constitutes our first equation for the post-buckling theory of a wetted sheet of paper describing the
stresses resulting from a rise in moisture content.

2.4.3 Bending

To derive the equation for large deformation bending we start with the linearized equilibrium equation (2.45),

tij,j + T 0
ijui,jk + Fi = 0. (2.53)

Here we have for T 0
jk, being the intermediate stresses due to the stretching of the plate,

T 0
11 =

Nxx
2h

, T 0
12 =

Nxy
2h

, T 0
22 =

Nyy
2h

, (2.54)

with the Nij ’s as found in the preceding section. For ui we take (2.20) with u = v = 0. Moreover, we take
only a vertical load, so Fx = Fy = 0. Finally, we neglect all terms of O(δ3), since the resulting equations are
of order O(δ2). Taking all of this into account, we arrive at:

∂txx
∂x

+
∂txy
∂y

+
∂txz
∂z
− z

2h

(
Nxx

∂3w

∂x3
+Nxy

∂3w

∂x2∂y
+Nyy

∂3w

∂x∂y2

)
= 0,

∂txy
∂x

+
∂tyy
∂y

+
∂tyz
∂z
− z

2h

(
Nxx

∂3w

∂x2∂y
+Nxy

∂3w

∂x∂y2
+Nyy

∂3w

∂y3

)
= 0, (2.55)

∂txz
∂x

+
∂tyz
∂y

+
∂tzz
∂z
− z

2h

(
Nxx

∂2w

∂x2
+Nxy

∂2w

∂x∂y
+Nyy

∂2w

∂y2

)
+ Fz = 0.

From the first equation of (2.55), considering that the last term is of O(δ3), we obtain after multiplication
with z and integration over the thickness, the global moment equation (analogous to (2.30)):∫ h

−h

(
z
∂txx
∂x

+ z
∂txy
∂y

+ z
∂txz
∂z

)
dz =

∂Mxx

∂x
+
∂Mxy

∂y
−Qx = 0. (2.56)

Analogously, we obtain from the second equation of (2.55) the moment equation in the y-direction:

∂Mxy

∂x
+
∂Myy

∂y
−Qy = 0. (2.57)

Integrating the third part of equation (2.55) over the thickness, we arrive at the global equation for the shear
forces, in the form (note that here the last term is of order O(δ2))∫ h

−h

(
∂txz
∂x

+
∂tyz
∂y

+
∂tzz
∂z
− z

2h

(
Nxx

∂2w

∂x2
+Nxy

∂2w

∂x∂y
+Nyy

∂2w

∂y2

)
+ Fz

)
dz = 0 (2.58)
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Leading to

∂Qx
∂x

+
∂Qy
∂y

= q +Nxx
∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Nyy

∂2w

∂y2
, (2.59)

where

q = q(x, y) =

∫ h

−h
Fz(x, y)dz + tzz

]h
−h
. (2.60)

With (2.56), (2.28) and (2.49) we express the shear forces in terms of the displacements, keeping in mind
that the terms with an odd power of z will cancel in the integrals, to obtain

∂Qx
∂x

=
∂2Mxx

∂x2
+
∂2Mxy

∂x∂y

=

∫ h

−h
z

(
∂2σxx
∂x2

+
∂2σxy
∂x∂y

)
dz =

∫ h

−h
z

(
∂2σ

(1)
xx

∂x2
+
∂2σ

(1)
xy

∂x∂y

)
dz

=

∫ h

−h
z

(
Ex

1− νxyνyx

(
−z ∂

4w

∂x4
− ∂2εhxx

∂x2
− νyx

(
∂4w

∂x2∂y2
∂2εhyy
∂y2

))
− zGxy

∂4w

∂x2∂y2

)
(2.61)

= − 2h3Ex
3(1− νxyνyx)

(
∂4w

∂x4
+ νyx

(
∂4w

∂x2∂y2

))
− 2h3

3
Gxy

∂4w

∂x2∂y2

= −2h3

3

(
Ex

1− νxyνyx
∂4w

∂x4
+

(
νyxEx

1− νxyνyx
+Gxy

)
∂4w

∂x2∂y2

)
.

Analogously we derive

∂Qy
∂y

= −2h3

3

(
Ey

1− νxyνyx
∂4w

∂y4
+

(
νxyEy

1− νxyνyx
+Gxy

)
∂4w

∂x2∂y2

)
. (2.62)

Combining the expressions for the shear forces (2.61) and (2.62) with the global expression (2.59), and using
the Airy stress function (2.24), we obtain

2h3

3

(
Ey

1− νxyνyx
∂4w

∂x4
+ 2

(
νyxEx

1− νxyνyx
+Gxy

)
∂4w

∂x2∂y2
Ey

1− νxyνyx
∂4w

∂y4

)
= q(x, y) + 2h

(
∂2ϕ

∂x2
∂2w

∂y2
+
∂2ϕ

∂y2
∂2w

∂x2
− 2

∂2ϕ

∂x∂y

∂2w

∂x∂y

)
, (2.63)

which constitutes the second equation for our post-buckling model. The Föppl-Von Kármán equations;
(2.52) and (2.63) form the equations for the two unknowns ϕ(x, y) and w(x, y) and thus, apart from the still
needed boundary conditions, this completes our post-buckling model.

2.4.4 Boundary conditions

We consider a rectangular plate with Cartesian coordinates {x, y, z} ∈ {[0, a], [0, b], [−h, h]}. In the literature
often conditions of simply supported or clamped edges are imposed, but in our case we only consider freely
movable boundaries. Thus the boundary conditions for the stresses are:

At x = 0, a : σxx = σxy = 0. (2.64)

At y = 0, b : σxy = σyy = 0. (2.65)
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The boundary conditions for the displacements are a little more complicated. At the edges at x = 0, a and
y = 0, b we would like to pose the following boundary conditions:

At x = 0, a : Mxx = Mxy = Qx = 0. (2.66)

At y = 0, b : Mxy = Myy = Qy = 0. (2.67)

Unfortunately the system only admits two boundary conditions per edge. To overcome this discrepancy,
the so-called generalized shear forces, combining boundary conditions from (2.66) and (2.67) are introduced.
According to [6], p. 84, they are defined as

Vx = Qx +
∂Mxy

∂y
, (2.68)

Vy = Qy +
∂Mxy

∂x
. (2.69)

With this, the boundary conditions at a free boundary then become:

At x = 0, a : Mxx = Vx = 0. (2.70)

At y = 0, b : Myy = Vy = 0. (2.71)

By substituting (2.28) and (2.29) into these boundary conditions, they become
At x = 0, a :

∂2w

∂x2
+ νyx

∂2w

∂y2
= 0, (2.72)

∂3w

∂x3
+

(
νyx +

4Gxy(1− νxyνyx)

Ex

)
∂3w

∂x∂y2
= 0. (2.73)

And analogously at y = 0, b :

νxy
∂2w

∂x2
+
∂2w

∂y2
= 0, (2.74)

∂3w

∂y3
+

(
νxy +

4Gxy(1− νxyνyx)

Ey

)
∂3w

∂x2∂y
= 0. (2.75)

We continue with making this formulation dimensionless, which makes it more appropriate for numerical
calculations.

2.4.5 Normalization and nondimensionalization

With equations (2.52) and (2.63) we have a system of two coupled fourth-order partial differential equations
describing the coupling between in-plane deformations and large out-of-plane deflections:

∂2εhxx
∂y2

+
∂2εhyy
∂x2

+
1

Ey

∂4ϕ

∂x4
+
( 1

Gxy
− 2

νxy
Ex

) ∂4ϕ

∂x2∂y2
+

1

Ex

∂4ϕ

∂y4
=
( ∂2w
∂x∂y

)2
− ∂2w

∂x2
∂2w

∂y2
, (2.76)

and

2h3

3

(
Ex

1− νxyνyx
∂4w

∂x4
+ 2
( νyxEx

1− νxyνyx
+Gxy

) ∂4w

∂x2∂y2
+

Ey
1− νxyνyx

∂4w

∂y4

)
= q(x, y) + 2h

(
∂2ϕ

∂x2
∂2w

∂y2
+
∂2ϕ

∂y2
∂2w

∂x2
− 2

∂2ϕ

∂x∂y

∂2w

∂x∂y

)
. (2.77)
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Let us introduce the following dimensionless variables:

ŵ :=
w

W
, ϕ̂ =

ϕ

Φ
, ε̂hxx :=

εhxx
ε0
, ε̂hyy :=

εhyy
ε0
, x̂ :=

x

L
, ŷ :=

y

L
, q̂ =

q

Q
, â =

a

L
, b̂ =

b

L
, (2.78)

where the yet unknown factors W,Φ, ε0 and Q will be specified in the following dimensional analysis. We
rewrite (2.76) using these variables into

ε0
L2

(
∂2ε̂hxx
∂ŷ2

+
∂2ε̂hyy
∂x̂2

)
+

Φ

ExL4

(
∂4ϕ̂

∂ŷ4
+
( Ex
Gxy

− 2νxy

) ∂4ϕ̂

∂x̂2∂ŷ2
+
Ex
Ey

∂4ϕ̂

∂x̂4

)
=
W 2

L4

(( ∂2ŵ
∂x̂∂ŷ

)2
− ∂2ŵ

∂x̂2
∂2ŵ

∂ŷ2

)
. (2.79)

To make all terms of the same order of magnitude we take Φ = ε0ExL
2,W =

√
ε0L, with ε0 still free to

choose. This reduces (2.79), after removing the hats, to

∂2εhxx
∂y2

+
∂2εhyy
∂x2

+
Ex
Ey

∂4ϕ

∂x4
+
( Ex
Gxy

− 2νxy

) ∂4ϕ

∂x2∂y2
+
∂4ϕ

∂y4
=
( ∂2w
∂x∂y

)2
− ∂2w

∂x2
∂2w

∂y2
. (2.80)

Introducing the dimensionless variables together with the obtained results for Φ and W in (2.77), yields

2h3Ex
3(1− νxyνyx)

√
ε0
L3

(
∂4ŵ

∂x̂4
+ 2
(
νyx +

(1− νxyνyx)Gxy
Ex

) ∂4ŵ

∂x̂2∂ŷ2
+
Ey
Ex

∂4ŵ

∂ŷ4

)
= Qq̂ + 2hEx

ε
3/2
0

L

(
∂2ϕ̂

∂x̂2
∂2ŵ

∂ŷ2
+
∂2ϕ̂

∂ŷ2
∂2ŵ

∂x̂2
− 2

∂2ϕ̂

∂x̂∂ŷ

∂2ŵ

∂x̂∂ŷ

)
. (2.81)

To make the terms of the same magnitude we take

Q =
2h3Ex

3(1− νxyνyx)

√
ε0
L3

. (2.82)

We divide (2.81) by Q and remove the hat to obtain the dimensionless equation

∂4w

∂x4
+ 2
(
νyx +

(1− νxyνyx)Gxy
Ex

) ∂4w

∂x2∂y2
+
Ey
Ex

∂4w

∂y4
= q + µ

(
∂2ϕ

∂x2
∂2w

∂y2
+
∂2ϕ

∂y2
∂2w

∂x2
− 2

∂2ϕ

∂x∂y

∂2w

∂x∂y

)
,

(2.83)

where µ = 3(1 − νxyνyx)ε0(L/h)2, a dimensionless number. Thus, we arrived at the final equations in
nondimensional form:

∂2εhxx
∂y2

+
∂2εhyy
∂x2

+
Ex
Ey

∂4ϕ

∂x4
+
( Ex
Gxy

− 2νxy

) ∂4ϕ

∂x2∂y2
+
∂4ϕ

∂y4
=
( ∂2w
∂x∂y

)2
− ∂2w

∂x2
∂2w

∂y2
, (2.84)

∂4w

∂x4
+ 2
(
νyx +

(1− νxyνyx)Gxy
Ex

) ∂4w

∂x2∂y2
+
Ey
Ex

∂4w

∂y4
= q + µ

(
∂2ϕ

∂x2
∂2w

∂y2
+
∂2ϕ

∂y2
∂2w

∂x2
− 2

∂2ϕ

∂x∂y

∂2w

∂x∂y

)
.

(2.85)

Here, only µ is still undetermined, since it depends on ε0. Seeing that ε0 is a scale for the in-plane stresses
induced by the wetting of the sheet, we choose ε0 = βxχ, yielding

µ = 3(1− νxyνyx)βxχ
L2

h2
(2.86)

Since, according to the third assumption of the Kirchhoff hypothesis outlined in Section 2.2, the in-plane
deformations are of O(δ2), meaning ε0 is as well, the dimensionless number µ is of O(1), provided the length
to thickness ratio of the plate is small.
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2.5 Buckling theory

The von Kármán equations (2.84),(2.85) are nonlinear. Therefore, unicity of the solution to these equations
is not guaranteed; there can, and will sometimes, be multiple solutions. For small moisture-induced loads,
there will be only one solution, the so-called pre-buckling solution, in which the flat configuration of the plate
is maintained. At a certain critical magnitude of the load, a bifurcation of the solution will occur [8]. For
values beyond this critical load, also solutions with w 6= 0 will exist. The w = 0-state will become unstable,
whereas the w 6= 0-states, the buckled states are stable now. We then say that the plate is buckled and the
critical magnitude of the loads is called the buckling load, or buckling threshold. We take a closer look at
the dimensionless generalized von Kármán equations (2.84), (2.85), without a vertical load (q = 0):

∂2εhxx
∂y2

+
∂2εhyy
∂x2

+
Ex
Ey

∂4ϕ

∂x4
+
( Ex
Gxy

− 2νxy

) ∂4ϕ

∂x2∂y2
+
∂4ϕ

∂y4
=
( ∂2w
∂x∂y

)2
− ∂2w

∂x2
∂2w

∂y2
, (2.87)

∂4w

∂x4
+ 2
(
νyx +

(1− νxyνyx)Gxy
Ex

) ∂4w

∂x2∂y2
+
Ey
Ex

∂4w

∂y4
= µ

(
∂2ϕ

∂x2
∂2w

∂y2
+
∂2ϕ

∂y2
∂2w

∂x2
− 2

∂2ϕ

∂x∂y

∂2w

∂x∂y

)
.

(2.88)

Without water-induced strains, i.e. εhxx = εhyy = 0, the system has a trivial equilibrium solution ϕ = w = 0,
which corresponds to the initial state of the plate. The flat configuration of the plate, w = 0, remains a
solution to (2.88), regardless of the water-induced strains. We expect that, for increasing moisture content
χ at a region of the plate, the flat configuration is maintained, until a certain threshold value for the stresses
in the plate is reached, at which the plate bends out of plane. In the case at hand, the threshold value for
the stresses is reached resulting from a certain moisture content.

Finding complete solutions of the Von Kármán equations at values beyond the buckling load is a difficult
task due to the structure of the equations. However, using the approach outlined below, approximating the
buckling threshold and the deflection profile immediately after the onset of buckling can be done without
the need to solve the complete system of equations.

• We assume a moisture profile to be given, having a characteristic order of magnitude.

• We solve (2.87) with w = 0 for ϕ with boundary conditions (2.64), (2.65).

• Using ϕ as determined before, we calculate w from (2.88), assuming the boundary conditions (2.72)-
(2.75). We will find that this leads to an eigenvalue problem for µ. The smallest eigenvalue is the
buckling threshold, the corresponding w is an approximation of the deflection shape immediately after
buckling.

2.6 Variational formulation for a rectangular plate

An often used approach to solving the plate buckling problem is by considering the potential energy of the
plate and the change thereof caused by a deflection. Often the Von Kármán equations are derived in this
way. Most of the books cited in this thesis have a chapter devoted to variational methods, see for example
[5], Chapter 7,[8], Chapter 6, and especially Washizu, [11], who dedicated a book to this topic. The potential
energy for the situation under consideration consists of two parts: the strain energy due to bending, which
accounts for the energy from the out-of-plane deformations of the plate, and the energy due to moisture-
induced in-plane stresses, the sum of which will be minimized. The out-of-plane part strain energy for an
orthotropic rectangular plate is obtained by multiplying the left-hand side of (2.88) with w and integrating
this over the plate. After some partial integration we find

U = h

∫ b

0

∫ a

0

((∂2w
∂x2

)2
+ 2νyx

∂2w

∂x2
∂2w

∂y2
+
Ey
Ex

((∂2w
∂y2

)2
+

4Gxy
Ex

(1− νxyνyx)
( ∂2w
∂x∂y

)2)
dxdy.

(2.89)
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The energy due to hygrothermal stresses is found by applying the approach to the right-hand side of (2.88)
and after some partial integration we find an expression in terms of first derivatives of w:

Eh = −2hµ

∫ b

0

∫ a

0

((
∂w

∂x

)2
∂2ϕ

∂y2
+

(
∂w

∂y

)2
∂2ϕ

∂x2
− 2

∂w

∂x

∂w

∂y

∂2ϕ

∂x∂y

)
dxdy. (2.90)

The boundary terms drop out because of the boundary conditions for the stresses (2.64), (2.65). We apply
the Rayleigh-Ritz method, [8], § 6.6, to the expression for the potential energy Π = U − Eh, the most
important and difficult part of which is to choose a set of coordinate functions gm(x), hn(y) to approximate
w. These functions should span all the possible outcomes for w, but still be manageable in calculations.
Furthermore, the restriction is placed upon them that they satisfy the kinematic boundary conditions, i.e.
those concerning w and its first order derivatives. In this case, with free boundaries, there are no such
boundary conditions. We take

w =

∞∑
m=1

∞∑
n=1

Wmngm(x)hn(y), (2.91)

where we still have to specify gm(x) and hn(y), while the coefficients Wmn have to follow from the Rayleigh-
Ritz method as shown in the following result (2.92). First we determine the stress function from (2.87) with
w = 0. Next, we apply the Rayleigh-Ritz method of minimizing the energy functional, which consists of
equating the derivatives of the potential energy Π with respect to the constants Wmn to zero. This way
we find a stationary point of w, which is a necessary condition for a minimum. We substitute (2.91) into
the expression for the potential energy Π = U − Eh, from (2.89),(2.90) and differentiate with respect to
Wij , i, j ∈ 0, 1, . . . to find:

∂Π

∂Wij
= 2h

M∑
m=1

N∑
n=1

Wmn (2.92)

∫ b

0

∫ a

0

(
g′′m(x)g′′i (x)hn(y)hj(y) + νyx

(
g′′m(x)gi(x)hn(y)h′′j (y) + gm(x)g′′i (x)h′′n(y)hj(y)

)
Ey
Ex

gm(x)gi(x)h′′n(y)h′′j (y) + 2
Gxy
Ex

(1− νxyνyx)g′m(x)g′i(x)h′n(y)h′j(y)

)
dxdy

+ 2hµ

M∑
m=1

N∑
n=1

Wmn

∫ b

0

∫ a

0

(
g′i(x)g′m(x)hj(y)hn(y)

∂2ϕ

∂y2
+ gi(x)gm(x)h′j(y)h′n(y)

∂2ϕ

∂x2

−
(
g′i(x)gm(x)hj(y)h′n(y) + gi(x)g′m(x)h′j(y)hn(y)

) ∂2ϕ
∂x∂y

)
dxdy = 0.

The leads to an eigenvalue problem in terms of µ. This method will be applied to the reference problem to
be discussed in Chapter 4.
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Chapter 3

Circular plates

In this chapter we consider the case of circular plates. We expand on an axissymmetric configuration of a
circle wetted at its center, since this can be solved analytically up to and including the buckling threshold,
without the use of variational methods. Therefore, this reference problem is suitable to explicitly showcase
the influence of the parameters involved. We will first translate the von Kármán model into polar coordinates.
Next we will solve this to find the stresses and eventually the buckling threshold and the first post-buckling
mode.

3.1 The von Kármán model in polar coordinates

We consider a circular plate of thickness 2h subjected to a moisture content profile χ. The situation is
considered to be axissymmetric, i.e. only dependent on the radius r and the height z, and not on the angle
θ.
First we use the approach followed for the rectangular plate to derive the equations describing the deflection
of the plate. Let ur, uθ and uz denote the displacements in the r−, θ− and z−direction, respectively, and
u and w the r− and z−displacements, respectively, of the midplane, z = 0. This leads us to the following
representation of the displacements:

ur(r, z) = u(r)− zw′(r), uθ(r, z) = 0, uz(r, z) = w(r). (3.1)

We find the strain in the radial direction using (2.3) and (3.1) to be

εrr =
dur
dr

= u′(r) +
1

2
(w′(r))2 − zw′′(r). (3.2)

We derive the tangential component of the strain by considering that it depends on the radial displacement.
If elements of an infinitesimal arc length rdθ move in the radial direction by ur, the arc length grows to
(r + ur)dθ. We obtain:

εθθ =
(r + ur)dθ − rdθ

rdθ
=
ur
r

=
u(r)

r
− z

r
w′(r). (3.3)

The component εrθ is zero because of axissymmetry. From (3.2) and (3.3) we obtain a compatibility equation:

εrr −
d

dr

(
rεθθ

)
=

1

2
(w′(r))2. (3.4)

The constitutive equations are in this case:εrrεθθ
εrθ

 =
1

E

 1 −ν 0
−ν 1 0
0 0 1 + ν

σrrσθθ
σrθ

+ βχ

1
1
0

 , (3.5)
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or inversely σrrσθθ
σrθ

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1− ν

εrrεθθ
εrθ

− Eβχ

1− 2ν

1
1
0

 . (3.6)

The in-plane force balance in the radial direction yields the equilibrium equation

1

r

(
d

dr

(
rσrr

)
− σθθ

)
=
dσrr
dr

+
σrr − σθθ

r
= 0. (3.7)

We trivially comply by this equation by using a stress function ψ(r):

σrr =
ψ(r)

r
, σθθ = ψ′(r). (3.8)

We derive the in-plane large deflection equation in terms of this stress function from the compatibility
equation (3.4), using (3.5):

εrr −
d

dr

(
rεθθ

)
=

1

E

(
σrr − νσθθ + Eβχ− d

dr

(
r
(
σθθ − νσrr + Eβχ

)))
, (3.9)

leading to

ψ′′(r) +
ψ′(r)

r
− ψ(r)

r2
+ Eβ

dχ

dr
= −E

2r
(w′(r))2. (3.10)

For the out-of-plane part we start with the result of Section 2.3, equation (2.45), without external forces:

tij,j + T 0
jkui,jk = 0. (3.11)

Neglecting higher-order terms, we find for i = r and i = z two equilibrium equations:

∂σrr
∂r

+
∂σrz
∂z

+
σrr − σθθ

r
= 0, (3.12)

∂σrz
∂r

+
1

r
σzr +

∂σzz
∂z

+ T 0
rrw
′′(r) + T 0

θθ

w′(r)

r
= 0, (3.13)

which become after integration

∂Mrr

∂r
+

1

r
(Mrr −Mθθ)−Q = 0, (3.14)

∂Q

∂r
+

1

r
Q+N0

rw
′′ +N0

θ

w′

r
= 0, (3.15)

with

Mrr = −D
(
w′′ + ν

w′

r

)
, Mθθ = −D

(
w′

r
+ νw′′

)
, (3.16)

N0
r = 2hT 0

rr = 2h
ψ

r
, N0

θ = 2hT 0
θθ = 2hψ′. (3.17)

Here, D = 2Eh3/(3(1 − ν2)) is known as the flexural rigidity. Eliminating the shear force Q from these
equations we obtain:

D∆2w(r) =
2h

r

(
ψ(r)w′′(r) + ψ′(r)w′(r)

)
, (3.18)

with

∆ =
1

r

d

dr

(
r
d

dr

)
. (3.19)
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3.2 Analytical solution method

3.2.1 Pre-buckling state

We consider a circular plate with radius R, of which an inner circle with radius a, located at the center, is
uniformly moisturized. First we solve for ψ in the pre-buckling situation. We start using (3.10) with w = 0:

ψ′′(r) +
ψ′(r)

r
− ψ(r)

r2
= 0, (3.20)

with the boundary conditions:

• ψ(r) <∞, especially in the center of the plate.

• ur and σrr are continuous at the edge of the inner circle, r = a.

• σrr = 0, at r = R.

The general solution to (3.20) is

ψ(r) =


c1r +

c2
r
, 0 < r < a,

c̃1r +
c̃2
r
, a < r < R.

(3.21)

In the inner circle the first boundary condition puts a restriction on ψ(r), leading to c2 = 0. In the outer we
apply the third boundary condition to find:

σrr(R) =
ψ(R)

R
= c̃1 +

c̃2
R2

= 0, (3.22)

leading to c̃2 = −c̃1R2 and

ψ(r) =


c1r, 0 < r < a,

c̃1

(
r − R2

r

)
, a < r < R.

(3.23)

We equate c1 and c̃1 using the condition that σrr is continuous across r = a:

σrr(a) =
ψ(a)

a
= c1 = c̃1

(
1− R2

a2

)
. (3.24)

We substitute this representation of c1 into (3.23):

ψ(r) =


c̃1

(
1− R2

a2

)
r, 0 < r < a,

c̃1

(
r − R2

r

)
, a < r < R.

(3.25)

We determine ur in both areas. In 0 < r < a we find, using (3.5) and (3.2)

σrr =
ψ(r)

r
= c̃1

(
1− R2

a2

)
, σθθ = ψ′(r) = c̃1

(
1− R2

a2

)
, (3.26)

εrr =
1

E
(σrr − νσθθ) + βχ =

c̃1
E

(1− ν)

(
1− R2

a2

)
+ βχ, (3.27)

ur =

(
c̃1
E

(1− ν)

(
1− R2

a2

)
+ βχ

)
r. (3.28)
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On the other hand, in a < r < R we obtain, again using (3.5) and (3.2),

σrr =
ψ(r)

r
= c̃1

(
1− R2

r2

)
, σθθ = ψ′(r) = c̃1

(
1 +

R2

r2

)
, (3.29)

εrr =
1

E
(σrr − νσθθ) =

c̃1
E

(
1− R2

r2
− ν − νR

2

r2

)
, (3.30)

ur =
c̃1
E

(1− ν)r + (1 + ν)
c̃1R

2

E

1

r
. (3.31)

At r = a these two representations for the displacement coincide, yielding

ur =

(
c̃1
E

(1− ν)

(
1− R2

a2

)
+ βχ

)
a =

c̃1
E

(1− ν)a+ (1 + ν)
c̃1R

2

E

1

a
, (3.32)

leading to

c̃1 =
a2Eβχ

2R2
, (3.33)

and so

ψ(r) =


(a2 −R2)Eβχ

2R2
r, 0 < r < a,

a2Eβχ

2R2

(
r − R2

r

)
, a < r < R.

(3.34)

3.2.2 Determination of the buckling threshold

Next we consider (3.18) with the stress function we just obtained:

D∆2w(r) =
2h

r

(
ψ(r)w′′(r) + ψ′(r)w′(r)

)
, (3.35)

to determine the minimal value of χ for which a non-zero solution for w exists. We rewrite this expression
to

D

((
d

dr

(
r
d

dr

))2

w(r)

)
= Dr

(
d2

dr2
+

1

r

d

dr

)(
d2

dr2
+

1

r

d

dr

)
w(r) = 2h

( d
dr

(ψ(r)w′(r))
)
, (3.36)

introduce W (r) := w′(r) and integrate to obtain

W ′′(r) +
W ′(r)

r
− W (r)

r2
=

2h

D

ψ(r)

r
W (r). (3.37)

First, for 0 < r < a, we have

W ′′1 (r) +
W ′1(r)

r
− W1(r)

r2
+
h

D

(R2 − a2)Eβχ

R2
W1(r) = 0. (3.38)

We introduce

A2 :=
h

D
(R2 − a2)Eβχ/R2. (3.39)

It is important to note that A is real-valued. We recognize Bessel’s equation:

W ′′1 (r) +
W ′1(r)

r
− W1(r)

r2
+A2W1(r) = 0. (3.40)
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The solutions are superpositions of Bessel functions, see [10], Chapter 9:

W1(r) = C1J1(Ar) + C̃1Y1(Ar). (3.41)

Since W must be finite at the center of the circle, we find C̃1 = 0.

For a < r < R we have:

W ′′2 (r) +
W ′2(r)

r
+

(
B2 − C2

r2

)
W2(r) = 0, (3.42)

with

B2 := −ha
2Eβχ

DR2
, C2 := 1− ha2Eβχ

D
. (3.43)

To this the general solution is

W2 = C2JC(Br) + C3YC(Br). (3.44)

This solution is also valid for complex values for B and C. The solution to (3.37) is now given by:

W (r) =

{
W1(r), 0 ≤ r < a

W2(r), a < r < R
=

{
C1J1(Ar), 0 ≤ r < a,

C2JC(Br) + C3YC(Br) a < r < R.
(3.45)

with the boundary conditions:

• W1(a) = W2(a).

• Mrr(W1(a)) = −D
(
W ′1(a) + νW1(a)

a

)
= −D

(
W ′2(a) + νW2(a)

a

)
= Mrr(W2(a)),

leading to W ′1(a) = W ′2(a).

• Mrr(R) = −D
(
W ′2(R) + νW2(R)

R

)
= 0,

leading to W ′2(R) + νW2(R)
R = 0.

These conditions result in a homogeneous system of equations for the coefficient vector C = {C1, C2, C3} :

CC = 0, (3.46)

with

C =


J1(Aa) −JC(Ba) −YC(Ba)

A
2

(
J0(Aa)− J2(Aa)

)
−B2

(
JC−1(Ba)− JC+1(Ba)

)
−B2

(
YC−1(Ba)− YC+1(Ba)

)
0 B

2

(
JC−1(BR)− JC+1(BR)

)
+ ν

RJC(BR) B
2

(
YC−1(BR)− YC+1(BR)

)
+ ν

RYC(BR)

 .

This system has a nontrivial solution if and only if the determinant of the matrix is zero. We are interested
in the smallest value for χ for which a nontrivial solution exists, this smallest eigenvalue is the moisture
content at which buckling occurs, which is what we are looking for. We solve this system using Wolfram
Mathematica [16], the results are discussed in Chapter 6.
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Chapter 4

Analytical solution for rectangular
plates

In this chapter we consider as a reference problem an orthotropic rectangular plate that is partially wetted.
Firstly, the in-plane stress function of a plate which is exposed to a moisture content distribution is found.
Next, the Rayleigh-Ritz method described at the end of Chapter 2 is applied to approximate the buckling
threshold.

4.1 Solution for the stress function

We consider a rectangular plate with length a and width b, thickness 2h. We introduce the coordinate system
(ξ, η, z) = (x/a, y/b, z) such that the plate occupies the space G = {ξ, η, z| 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1,−h ≤ z ≤ h}.
A region G2 is kept at its initial moisture content, while the remainder of the plate, G1, is exposed to a uniform
rise in moisture content χ. We define t(ξ, η) = I(ξ,η)∈G1 , the identity function representing the wet region.
We introduce the following dimensionless numbers:

E :=
(Ex
Ey

)1/4
, γ :=

√
Ex

2Gxy
− νxy, β :=

βy
βx
. (4.1)

We determine the stress function in both parts of the plate in the pre-buckling situation, using the von
Kármán equations with w = 0:

E4

(
b

a

)2
∂4ϕ

∂ξ4
+ 2γ2

∂4ϕ

∂ξ2∂η2
+
(a
b

)2 ∂4ϕ
∂η4

= −Exabβxχ
(
a

b

∂2t

∂ξ2
+
b

a
β
∂2t

∂η2

)
. (4.2)

We note that the derivatives of t are infinite at the discontinuities, but since we will use the variational
formulation of (4.2) in the following, we will obtain the relevant terms through partial integration.

For ϕ we choose the following form:

ϕ(ξ, η) =

M∑
m=1

N∑
n=1

Amnfm(ξ)fn(η), (4.3)

with

fi(x) = cosh(λix)− cos(λix)− cosh(λi)− cos(λi)

sinh(λi)− sin(λi)

(
sinh(λix)− sin(λix)

)
. (4.4)
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These are the modes for a beam clamped at both edges [12]. For odd-numbered i these functions are
symmetric around x = 1/2, for even values of i they are antisymmetric. The functions satisfy fi(0) =
fi(1) = f ′i(0) = 0, while f ′i(1) leads to the characteristic equation:

sinh(λi) + sin(λi)−
cosh(λi)− cos(λi)

sinh(λi)− sin(λi)
(cosh(λi)− cos(λi)) = 0. (4.5)

Using these functions the boundary conditions for the stress are automatically satisfied:

ξ = 0, a, fi(0) = fi(1) = 0, ⇒ σxx =
∂2ϕ

∂y2
= 0 (4.6)

f ′i(0) = f ′i(1) = 0 ⇒ σxy =
∂2ϕ

∂x∂y
= 0, (4.7)

and analogously for η = 0, 1, where σxy = σyy = 0.
To avoid numerical problems for larger values of i, we rewrite (4.4) to

fi(x) = e−λix − cos(λix)− δi sinh(λix) + σi sin(λix), (4.8)

with

δi = 2
e−2λi + (sin(λi)− cos(λi))e

−λi

1− e−2λi − 2e−λi sin(λi)
, σi =

cosh(λi)− cos(λi)

sinh(λi)− sin(λi)
. (4.9)

To find the values of (Amn) we use a set of linear equations obtained by multiplying (4.2) with fr(ξ)fs(η),
for r = 1, 2, . . . , s = 1, 2, . . . and integrate over the surface of the plate. Keeping in mind the orthogonality
of (fi) this process yields:

[C] {Amn} = −Exabβxχ{RHS}. (4.10)

Here, C is of order (MN ×MN). Its elements are given by

Cmn,mn = 2γ2
∫ 1

0

f ′′m(ξ)fm(ξ)dξ

∫ 1

0

f ′′n (η)fn(η)dη (4.11)

+ λ4mE
4

(
b

a

)2 ∫ 1

0

f2m(ξ)dξ

∫ 1

0

f2n(η)dη + λ4n

(a
b

)2 ∫ 1

0

f2m(ξ)dξ

∫ 1

0

f2n(η)dη (4.12)

= 2γ2
∫ 1

0

(f ′m(ξ))
2

dξ

∫ 1

0

(f ′n(η))
2

dη + λ4mE
4

(
b

a

)2

+ λ4n

(a
b

)2
. (4.13)

for diagonal elements. The last expression is obtained by partial integration and by considering that∫ 1

0

f2k (x)dx = 1,∀k. The elements of C are given by

Crs,mn = 2γ2
∫ 1

0

f ′r(ξ)f
′
m(ξ)dξ

∫ 1

0

f ′s(η)f ′n(η)dη. (4.14)

for off-diagonal terms. The (mn)th element of the right-hand side is given by:

−Exabβxχ
∫ 1

0

∫ 1

0

(
b

a
f ′′m(ξ)fn(η) + β

a

b
fm(ξ)f ′′n (η)

)
t(ξ, η)dξdη. (4.15)

Upon solving (4.10) we obtain {Amn} and, using (4.3), ϕ(ξ, η).
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4.2 Application of the Rayleigh-Ritz method

Next we apply the variational formulation from Section 2.6 to the second Von Kármán equation to obtain
an approximation of the buckling threshold. For w we choose the representation (compare with (2.91), but
notice that we choose the same functions for gm(ξ) and hn(η) here)

w(ξ, η) =

I∑
i=1

J∑
j=1

Wijgi(ξ)gj(η). (4.16)

In the cases considered in the following, we will assume a doubly symmetric moisture distribution, therefore
we choose (gk(ξ)) as symmetric about the center at ξ, η = 1/2. Furthermore, the functions need to be
linearly independent. The options gk(ξ) = cos(k/2π(ξ− 1

2 )) and gk(ξ) = (ξ− 1
2 )2k are used in the following.

The out-of-plane part of the strain energy is given by (2.89) as:

U =
h3

3(1− νxyνyx)ab

∫ 1

0

∫ 1

0

(
Ex

(
b

a

)2(
∂2w

∂ξ2

)2

+ 2Exνyx
∂2w

∂ξ2
∂2w

∂η2

+ Ey

(a
b

)2(∂2w
∂η2

)2

+ 2Gxy(1− νxyνyx)

(
∂2w

∂ξ∂η

)2
)

dξdη.

We use (4.16) and differentiate with respect to Wmn; as in (2.92) this yields, with (x, y) replaced with (ξ, η),

∂U

∂Wmn
=

2h3

3(1− νxyνyx)ab

I∑
i=1

J∑
j=1

Wij

∫ 1

0

∫ 1

0

(
Ex

(
b

a

)2

g′′m(ξ)g′′i (ξ)gn(η)gj(η) + Exνyx

(
g′′m(ξ)gi(ξ)gn(η)g′′j (η) + gm(ξ)g′′i (ξ)g′′n(η)gj(η)

)
+ Ey

(a
b

)2
gm(ξ)gi(ξ)g

′′
n(η)g′′j (η) + 2Gxy(1− νxyνyx)g′m(ξ)g′i(ξ)g

′
n(η)g′j(η)

)
dξdη.

The work done by in-plane stresses is, according to (2.90), here equal to:

Eh = h

∫ 1

0

∫ 1

0

(
b

a

∂2ϕ

∂η2

(
∂w

∂ξ

)2

+
a

b

∂2ϕ

∂ξ2

(
∂w

∂η

)2

− 2
∂2ϕ

∂ξ∂η

∂w

∂ξ

∂w

∂η

)
dξdη. (4.17)

Using (4.16) and differentiating with respect to Wkl we find:

∂Uσ
∂Wkl

= 2h
I∑
i=1

J∑
j=1

Wij

∫ 1

0

∫ 1

0

(
b

a
g′i(ξ)g

′
k(ξ)gj(η)gl(η)

∂2ϕ

∂η2
+
a

b
gi(ξ)gk(ξ)g′j(η)g′l(η)

∂2ϕ

∂ξ2

−
(
g′i(ξ)gk(ξ)gj(η)g′l(η) + gi(ξ)g

′
k(ξ)g′j(η)gl(η)

) ∂2ϕ
∂ξ∂η

)
dξdη.

Using (4.3) we rewrite this to

∂UT
∂Wkl

= −2hExβxχ

I∑
i=1

J∑
j=1

M∑
m=1

N∑
n=1

WijAmn (I1 − I2 − I3 + I4) ,
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with

I1 =

∫ 1

0

∫ 1

0

(
fm(ξ)g′i(ξ)g

′
k(ξ)f ′′n (η)gj(η)gl(η)

)
dξdη,

I2 =

∫ 1

0

∫ 1

0

(
f ′m(ξ)g′i(ξ)gk(ξ)f ′n(η)gj(η)g′l(η)

)
dξdη,

I3 =

∫ 1

0

∫ 1

0

(
f ′m(ξ)gi(ξ)g

′
k(ξ)f ′n(η)g′j(η)gl(η)

)
dξdη,

I4 =

∫ 1

0

∫ 1

0

(
f ′′m(ξ)gi(ξ)gk(ξ)fn(η)g′j(η)g′l(η)

)
dξdη.

We solve the eigensystem [
∂U

∂Wkl
− µ̃ ∂UT

∂Wkl

]
{Wij} = 0, (4.18)

with

µ̃ = Exβxχ0, (4.19)

to find µ̃ and thereby the buckling threshold χ0. The results of this procedure will be discussed in Chapter 6.
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Chapter 5

Numerical approach

Parallel to the analytical solution approach we will also consider a simulation. A simulation can be more
easily extended to better reflect reality in ways that are hard to analyze with von Kármán theory. The
simulation will be compared with the analytical model in the next chapter.

The simulation is carried out using Marc Mentat [14]. This is a commercially available finite element
software package, especially equipped to deal with nonlinear problems. Marc Mentat receives input from a
text file, referred to as a procedure, containing all information necessary to set up the simulation, such as
nodal coordinates and numerical preferences. This file is generated using MATLAB [15] since this makes
it easier to change parameters like the number of elements and still keep the file valid. The setup of the
simulation roughly consists of the following steps:

• Defining a grid.

• Entering material properties.

• Applying initial conditions and boundary conditions.

• Setting numerical preferences.

Each of the steps will be discussed in more detail.
The grid is defined by creating a circle or a rectangle for the problems considered in Chapter 3 and 4,

respectively, and subdividing it uniformly. The rectangular plate is subdivided into rectangles by partitioning
it uniformly. For the circle polar coordinates are used. The radius and the angle are subdivided and edges
of elements are linearized. This means that near the center triangular elements are created. Caution should
be taken when handling these. We will look at this in more detail when discussing the boundary conditions.
Away from the center trapezoidally shaped elements will be created. This means that the plate is not exactly
circular. So to represent the shape of the plate and the wetted circular region the angle has to be subdivided
into many parts. In the wetted region a finer grid will be used to better capture the stress distribution.

Like the analytical model, the simulation is two-dimensional. This is achieved by use of using shell
elements. The thickness is a design variable for the elements. Element number 75 [18] is used, which is
described as being a bilinear thick-shell element. The thick-shell property of this element signifies that it
is based on Von Kármán theory, which makes it suitable for this simulation. Marc Mentat also provides a
quadratic thick-shell element, but it is computationally more expensive and tests have shown that it does
not provide results differing from those obtained using the bilinear element. The shell element provides an
option to set a number of integration points in the thickness direction. The default option for this design
variable is 11. Tests have shown that varying this odd-numbered parameter between 1 and 21 does not
impact the results. This is to be expected since we do not vary any parameters in the thickness direction.
If, for example, a moisture distribution which varies in the thickness direction is used, this design variable
will probably come into play.
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Figure 5.1: The grid used for the simulation, with 30
subdivisions in the radial direction and 50 in the tan-
gential division. Each of the elements in the wetted
central circle are subdivided into 5 elements.

Next, we define the material as elastic and en-
ter the parameters appearing in Hooke’s law (2.21):
Young’s moduli, Poisson ratios, shear moduli and
coefficients of hygroexpansivity. Also, the density
of the material needs to be given. This parameter
does not appear in the von Kármán model described
before, since we consider a static problem, but it is
relevant for the simulation when forces are applied
to the plate.

The boundary conditions at the edges of the
plate are not explicitly imposed. By not imposing
boundary conditions, the free edge boundary con-
ditions (2.64), (2.65) are satisfied. This is reflected
in the simulation results, as we will discuss in the
next chapter. We do need to impose conditions to
prevent rigid-body movement. For the circular plate
described in Chapter 3 we fix the center. However,
if we fix only the central node we encounter numer-
ical errors. This is probably due to the triangular
elements near the center or due to singularities. To
resolve this issue we fix the central node and the
nodes adjacent to it. The three displacements and
the three rotations are set at 0 for these nodes dur-
ing the entire simulation. For the rectangular plate
we also fix the node at the center and the nodes
adjacent to it.

Since w = 0 remains a solution to the Von Kármán equations, even after the buckling threshold has been
reached, running the simulation as it is would not result in the buckling of the plate. To induce displacement
in the z-direction we need to apply some sort of imperfection, to push the plate out of its initial position
once the moisture content is high enough. This can be done in multiple ways:

• Applying a small imperfection force to the plate at the start of the simulation.

• Imposing a small difference in moisture content between the lower and upper side of the plate.

• Randomizing the z-coordinates of the initial position of the nodes to vary slightly from the reference
position.

Because of good initial results, the first of the options was chosen for the circular problem. The simulation
results have not given a reason to change this since. Care must be taken where to apply the force and what
magnitude it should have. The results of the simulation must be independent of the exact magnitude of the
forces applied. In the case of the circle we need to preserve the axissymmetry, so we apply the same force to
all nodes outside of the wetted region. This way no net moment is imposed. The magnitude of the force has
to be determined by trial and error and depends heavily on the parameter values. For the rectangular plate
the randomization of the initial position provides better results. Tries with an imperfection proved it be
impractical since the range in which the magnitude of the forces must fall in is small. This means that many
simulations have to be executed to find a good magnitude by trial and error. Applying an imperfection which
is too small will not result in buckling, however too large an imperfection will result in a lengthy calculation
causing divergence, or a severe deformation of the plate before the buckling threshold is reached, distorting
the results.

There is no option in Marc Mentat to simulate hygroexpansion of the plate. Therefore we will raise the
temperature in the simulation. As discussed in Section 2.2, this is modeled in the same way. According
to the user manual [17] the thermo-mechanical analysis Marc Mentat performs uses the same formulation
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we do. We just have to set the coefficient of thermal expansion used in the simulation to the value of the
hygro-expansivity coefficient β. For consistency, we will keep referring to wetting of paper in the following
instead of heating.

During the simulation the moisture content will be raised in steps, which in Marc jargon is referred
to as virtual time steps. This does not mean that we solve a dynamic problem, no inertia or vibration
characteristics are taken into account. It does include damping characteristics to improve convergence of
the nonlinear calculations. It is not clear from the documentation how exactly this is implemented. At
every time step the system is solved, using the solution of the previous steps. This step-wise calculation is
necessary to capture the instance of buckling, without it the simulation will skip over it and keep the plate
in its initial position. The step size should be chosen small enough not to skip over the buckling threshold
and to accurately determine it. This is computationally expensive however. Marc uses an algorithm that
halves the step size when the solution method does not converge in a step. Usually this causes the step to
be reduced near the onset of buckling, since the simulation exhibits highly nonlinear behavior there.

Because we are dealing with a nonlinear situation, the numerical method should be chosen accordingly.
Here, the full Newton-Raphson method is used. For the Newton-Raphson iteration, Marc allows the option
to define a convergence criterion. The options for this are residual force, displacement and strain energy.
Residual force refers to the virtual force the simulation has to add to the system to keep the plate in
equilibrium. The standard option is a relative residual force tolerance of 0.1, which is grossly insufficient
and should only be used to test a simulation setup. For the instances that the simulation has been used for
this report, this is lowered to 0.0001, which appears to give good results, and keeps the computation time
at an acceptable level.

To get results for successive values of the moisture content, time integration with a direct integration
method is used, using the single step Houbolt operator. It has strong damping characteristics, making it
especially suitable for highly nonlinear calculations such as this one. In addition, it is unconditionally stable
and second order accurate. This operator is based on a cubic polynomial fit through three previous points
in time (moisture content) and is given by [17], chapter 5:

(
2

∆t2
M +

11

6∆t
C + K

)
∆u = Fn+1 −Rn +

1

∆t2

(
3un − 4un−1 + un−2

)
M +

1

∆t

(
7

6
un −

3

2
un−1 +

1

3
un−2

)
C. (5.1)

With M,C and K the mass, damping and stiffness matrix respectively, F the external forces, R the internal
forces, and u the displacements. Superscript n’s denote subsequent time (moisture content) steps and ∆T
the time (moisture content) step size. Since we perform a static analysis, the mass matrix M is taken out
of the formulation. Marc/Mentat does not provide documentation on how these matrices are formed and
there is no option in the program to show them. This is probably information MSC. software chooses not
to publish because of commercial considerations. The algorithm used by Marc has a way of dealing with
subsequent time (moisture content) steps that vary in size, but the way this is done is not published.

Both the Newton-Raphson method and the single step Houbolt operator are recommended by the Marc
user manual [17], Chapter 11, for nonlinear problems and are widely used. Initial testing with other numerical
methods and the behavior of the simulations done to obtain the results displayed in this report give no
indication that the other methods provided in Marc/Mentat will provide better results.

The aspects mentioned above are just a small fraction of the possible options Marc/Mentat provides. For
most of these, the option chosen is either the default option, or the choice recommended by the user manual
for these kind of simulations.
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Chapter 6

Results and discussion

The results of the simulation and the analytical solution for the reference problem of the circular plate
problem from Chapter 3 will be discussed here. We will compare the stresses and displacements in the
pre-buckling moisture content range. Next we will determine the buckling threshold for values close to the
values paper would realistically have, to obtain a comparison between the simulation and the analytical
method. Also we will research the influence of the parameters on the value of the buckling threshold.

Next we will consider the rectangular plate. We will compare the stresses and displacements in the pre-
buckling moisture content range. Then we will compare the buckling threshold obtained through simulation
with the value obtained by means of the Rayleigh-Ritz method for four plates with various parameter values.

6.1 Circular plate

To compare various results from the two approaches for the circular plate, we will initially use the following
values for the relevant parameters:

• R = 1m

• a = 0.1m

• E = 5 · 109Pa

• ν = 0.3

• h = 0.01m (the thickness of the plate is 2h = 0.02m)

• β = 0.001

• χ = 1%

For these simulations an initial 1500 elements grid will be used, the radial and tangential curves are subdi-
vided into 30 and 50 curves respectively. Then, each element in the wetted part is subdivided into 3 elements
in the radial direction, increasing the total number of elements to 1800. The initial time (moisture content)
step size is taken to be 1/200th of the simulation length. As mentioned in the previous chapter, the algorithm
MARC uses varies this time step size during the simulation. For these parameter values, the Airy stress
function, and the two stress components, given by (3.8) and (3.34) are shown in Figure 6.1. We note that
the radial stress is indeed continuous and it vanishes at the edge at r = 1, as demanded by the boundary
conditions. For comparison, the radial and tangential stresses resulting from the simulation for the same
parameter values are given in Figure 6.2. Apart from the difference near the center of the plate at r = 0,
these results are similar to those obtained analytically. The discrepancy is likely caused by the boundary
conditions imposed at the center, needed to prevent rigid body movements in the simulation.
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(a) Radial stress, σrr(r). (b) Tangential stress, σθθ(r).

Figure 6.1: The stress components obtained obtained from the analytical method, for the parameter values
given in the text.

(a) Radial stress, σrr(r). (b) Tangential stress, σθθ(r).

Figure 6.2: The stress components as given by the simulation, for the same parameter values.

The displacement in the radial direction is given by (3.32). The comparison between the analytical
solution and the simulation results for this quantity is shown in Figure 6.3. A good agreement is shown, also
the boundary condition of continuity over r = a is satisfied.
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(a) Radial displacement, ur(r), analytical solution. (b) Radial displacement, ur(r), simulation.

Figure 6.3: The displacement in radial direction, results from the analytical solution and the simulation.

6.1.1 Parameters determining the buckling threshold

Figure 6.4: Simulation results for the vertical displace-
ment of a node along the edge. On the x-axis we see
the virtual time. The parameter values given in the
previous section, with the exception of the (scaled)
moisture content χ, have been used.

Now that we have briefly verified that the simula-
tion provides results similar to the analytical results
for the circular plate reference problem in the pre-
buckling situation, we move on to the onset of buck-
ling. As an illustrative example, the vertical dis-
placement of a node at the edge of the plate result-
ing from the simulation is shown in Figure 6.4. This
is done with E = 5 ·109, ν = 0.3, R = 1, a = 0.1. We
clearly see that the buckling threshold is reached
at approximately 0.58 − 0.59 times the simulation
length. The drastic change in z-displacement makes
this figure suitable to manually determine the buck-
ling threshold. We introduce the symbol χ0 to indi-
cate the moisture content at which buckling occurs.

In Figure 6.5 we show the shape the plate at-
tains after buckling, obtained through simulation.
As expected, it maintains its axissymmetry in the
simulation. The shape of the plate immediately af-
ter buckling can be determined from the analytical solution, however the magnitude of the deflection cannot
because of the nonlinear character of the equations. This allows us to compare the FEM solution to the
analytical work on the shape of the plate immediately after buckling. A good agreement is shown in Figure
6.6. Varying the relevant parameters individually from the previously used values should give us a first
glance at the influence of each of them on the buckling threshold. The influence of β is quite obvious because
of its definition; the critical value of the moisture content χ0 is inversely proportional to this parameter.
Looking at the structure of the system (3.46), we see that χ0 only depends on h, β and E through A,B
and C. Substituting the flexural rigidity D = 2Eh3/(3(1− ν2)) into the expressions for A,B,C, (3.39) and
(3.43) we find:
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Figure 6.5: The shape of the circular plate after buckling, simulation result.

A2 =
R2 − a2

R2

3(1− ν2)

2h2
βχ,

B2 =
a2

R2

3(1− ν2)

2h2
βχ, (6.1)

C2 = 1− a2 3(1− ν2)

2h2
βχ.

We note that these expressions are independent of E and conclude that the plate’s Young’s modulus has no
influence on the buckling threshold χ0. Physically this means that the out-of-plane strain energy and the
hygrothermal energy depend on E in the same way: linearly.

(a) Vertical displacement of the plate, analytical solution. (b) Vertical displacement of the plate, simulation.

Figure 6.6: Comparison of the two methods in determining the shape of the plate immediately after buckling.
On the horizontal axis r is varied between the center and the edge of plate. We should disregard the values
on the vertical axis, since the analytical solution does not provide the magnitude of the displacement.

Also we see a quadratic relationship between h and χ0 in all three of the equations. Finally, we note that,
since the plate’s Poisson ratio ν has a value between 0.2 and 0.4 for paper, a change in it will not change A,B
and C by much, since it appears as (1− ν2) in the equations. The effect of varying the relevant parameters
from the values given in the previous section is shown in Figure 6.7. From physical considerations, we would
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expect that a plate that is not wetted (a = 0) or completely wetted (a = R) will not buckle however high
we set the moisture content. These instances appear in the graphs as asymptotes. We see that the buckling
threshold converges to a certain limit as R → ∞. This indicates that for large values of R the effects of
increasing R/a and of increasing R/h cancel each other out.

(a) h, half of the thickness of the plate is varied
from 0.001 to 0.05, a quadratic dependence between
h and χ0 is observed.

(b) a, the radius of the wetted inner circle is varied
from 0.05 to 0.99. Two asymptotes, at a = 0 and
a = 1(= R) are observed, as we expect from physical
considerations.

(c) R, the radius of the plate is varied between 0.2
and 10. An asymptote at R = 0.1(= a) is observed.
The buckling threshold χ0 decreases as R grows and
converges to a certain limit.

(d) ν, Poisson’s ratio is varied between 0 and 0.5,
the buckling threshold χ0 changes only slightly.

Figure 6.7: The dependence of the buckling threshold χ0, shown on the vertical axis, for four parameters.
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6.1.2 Comparison of the simulation and the analysis

We will compare the results of the simulation to the analytical determination of the buckling threshold.
We will explore the boundaries of which parameter values the simulation and the analytical method are
capable of handling, staying in accordance with one another. Figure 6.8 shows the dependence on h for both
methods. We see a good agreement for values of h ≤ 0.02.

Figure 6.8: The buckling threshold is shown in depen-
dence of half the thickness, h, resulting from the sim-
ulation (black dots) and the analysis (blue line). The
remaining parameter values are given at the beginning
of this chapter.

The discrepancy for larger values of h can be ex-
plained by the limited validity of the Von Kármán
model: the radius to thickness ratio becomes smaller
than 25, while we assumed that the thickness is neg-
ligible compared to the in-plane dimensions. Al-
though most of the literature remains vague on
the limits of the thickness in order for the model
to remain valid, in [8] it is suggested that ratios
above 10 should provide good results. Since the
details of the numerical method used in the sim-
ulation are not publicly available, we do not know
whether it compensates for the limitations of the von
Kármán model for thicknesses at the edge of the de-
sired range or not. Regardless, we should note that
the simulation and analytical results agree only for
small values of h; for these specific parameter values
h < 0.02. Drawing a parallel to the case of an A4
paper sheet, with a width to thickness ratio of about
100− 200, this should not pose a problem.

When the wetted part of the plate becomes ei-
ther large or small, the buckling threshold χ0 be-
comes high. Also it could be difficult to capture the behavior of the small region, the dry and the wetted
part respectively, in the simulation. For small values of a extra attention is paid to this, since the boundary
conditions to prevent rigid body movements are imposed at the center. The comparison between simulation
and analysis for various values of a is shown in Figure 6.9.

(a) The buckling threshold χ0 is shown for low values
of a, resulting from the simulation (black dots) and the
analysis (blue line).

(b) The buckling threshold χ0 is shown for high val-
ues of a, resulting from the simulation (black dots)
and the analysis (blue line).

Figure 6.9: Comparison of the two methods for determining the buckling threshold χ0 for both low values
and high values of a. The remaining parameter values are given at the beginning of this chapter.

The simulation results agree with the analytical ones, except for low values of a. Considering these results
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with regard to the paper sheet, caution should be taken when simulating a situation in which the wetted
area is small compared to the sheet dimensions. Then again, in this instance, probably this reduces to a
pre-buckling model in which the Kirchhoff model can be used, which simplifies matters.

The dependence of the buckling threshold on the radius of the plate R is shown in Figure 6.10. An
excellent agreement is shown, even for small values of R down to twice the moistened part of the plate.

Figure 6.10: The buckling threshold χ0 is shown in
dependence of the radius of the plate, R, resulting from
the simulation (black) and the analysis (blue). The
remaining parameter values are given at the beginning
of this chapter.

Now that we have explored the behavior of the
buckling threshold near the limits of the admissible
parameters values, we will consider the range of pa-
rameter values corresponding to wetting paper. The
parameter values considered are:

• ν = 0.1, 0.4.

• R = 0.1m, 1m.

• R/a = 2, 20.

• R/h = 500, 5000.

The material properties of the paper sheet in most
imaginable paper wetting situations will be inside
this range. We compare the simulation to the anal-
ysis for these 16 instances. The results are shown in
Table 6.1. It should be noted here that the results for
R/h = 5000 were hard to obtain, because the mag-
nitude of the forces applied to obtain imperfections
must be limited to a small interval. Nevertheless,
the results from the simulation align well with the
analytically obtained values of the buckling threshold. We conclude based on the results for this reference

ν R R/h R/a χ0, Marc/Mentat χ0, Analysis

0.1

0.1
500

2 0.036 0.036
20 1.5 1.5

5000
2 0.0021 0.0021
20 0.015 0.015

1
500

2 0.036 0.036
20 1.5 1.5

5000
2 0.00036 0.00036
20 0.016 0.015

0.4

0.1
500

2 0.048 0.048
20 1.8 1.8

5000
2 0.00048 0.00048
20 0.019 0.018

1
500

2 0.048 0.048
20 1.9 1.8

5000
2 0.00048 0.00048
20 0.019 0.018

Table 6.1: The comparison between the buckling threshold χ0 obtained from the simulation and from the
analysis is made for various values of the relevant parameters in the range of the problem of a wetted paper
sheet.

problem that the simulation and the analytical method agree well on describing the wetting of a paper sheet
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up to the onset of buckling. However, this reference problem differs from the situation of interest on two
essential features:

• The effect of orthotropy of the sheet is not taken into account.

• The reference problem contains no corners.

To compare the simulation and the analysis when these effects are included we will next consider the rect-
angular plate.

6.2 Rectangular plates

The results of the simulation and the analytical solution for the reference problem of the rectangular plate
problem from Chapter 4 will be discussed here. We will consider four reference plates:

• Plate 1: square 1 × 1m isotropic plate with E = 109Pa, h = 0.0005m and ν = 0.3 exposed to the
moisture profile shown in Figure 6.11a.

• Plate 2: 1 × 1.5m isotropic plate with E = 109Pa, h = 0.0005m and ν = 0.3 exposed to the moisture
profile shown in Figure 6.11b.

• Plate 3: 1 × 1.5m orthotropic plate with 0.0005m, Ex = 8 · 109Pa, Gxy = Ey = 2 · 109Pa, νxy = 0.3,
βy = 5βx exposed to the moisture profile shown in Figure 6.11b.

• Plate 4: 0.2× 0.3m orthotropic plate with otherwise the same parameter values as plate 3 exposed to
the moisture profile shown in Figure 6.11b.

(a) The wetted region (in blue) of the plate 1. The
moisture penetrates up to 1/4 in both directions

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) The wetted region (in blue) of
Plate 2,3 and (scaled) 4. The mois-
ture penetrates up to 1/10th of the
plate.

Figure 6.11: The moisture distributions used for the reference problems.
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(a) Simulation results for σxx (b) Analytical results for σxx

Figure 6.12: Comparison of the stresses of plate 1 found using the simulation and the analysis, with βχ =
10−7.

(a) Simulation results for σyy (b) Analytical results for σyy

Figure 6.13: Comparison of the stresses of plate 1 found using the simulation and the analysis, with βχ =
10−7.

(a) Simulation results for σxy (b) Analytical results for σxy

Figure 6.14: Comparison of the stresses of plate 1 found using the simulation and the analysis, with βχ =
10−7.

The stress profiles of plate 1 obtained by means of the two methods are compared. As we can see in
Figures 6.12, 6.13, 6.14, the stress profiles obtained by means of the analysis are very similar to the results
of the simulation. This similarity has also been observer for the remaining three plates. Next we use the
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implementation of the Rayleigh-Ritz method in Wolfram Mathematica [16] to approximate the buckling
threshold for the plates, and compare the results to the values obtained in the simulation:

The calculations in Mathematica, are done by approximating the clamped beam functions (4.8) with a
Fourier series for efficiency. We also make use of the symmetry in the plates chosen to reduce the calculations
required for numerical integration. A slightly modified version of this file could be used to obtain results for
non-symmetrical situations. As coordinate functions for the deflection we use a Fourier cosine series, or a
polynomial with even powered terms, as discussed in Section 4.2. Both have been tried with various amounts
of terms. It showed that adding terms beyond 10 does not substantially change the results. Keeping the
number of terms limited to 10 results in the Mathematica file calculating the buckling threshold within a
couple of minutes.

The Rayleigh-Ritz method is a good way to quickly obtain an estimate for the buckling threshold. Even a
very crude estimation of the deflected shape will result in a decent approximation of the buckling threshold.
However, precisely because of this, it is less suitable to find the post-buckling shape of the plate. We
will content ourselves with the comparison of the buckling thresholds obtained from the analysis and the
simulation. Table 6.2 shows this for the four plates.

Plate βxχ, Rayleigh-Ritz βxχ, Simulation
1 8.1 · 10−8 7.5 · 10−8

2 6.2 · 10−8 5.6 · 10−8

3 2.8 · 10−8 2.6 · 10−8

4 7.0 · 10−7 6.4 · 10−7

Table 6.2

As we can see the Rayleigh-Ritz method produces higher values than the simulation. This is to be
expected, because with the simple coordinate functions it only gives a crude estimation of the buckling
threshold and because it always overestimates the energy minimum. In all four cases, the buckling threshold
obtained using the Rayleigh-Ritz method is about 10% higher than the value from the simulation. This leads
us to the conclusion that the results from the simulation are consistent with the Rayleigh-Ritz analysis.
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Chapter 7

Conclusions and recommendations

7.1 Summary

The goal of this thesis is to gain insight in the underlying physical process causing deformations of wetted
sheets of paper. Particular emphasis has been put on behavior for stress levels up to and including the
buckling threshold. Two approaches have been applied: theoretical analysis and simulation using FEM
software.

The research topic is a largely unexplored area, since most articles in this direction assume clamped or
simply supported boundary conditions. These boundary conditions were not suitable for the present work,
since in the practical situation at Océ large deflections have been observed at the edges of the sheets. The
freely moveable boundary conditions complicate matters.

A geometrically non-linear elasticity model based on Von Kármán large displacement theory was derived
to describe the behavior of thin plates, and solution methods were applied two reference problems: an
isotropic circular plate, wetted at the center, and a rectangular orthotropic plate moisturized at its edges.

The isotropic circular plate problem has been solved directly, which was possible under the assumption
of axisymmetry. The solution, consisting of the stress distribution, the buckling threshold and the shape
formed immediately after buckling, has been found in terms of Bessel functions. The influence of the relevant
parameters has been described. Young’s modulus E turned out to have no effect on the buckling threshold.
This is explained by the fact that bending and stretching energy both depend linearly on this material
property. Since it was also found that Poisson’s ratio ν has little effect on the buckling threshold, the
conclusion can be drawn it is largely geometrically determined. Three parameters determine the geometry:
the radius R, the thickness 2h and the radius of the wet circle a. The radius to thickness ratio is especially
important, since validity of the Von Kármán model depends on it. As for the case of paper, this probably
poses no problem due to its thin nature. The buckling threshold has been found to depend quadratically
on this ratio: the thicker the plate, the more stress it takes to buckle. The dependence of the buckling
threshold on the ratio of the radii of the plate and the wet area respectively, R/a shows two asymptotes: for
a completely dry and a completely wet plate no buckling will occur. Between these two asymptotes a convex
relation has been found. The reference problem of the rectangular plate has been tackled using variational
methods. The stress distribution has been found and an approximation of the buckling threshold is given.

Using the commercially available finite element software package Marc/Mentat the deformations have
been simulated for the two reference problems. The setup and working of the simulation were explained
as much as possible, given that the details of the inner workings of the simulation are not published in the
user documents. The settings required to obtain a good result have been described. They lead to a robust
simulation running within a couple of minutes. The FEM calculations make use of shell elements and are
based on Von Kármán theory. In the simulations the moisture content of the wetted area is raised in steps
to accurately determine the buckling threshold. To prevent rigid-body movement the center of the plate
is fixed to prevent it from moving or rotating in any direction. To initiate out-of-plane deformations an
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imperfection has been applied. For the circular plate a force in the thickness direction has been applied at
the start of the simulation, whereas the initial z-coordinates of the rectangular plate have been varied prior
to the simulation. Randomizing the z-coordinates of the circular plate would probably yield good results as
well, this has not been tried because an imperfection force yielded good results.

The results from the analytical method and the simulations have been compared. In the pre-buckling
moisture content range the components of displacement and stress show a good agreement, for both the
circular and the rectangular plate. For the circular plate, the results from the two approaches for the
buckling threshold and the post-buckling shape have shown to match well inside a range of parameter values
where realistically paper sheets would fall into.

The pre-buckling stress of rectangular plates wetted at the edges has been determined through variational
analysis and simulation. The results agree well. The buckling threshold obtained using the Rayleigh-Ritz
method was consistently about 10% higher than the one obtained using Marc Mentat for the four plates
under consideration.

Based on the results obtained with regard to the comparison between the simulation and the analysis, we
draw the conclusion that the simulation captures the behavior of the wetted sheet well, up to and including
the onset of buckling. Because of the confidence with which we can say that the simulation has been validated,
we would advice to use this simulation to obtain results for more complicated situations.

7.2 Suggestions for further research

Due to time constraints, a parameter study has not been conducted for the reference problem of the rect-
angular plate as part of this thesis. It is recommended to verify the validity of the simulation for a range
of parameter values, as has been done for the reference problem with the circular plate. Special attention
should be paid to the effect of orthotropy, since this has not been considered yet. From the Von Kármán
equations (2.84), (2.85),

Ex
Gxy

− 2νxy, νyx +
(1− νxyνyx)Gxy

Ex
,

Ex
Ey

, (7.1)

arise as candidates for the parameters quantifying orthotropy. In Von Kármán theory there are four inde-
pendent material constants in an orthotropic medium; Ex, Ey, Gxy and νxy (or νyx. After the scaling with
Ex three remain, as in (7.1).

Also, the simulated behavior of the sheet near the corners should be looked at in detail and compared
with the analytical results.

The results obtained in this thesis are theoretical and remain far from the real-life situation obtained
at Océ. To come closer to reality, a couple of extensions need to be applied to the model. This can be
done using the simulation which has now been validated for moisture content levels up to and including the
buckling threshold. We give a list of suggestions:

• The simulation provides options to add a second body to serve as the foundation on which the sheet
rests. This severely complicates matters however, since contact problems are notoriously difficult in
finite element analysis. A logical step is then to add effects of gravity and friction to the simulation.
Suggestions on how to add a frictionless elastic foundation to the Von Kármán formulation for analytical
purposes can be found in [13], Chapter 4.

• It would be interesting to gain insight into the moisture-induced deformations of stacks of paper.
Applying the theory mentioned in the preceding suggestion to model contact between sheets could
prove helpful in this instance.

• The post-buckling shape for the rectangular plate obtained through simulation, a simple half-wave,
differs from the wavy pattern observed in reality. This could have two causes:
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– The shape formed by the paper is a minimization of the potential energy at stress levels far
beyond the onset of buckling, which causes it to be different from the one right after buckling. At
moisture content levels not too far beyond the buckling threshold these modes can be determined
by considering the other eigenvalues of (4.18).

– Localized buckling occurs due to imperfections in the sheet, causing large deflections at multiple
locations along the sheet edge. Much research has been conducted on plate buckling with initial
imperfections when simply supported boundaries are assumed. See for example [13], where an
initial imperfection has been added to various reference problems.

• A simple moisture distribution has been assumed throughout this thesis: a region of the paper which is
uniformly wetted and a region which remains at its initial moisture content level. To obtain practical
results, a more realistic moisture distribution obtained by means of a diffusion analysis should be
applied. This does make the integral required to determine the stress distribution (4.15) more difficult
to calculate.

• The relevant material properties, Young’s moduli, shear modulus, Poisson’s ratio, depend on the
moisture content of the sheet [3], §7.5. An analysis of the extent to which this affects the moisture-
induced deformations of paper in the conditions encountered at Océ is recommended. Marc/Mentat
allows a user-defined linear temperature(moisture content)-dependence of the material properties to
be included in the simulation.

• A typical sheet of paper consists of 10 layers in the thickness direction[3]. Using composite plate theory,
this can be represented in the Von Kármán model [13] to obtain better results. This theory is also
available in Marc/Mentat by defining a multi-layered shell element. Introducing multiple layers can
be useful to better represent the shear stresses in the sheet and allow for moisture content differences
in the thickness direction. Since the theory allows for differences in material properties amongst the
respective layers, this can be used to account for coatings, layers at the upper and lower side of the
paper with properties vastly different from the remainder of the sheet. Coatings are present at virtually
any type of paper used for printing purposes.

• As discussed in Section 1.2, paper is a very heterogeneous material due to its manufacturing process.
Local variations of height, fibre alignment, density, and Young’s and shear moduli are expected to
heavily influence the resulting deformations. Specifically, during the simulations conducted to write
this thesis, a big influence of height differences on the out-of-plane displacements has been observed
when the randomized z-coordinates of the initial position were varied too much. Much research has
been done on stochastic mechanics. However, an extensive research into the effects of local changes
would be complicated and time-consuming due to the large number of parameters involved.

• In this research the effects due to repeated wetting and drying, hysteresis effects, have been neglected.
Many of the properties of paper depend on its moisture history [3]. Since during the manufactur-
ing process of paper many large changes in moisture content are required, permanent deformations
occur, which affect the deformations the paper exhibits when it is used for printing. A micro-scale
model of these hysteresis effects would help our understanding of the resulting material properties and
imperfections.
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