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Abstract

The production of B� mesons in Z decays has been measured at LEP with the L3 detector. A sample
of Z → bb̄ events was obtained by tagging muons in 1.6 million hadronic Z decays collected in 1991,
1992 and 1993. A signal with a peak value of Eγ = 46. 3 ± 1. 9 (stat) MeV in the B rest frame energy
spectrum was interpreted to come from the decay B� → γ B. The inclusive production ratio of B� mesons
relative to B mesons was determined from a fit to the spectrum to be

NB� / (NB� + NB) = 0. 76 ± 0. 08 ± 0. 06,

where the first error is statistical and the second is systematic.
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Introduction

Observation of the B� meson was first reported by CUSB [1] and CLEO [2] in e+e� collisions at center-of-mass
energies near the ϒ(4S) resonance. Both experiments observed an excess of photons around 46 MeV and interpreted
this as coming from the reaction e+e� → BB�, where B� → γ B. The mass splittings have been determined to be
46. 0 ± 0. 6 MeV [3] for Bd, Bu and 47. 0 ± 2. 6 MeV [1] for Bs. These values agree well with quark model predictions
assuming the B� to be the vector partner of the pseudoscalar B. As of yet, however, no direct measurement of the spin
of the B� has been made.

Hard fragmentation of the b quark in Z decays yields b hadrons with high momenta. Since photons produced
in the decay B� → γ B are boosted to energies up to 800 MeV, it is possible to directly detect the decay photon and
to measure the relative production of B� mesons to B mesons. This is performed at L3 by taking advantage of the
excellent energy and angular resolution of its electromagnetic calorimetry. Note that here and throughout the paper
B� refers to the b-flavored mesons as a mixture of B�

u , B�

d and B�

s ; excited states of b-flavored baryons are expected to
decay via pions or kaons to their ground states [4].

All B� mesons are expected to decay to B mesons; so, a measurement of the production rate of B� mesons in
Z → bb̄ decays yields the ratio NB� / (NB� + NB) for a given b baryon fraction. If the B� is assumed to be the vector
partner of the pseudoscalar B meson, the relative production rate is a measurement of V / (V + P), the fraction of vector
meson production to the sum of vector and pseudoscalar meson production. This ratio may be estimated statistically
from the number of degrees of freedom (NJ = 2J + 1) of the two meson spin states (J = 0, 1) or at the individual
quark level from Heavy Quark Effective Theory [5], assuming that orbital momentum and spin are decoupled. Both
approaches exploit the fact that the b quark is heavy so that the vector and pseudoscalar states are nearly degenerate
and predict V / (V + P) ≈ 0. 75.

There are at least two mechanisms, however, which may modify this prediction: the production of p-wave (B��)
mesons which subsequently decay to both B and B� mesons and a spin-dependent fragmentation force [6] which
influences both the production rate and the spin alignment of the B�. Recent measurements of D� production in
Z → cc̄ decays at LEP have found ND� / (ND� + ND) ≈ 0. 5 [7]. This relatively low rate of D� production is not yet
completely understood. A measurement of the relative production of B� mesons to B mesons in Z → bb̄ decays
provides a data point at higher quark mass.

The L3 Detector

The L3 detector is described in detail in reference 8. Central tracking is performed by a Time Expansion Chamber
(TEC) consisting of two coaxial cylindrical drift chambers with 12 inner and 24 outer sectors [9]. A Z-chamber
surrounding the TEC consists of two coaxial proportional chambers with cathode strip readout. The electromagnetic
calorimeter is composed of bismuth germanate (BGO) crystals. Hadronic energy depositions are measured by a
uranium-proportional wire chamber sampling calorimeter surrounding the BGO. Scintillator timing counters are
located between the electromagnetic and hadronic calorimeters. The muon spectrometer, located outside the hadron
calorimeter, comprises three layers of drift chambers measuring the muon trajectory in both the bending (r � φ) and
non-bending (z) planes. All subdetectors are installed inside a large magnet which provides a uniform field of 0.5 T.

The material preceding the central region of the BGO is less than 10% of a radiation length. In that region the
energy resolution is 5% for photons and electrons of energies around 100 MeV and is better than 2% for energies above
1.5 GeV with a space angle resolution of approximately 3 mrad. Jets reconstructed from clusters in the electromagnetic
and hadronic calorimeters have an angular resolution of approximately 2� and the total energy of hadronic events can
be measured with a resolution of δE / E = 10% [10].
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B�B� Meson Selection

An inclusive selection of B� mesons was performed by identifying the photon emitted in the decay B� → γ B. A
sample of b-enriched events was obtained by tagging muons in semileptonic b hadron decays.1) Photon candidates
were then selected from electromagnetic clusters located in the same hemisphere as the tagged muon jet. The B�

decay photons stand out as a peak above the background in the energy spectrum after a Lorentz transformation to the
B meson rest frame. The B meson decay products were not explicitly reconstructed in this analysis. No distinction
is made therefore between B�

u , B�

d and B�

s since the mass splittings and production and decay kinematics for each of
these excited meson states are approximately the same.

The analysis presented here is based on 1 587 774 hadronic Z decays collected in the years 1991, 1992 and 1993.
These events satisfied both the online trigger and offline hadronic event selection criteria [11] with an efficiency of
better than 99% and negligible contamination.

Muon tracks were reconstructed from segments in at least two of the three r � φ layers and at least one of
the two z layers of the muon spectrometer. Each track was required to point toward the primary vertex in order to
reduce background from hadronic punchthrough and cosmic rays coinciding with genuine hadronic events. The latter
background was reduced to a negligible level by applying scintillator timing cuts.

The b-hadron content of the sample was enhanced by requiring each event to contain at least one muon candidate
with momentum larger than 4 GeV and with momentum transverse to the closest hadronic jet larger than 1.2 GeV.

Each selected muon and its closest jet was tagged as a B meson decay candidate. The momentum of each
candidate was then approximated in the following manner:

• The direction of the B momentum was determined from the vector sum of the muon momentum and the jet
momentum.

• The magnitude of the B momentum was not estimated on an event by event basis, but was fixed to a common
value, p0. This method exploits the hard fragmentation of b quarks, which has been shown [12] to produce a
sharply peaked momentum distribution.

Additional kinematic constraints were applied to the jets to reduce background and to improve the B momentum
estimate: each jet was required to have an energy of at least 15 GeV and to be reconstructed from no more than 18
calorimetric clusters and no more than 10 TEC tracks. A total of 19 494 events satisfied these selection criteria.

The effect of the cuts on the B meson momentum distribution and angular resolution and the b purity of the sample
were estimated by selecting Monte Carlo events in the same manner as data. More than 2.2 million hadronic Z decays
were generated with Jetset 7.3 [13] and passed through the L3 detector simulation program [14]. Masses for the B
and B� mesons in the generator were set to the Particle Data Group [3] world averages.

The b purity of the selected event sample is estimated to be 84.2%, with 9% of these events fragmenting to b
baryons and the rest to B mesons. The angular resolution for the B mesons is approximately 35 mrad. The value
p0 = 37 GeV was used as the approximate B meson momentum for all events. The spread around this value is
estimated to be less than 20%.

Photon candidates were selected from reconstructed clusters located in the central BGO calorimeter (j cos θj <
0. 69) and in the same hemisphere of the event as the B meson. Each cluster was required to have a lateral shower
shape consistent with an electromagnetic energy deposition. The cluster energy was determined from a matrix of nine
crystals with the most energetic crystal being at the center. Each cluster was required to have a total energy of at least
100 MeV.

Background from non-electromagnetic processes was reduced and the energy resolution for photons was improved
by requiring that the central crystal contain at least 50% and not more than 80% of the total energy of the cluster.

1A similar b hadron selection involving the tagging of electrons in semileptonic decays was studied. The electromagnetic cluster produced
by the electron occupies a relatively large region of the BGO close to the jet axis. As a result, these events were found to be less suitable for
the analysis than b decays involving muons.
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Minimum ionizing particles tend to deposit a larger fraction of the energy in the central crystal and hadronic showers
tend to be distributed more evenly over all nine crystals. Charged particle background was further reduced by requiring
that there be no TEC tracks matching within a 60 mrad angle of the cluster at the radius of shower maximum. An
isolation of 100 mrad in opening angle was required between the cluster and the selected muon.

The angle ΦB, illustrated in Figure 1a, was defined as the angle between the selected muon track and the
electromagnetic cluster in the plane perpendicular to the B meson direction. Distributions of data and Monte Carlo
photon candidates in ΦB are shown in Figure 1b. To reduce background from the hadronic side of the B decay, each
cluster was required to satisfy cos ΦB > �0. 7. This cut rejects more than 35% of the background, while maintaining
85% of the signal photons.

The energy of each photon candidate in the approximate B rest frame was determined by performing the Lorentz
transformation: Erest = Elabγ (1 � β cos α). Here, α is the angle between the photon direction and the B direction and

γ and β are defined in terms of the approximate B meson momentum: γ ≡
q

(p2
0 + M2

B) / M2
B and β ≡

p
(γ 2 � 1) / γ 2.

Since MB� �MB � MB, the recoil of the B is negligible and Erest is a good approximation of the mass splitting.
Rest frame photon spectra are plotted in Figure 2 for data and Monte Carlo. The shaded region represents Monte

Carlo clusters passing the photon selection but not coming from B� photons. The B� signal appears as an excess of
photons around 50 MeV.

Results

A maximum likelihood fit was performed to the data rest frame photon spectrum allowing both signal and background
parameters to float freely. The result is shown as the full line in Figure 3.

A bifurcated Gaussian was used to describe the signal region. This four-parameter function has the form

f (x) =
2A

(σ1 + σ2)
p

2π
×

8<
:

e�(x � x0) / 2σ2
1 for x < x0,

e�(x � x0) / 2σ2
2 for x � x0.

where A is the total area, x0 is the peak position, σ1 is the width of the function below the peak and σ2 is the width of
the function above the peak.

The background was parametrized by performing a logarithmic transformation of the energy spectrum and then
applying a fourth order Chebyshev polynomial expansion. This method, described in Reference 15, was chosen for
its suitability to fit a distribution close to threshold. The advantage of this method is illustrated by the insert in Figure
3a, where the same fit is shown on a logarithmic energy scale.

The fit to the data spectrum yields a signal with a peak position at Eγ = 46. 3 ± 1. 9 (stat) MeV. The number of
B� photons determined from the signal is

NB� = 1378 ± 145 (stat).

Uncertainty in the signal and background shapes contributes 119 events to this error.
The production rate was determined by comparing the number of B� photons measured above with the number

remaining in the Monte Carlo sample after applying the same selection. The Monte Carlo was normalized to the
number of selected jets in the data. This procedure implicitly accounts for both the photon detection efficiency and
the b purity.

The number of B� mesons produced for each b hadron jet was determined from this method to be

NB� / Nb�jet = 0. 69 ± 0. 07 (stat).

The corresponding production ratio of B� mesons to B mesons assuming a b-baryon fraction of fbaryon = 0. 094 is

NB� / (NB� + NB) = 0. 76 ± 0. 08 (stat).
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The method was checked by performing the same fitting procedure on the Monte Carlo energy spectrum including
both signal and background. The peak of the signal was found from this fit to be Eγ = 47. 2 ± 1. 8 MeV for an input
mass splitting of MB� �MB = 46. 0 MeV. The number of B� photons obtained from the fit is NB� = 2316 ± 289 where
the actual number of B� photons in the Monte Carlo spectrum is NB� = 2338.

Contributions to the systematic uncertainty of the B� production measurement are presented in Table 1. The
fraction of b quarks fragmenting to b baryons was varied between 0.07 and 0.13. The b hadron purity was varied by
± 5% from the Monte Carlo estimate of 84.2% for the final event selection.

Source of Systematic Error Error on NB� / (NB� + NB)
b baryon fraction 0.02
b purity 0.03
b hadron selection 0.02
b fragmentation estimate 0.02
photon selection 0.05
Total 0.06

Table 1: Systematic errors in the NB� / (NB� + NB) measurement.

The effect of the b hadron selection on the fit result was further studied by varying the kinematic constraints on
the jet, including energy and constituent multiplicity and the kinematic constraints on the selected muon, including
momentum and transverse momentum to the jet. In addition, the average B meson momentum value, p0, was varied
between 35 GeV and 40 GeV.

Uncertainty in the B� production ratio due to variations in the photon selection was estimated by systematically
varying cut values while following the complete analysis chain for each selection combination. The B� photon
efficiency was determined from this procedure to vary by no more than 7%.

An additional study of the dependence of B� photon efficiency on the selection was performed by measuring
π0 → γγ signals in invariant mass spectra reconstructed from photon pairs in the selected events. One of the photons
in each pair was required to satisfy the B� photon cuts. The uncertainty of the B� photon efficiency was checked by
varying these cuts and comparing the π0 rates for data and Monte Carlo.

The final systematic error was determined by adding in quadrature each of the individual uncertainties.

Conclusions

The relative production rate of B� mesons to B mesons has been measured in Z → bb̄ decays at LEP. A b enriched
sample of 19 494 events was selected by performing an inclusive muon tag on 1.6 million hadronic Z decays. The
production ratio, determined from a maximum likelihood fit to the photon energy in the B rest frame, is

NB� / (NB� + NB) = 0. 76 ± 0. 08 (stat) ± 0. 06 (syst).

This ratio is an average measurement of V / (V + P) for a mixture of the states Bd, Bu and Bs.
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T. Sjöstrand and M. Bengtsson, Comp. Phys. Comm. 43 (1987) 367.

[14] The L3 detector simulation program is based on the GEANT program:
R. Brun et al., “GEANT 3”, CERN report DD/EE/84-1 (1984) (Revised), September 1987.
Hadronic interactions in the detector were modelled with GHEISHA:
H. Fesefeldt, RWTH Aachen report PITHA 85/02 (1985).
Events were corrected for the TEC, BGO and muon chamber inefficiencies obtained from the data.

[15] Numerical Approximations to Functions and Data,
Chapter 5: Curve Fitting by Polynomials in One Variable
J.G. Hayes, University of London, The Athlone Press (1970).

8



Figure Captions

Figure 1. a) Schematic diagram of the ΦB cut. This cut decreases background from
the hadronic recoil of the B decay.
b) Distribution of ΦB for data and Monte Carlo photon candidates. The
region between the two arrows was excluded.

Figure 2. Data and Monte Carlo rest frame photon energy spectra.

Figure 3. a) Likelihood fit to the data rest frame photon energy spectrum.
b) B� signal after subtraction of fit to background.
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