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a b s t r a c t 

In preparation of the study of liquefied natural gas (LNG) sloshing in ships and vehicles, we model and 

numerically analyze compressible two-fluid flow. We consider a five-equation two-fluid flow model, as- 

suming velocity and pressure continuity across two-fluid interfaces, with a separate equation to track 

the interfaces. The system of partial differential equations is hyperbolic and quasi-conservative. It is dis- 

cretized in space with a tailor-made third-order accurate finite-volume method, employing an HLLC ap- 

proximate Riemann solver. The third-order accuracy is obtained through spatial reconstruction with a 

limiter function, for which a novel formulation is presented. The non-homogeneous term is handled in 

a way consistent with the HLLC treatment of the convection operator. We study the one-dimensional 

case of a liquid column impacting onto a gas pocket entrapped at a solid wall. It mimics the impact of 

a breaking wave in an LNG containment system, where a gas pocket is entrapped at the tank wall be- 

low the wave crest. Furthermore, the impact of a shock wave on a gas bubble containing the heavy gas 

R22, immersed in air, is simulated in two dimensions and compared with experimental results. The nu- 

merical scheme is shown to be higher-order accurate in space and capable of capturing the important 

characteristics of compressible two-fluid flow. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Shipment of cargo is a global network of tremendous propor-

ions. The fuels that are currently being used for this purpose are

 major source of greenhouse gases. Sustainable energy technol-

gy for large-scale ships is still unavailable. In the transition to-

ards clean energy a promising intermediate fuel is liquefied nat-

ral gas (LNG), which is obtained by lowering the temperature

f natural gas. Its boiling point is approximately at −160 ◦C. It

s stored around this temperature at ambient pressure in heat-

solating cargo containment systems (CCS). It is a mixture of mainly

ethane and ethane, with small concentrations of heavier alkanes

nd nitrogen. 

The logistical realization of using LNG as a ship fuel requires

hat huge, seagoing LNG carriers can safely operate at partial fill-

ng conditions. Inside CCS complex multiphase mixtures of fluids

xist, with possibly violent flow conditions triggered by the ship

otion. Sloshing loads during liquid impacts have to be taken into

ccount in the design of state-of-the-art CCS. The most severe im-

acts occur due to breaking waves slamming onto the wall. 
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To study these breaking waves of LNG, the main method is to

erform scaled experiments [4,5] . Use of these experimental re-

ults to predict the full-scale reality requires a scaling law, which

s not available as a unified formulation, due to the involvement of

omplicated multi-scale physics. 

First, the tip of the wave reaches the wall, resulting in a short,

ut powerful acoustic pressure peak. Due to free-surface instabil-

ties, the shape of the wave near the tip is stochastic and unpre-

ictable. This complicates experiments, since no two wave crests

reated are the same. The wave crest consists of a bubbly flow,

o it is compressible. Acoustic waves traveling through the bub-

ly flow have been observed experimentally [5] . The gas under

he crest is compressed, since it cannot escape fast enough from

ts entrapment between the wave and the wall. This creates a

maller, but longer-lasting pressure on the wall. Next, the gas pres-

ure forces a liquid jet upwards. During this whole process the LNG

uctuates around its boiling point, so phase transition is expected

o occur. There is a strong need to better understand the multi-

hase dynamics involved in liquid impacts. 

The ultimate goal of engineers designing LNG–CCS is to under-

tand through numerical simulation, the influence of liquid com-

ressibility, gas compressibility and the density ratio on the pres-

ures exerted on the wall. To model two-fluid flow, a Lagrangian

r an Eulerian formulation can be used. A Lagrangian model tracks

https://doi.org/10.1016/j.compfluid.2019.104272
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.104272&domain=pdf
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Fig. 1. A breaking wave impacting a CCS-like wall [5] . 
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all interfaces explicitly. For complex fluid flow patterns involving

many interfaces, the Lagrangian formulation is numerically expen-

sive, since it is an arduous task to track the interfaces. To avoid

this difficulty, an Eulerian two-fluid approach will be used in the

present work. Various formulations of two-fluid models have been

proposed and successfully applied. For several of these formula-

tions it has been shown that they can be extended to include mass

and heat transfer across the fluid-fluid interface [7,11,23,24] , with

application to for instance the study of water-hammer phenomena

[8,9] . In the current work, we adopt the 5-equation Kapila model

[17] . 

We apply a finite-volume method to the Kapila model, ensuring

the global numerical conservation of mass, momentum and energy.

At each finite-volume wall we compute the fluxes by means of

the HLLC approximate Riemann solver [29] . In the exact two-fluid

flow formulation sharp material interfaces exist, however, these are

severely diffused when applying a first-order accurate numerical

scheme. To mitigate the numerical diffusion, we employ higher-

order spatial reconstruction to the finite-volume method, using the

MUSCL approach [30] . A limiter function is used to prevent spuri-

ous oscillations. We introduce a new limiter function and compare

it to commonly used ones. 

We consider the one-dimensional test case of a liquid column

driven by a body force onto an entrapped gas pocket. This test

case is known as the generalized Bagnold model which mimics the

impact of a breaking liquid wave onto a solid wall, where a gas

pocket is trapped between the liquid and the wall [6] . 

Furthermore, the impact of a shock wave in air on a bubble

containing another gas is simulated in two dimensions. The com-

putational results obtained are compared to experimental results

obtained by Haas and Sturtevant [14] . Two cases are considered:

one where the gas in the bubble is heavier (R22), and one where

it is lighter (helium) than the surrounding air. 

The current article is an extension of the paper presented at

ECCM-ECFD 2018, Glasgow [10] . 

2. Mathematical model 

In this work we study a model that describes a flow consisting

of two fluids. Both fluids are assumed to be compressible, inviscid

and non-heat-conducting. Furthermore, no chemical reactions or

phase changes occur. Analysis of this type of fluid flow has various

industrial applications, including sloshing inside LNG tanks [6] . An

important issue in the analysis of two-fluid flows is how to account

for the presence of each of the fluids and particularly the two-fluid

interface. We apply an Eulerian model. To indicate the presence of

each of the fluids an indicator function is used. The flow is de-

scribed by two systems of conservation laws for fluids, two equa-

tions of state, and an equation for the indicator function. This type

of model is commonly referred to as the Euler–Euler model, or the

two-fluid model. 

A well-known model of this kind is the Baer–Nunziato seven-

equation model [1] . It consists of two systems of conservation laws,

one for each of the two fluids. To complete the model, besides two

equations of state, an equation describing the presence and propor-

tion of each of the fluids is required: the equation for the volume

fraction. 

2.1. The Kapila model 

The Kapila model [17] is a reduced form of the Baer–Nunziato

seven-equation model. Kapila et al. argue that for many applica-

tions the time scale of equilibration of both velocity and pres-

sure differences across material interfaces is sufficiently small to

assume thermodynamic equilibrium, allowing the model to be re-

duced to five equations. Four of the five equations are conservation
aws: two for mass, one for momentum and one for energy. The

fth equation concerns the volume fraction of one of the fluids,

ontaining a non-conservative term due to energy exchange be-

ween the fluids. Another, equivalent formulation is available [19] ,

ith a different representation of the fifth equation. 

We will proceed to briefly describe Kapila’s two-fluid model.

etails can be found in Kapila et al. [17] . 

The starting point of the model is formed by the Euler equa-

ions of mass, momentum and energy conservation for compress-

ble, inviscid, non-heat-conducting fluid flow, without surface ten-

ion. This system of equations is given by Toro [29] : 

 

 

ρ

ρu 

ρE 

⎤ 

⎦ 

t 

+ 

⎡ 

⎣ 

ρu 

∇ · (ρu × u ) + ∇p 

∇ · (ρEu ) + ∇ · (pu ) 

⎤ 

⎦ = 0 . (1)

Here ρ , u , E, p are the density, velocity vector, specific total en-

rgy and pressure, respectively. We also introduce the specific in-

ernal energy e := E − 1 
2 u · u . 

Since we are considering flow of two fluids, this formulation

eeds to include a way to reflect the varying composition of the

ombination of fluids throughout the domain. The volume fraction

i is defined as the fraction of a control volume which is occupied

y fluid i . It takes the value 1 when ( x, t ) is located within fluid i ,

nd 0 when it is within the other. When using averaging methods,

hese αi can take intermediate values. We assume that the domain

s completely filled by the two fluids, resulting in the saturation

onstraint : α1 + α2 = 1 . From now on we denote α := α1 = 1 − α2 . 

An inherent assumption of the model is that any mixing will

ake place at a scale between molecular scale and macro scale.

ig. 2 shows two examples of two-fluid mixtures. If we suppose

hese two rectangles are the control volumes used in the definition

f the volume fraction, the two-fluid formulation does not see any

ifference between them, if the volume fraction is the same for

oth. The control volumes must be sufficiently small for the two-

uid formalism to accurately capture the two-fluid flow topology,

ince any sub-cell flow-topology information will be averaged out

ver a control volume. The choice of the size of our finite volume

ells is therefore especially important. 

The quantities used in Eq. (1) are bulk quantities . They are re-

ated to the properties of the individual fluids using the volume

raction α as follows: 

= αρ1 + (1 − α) ρ2 , (2a)
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Fig. 2. Two examples of two immiscible fluids in a control volume. 
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 = αρ1 E 1 + (1 − α) ρ2 E 2 , (2b)

 = αρ1 e 1 + (1 − α) ρ2 e 2 . (2c)

Because of the pressure and velocity equilibrium assumed

cross two-fluid interfaces in the five-equation model we have 

p = p 1 = p 2 , u = u 1 = u 2 . (3) 

he Kapila model adds to Eq. (1) the mass conservation law for

uid 1 and an advection-type equation for the volume fraction. The

atter contains non-conservative terms which result from imposing

he pressure and velocity equilibrium across fluid-fluid interfaces.

he system is given by 
 

 

 

ρ
ρu 

ρE 
αρ1 

⎤ 

⎥ ⎦ 

t 

+ 

⎡ 

⎢ ⎣ 

ρu 

∇ · (ρu × u ) + ∇p 
∇ · (ρEu ) + ∇ · (pu ) 

∇ · (αρ1 u ) 

⎤ 

⎥ ⎦ 

= 0 , (4a) 

t + u · ∇α + φ∇ · u = 0 . (4b)

Here φ is a parameter depending on the compressibility of the

uids: 

= α(1 − α) 
ρ1 c 

2 
1 − ρ2 c 

2 
2 

(1 − α) ρ1 c 
2 
1 

+ αρ2 c 
2 
2 

, (5) 

nd c i is the speed of sound in fluid i . To ease numerical imple-

entation, we write Eq. (4b) in divergence form: 

t + ∇ · (αu ) = (α − φ) ∇ · u = 0 . (6) 

n two dimensions, we have the system: 

∂ 

∂t 
q + 

∂ 

∂x 
f + 

∂ 

∂y 
g = s , (7a) 

ith u = [ u, v ] T , 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ
ρu 

ρv 
ρE 
αρ1 

α

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, f = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρu 

ρu 

2 + p 
ρu v 

u (ρE + p) 
αρ1 u 

αu 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, g = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρv 
ρu v 

ρv 2 + p 
v (ρE + p) 

αρ1 v 
αv 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (7b)

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

0 

0 

(α − φ)(u x + v y ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (7c) 

This system needs to be closed with an equation of state (EOS)

or each of the two fluids, relating the pressure, density and inter-

al energy of each of the fluids. Here we will consider the perfect

as EOS to model gases: 

 i = 

p 

ρi (γi − 1) 
, (8a) 
here γ i , the ratio of specific heats, is a material constant. The

tiffened gas EOS is used to model liquids: 

 i = 

p + πi γi 

ρi (γi − 1) 
, (8b) 

here the liquid behaves as though it is an ideal gas, which is al-

eady under a pressure. 

.2. Analysis of the Kapila model 

In order to analyze the system, we look at the corresponding

igensystem. This gives us information about the wave propagation

peeds inherent to the system. In order to do this, we consider an

quivalent system, which is expressed in terms of primitive vari-

bles ρ , u, v, p, α, β: 

∂ 

∂t 
w + A 

∂w 

∂x 
+ B 

∂w 

∂y 
= 0 , (9a)

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ
u 

v 
p 
α
β

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

u ρ 0 0 0 0 

0 u 0 

1 
ρ 0 0 

0 0 u 0 0 0 

0 ρc 2 0 u 0 0 

0 φ 0 0 u 0 

0 0 0 0 0 u 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

v 0 ρ 0 0 0 

0 v 0 0 0 0 

0 0 v 1 
ρ 0 0 

0 0 ρc 2 v 0 0 

0 0 φ 0 v 0 

0 0 0 0 0 v 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (9b) 

Here, β = 

αρ1 
ρ is the mass fraction of fluid 1 and c is the speed

f sound of the mixture, resulting from Wood’s relation [32] : 

1 

ρc 2 
= 

α

ρ1 c 
2 
1 

+ 

1 − α

ρ2 c 
2 
2 

. (10) 

he system, though describing a mixture of two fluids, has a single

peed of sound. The speed of sound of a mixture of two fluids can

e lower than that of the two individual fluids. The eigenvalues of

 and B are u − c, u, u + c and v − c, v , v + c, respectively, where the

igenvalues u and v are both quadruple. The eigenvalues represent

ave speeds in x - and y -direction, respectively. These are all real-

alued, and the eigenvectors of A are given by: 
 

 

 

 

 

 

1 

0 

0 

0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

1 

0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

0 

1 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

0 

0 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 
1 

φ

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ
c 
0 

ρc 2 

φ
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 
1 

φ

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ
−c 
0 

ρc 2 

φ
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (11) 

imilarly, matrix B has a full eigenspace, making the system hyper-

olic. 
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Alternatively, separating the non-conservative part of the equa-

tions, we can express the equations as 

∂ 

∂t 
w + 

˜ A 

∂w 

∂x 
+ ̃

 B 

∂w 

∂y 
+ ̃

 C 

∂w 

∂x 
+ 

˜ D 

∂w 

∂y 
= 0 , (12a)

w = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ
u 

v 
p 
α
β

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, ˜ A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

u ρ 0 0 0 0 

0 u 0 

1 
ρ 0 0 

0 0 u 0 0 0 

0 ρc 2 0 u 0 0 

0 α 0 0 u 0 

0 0 0 0 0 u 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

˜ B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

v 0 ρ 0 0 0 

0 v 0 0 0 0 

0 0 v 1 
ρ 0 0 

0 0 ρc 2 v 0 0 

0 0 α 0 v 0 

0 0 0 0 0 v 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (12b)

˜ C = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 φ − α 0 0 0 0 

0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

˜ D = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 φ − α 0 0 0 

0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (12c)

The eigenvalues of ˜ A and 

˜ B are the same as those of A and B ,

and the eigenvectors are similar: ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

0 

0 

0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

1 

0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

0 

1 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

0 

0 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 
1 

α

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ
c 
0 

ρc 2 

α
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 
1 

α

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ
−c 
0 

ρc 2 

α
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (13)

Since the solution of the hyperbolic system is generally based on

the decomposition of the matrices A and B , or ˜ A and 

˜ B , the fact

that the eigenvalues of these matrices are the same means that we

can freely choose whether to include the non-conservative term in

the (approximate) Riemann solver of choice, or to treat it sepa-

rately. This freedom of choice is exploited by handling the conser-

vative part of the equations with a fully conservative finite-volume

scheme and by separately discretizing the non-conservative term. 

3. Numerical approach 

We consider the Kapila system (7a) in integral form, at some

point in time, say t : 

∂ 

∂t 

∫ 
	

q d 	 + 

∮ 



F · n d 
 = 

∫ 
	

s d 	, (14a)

with 	 a control volume and 
 its boundary, 

q = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ
ρu 

ρv 
ρE 
ρβ
α

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, F = 

[
f g 

]
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρu ρv 
ρu 

2 + p ρu v 
ρu v ρv 2 + p 

u (ρE + p) v (ρE + p) 
βρu βρv 
αu αv 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (14b)
d  
 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

0 

0 

(α − φ)(u x + v y ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (14c)

To apply a finite-volume method, we divide the computational

omain into rectangular cells, which have an average state q i,j . In

emi-discrete form we have 

d 

dt 
q i, j = − 1 

�x 

(
f i + 1 2 , j − f i − 1 

2 , j 

)
− 1 

�y 

(
g i, j+ 1 2 

− g i, j− 1 
2 

)
+ 

1 

�x �y 

∫ 
	i, j 

s i, j d 	i, j . (15)

he basic update rule for q i,j is the Godunov upwind method, with

xplicit Euler time integration: 

 

n +1 
i, j 

= q 

n 
i, j + 

�t 

�x 

(
f n 

i − 1 
2 , j 

− f n 
i + 1 2 , j 

)
+ �ts n x,i, j 

+ 

�t 

�y 

(
g 

n 
i, j− 1 

2 

− g 

n 
i, j+ 1 2 

)
+ �ts n y,i, j , (16)

here the subscripts x and y in s x and s y do not refer to partial

ifferentiation of s , but to the following components of s instead:

 x = (α − φ) u x , (17a)

 y = (α − φ) v y . (17b)

We remark that the idea of the directional splitting of the

ource term is not part of Godunov’s original approach; Godunov

onsidered homogeneous equations only. In the numerical evalu-

tion of the split source term, we will make handy and consis-

ent use of the numerical method for evaluating the fluxes (see

ections 3.2 and 3.3 ). 

The finite-volume method is conservative; the discretization

oes not lead to a global change in mass, momentum and en-

rgy. Here, both spatial and time discretization are performed in

 higher-order accurate manner, as outlined in the following sec-

ions. 

.1. Spatial discretization 

To achieve higher-order spatial accuracy we perform spatial re-

onstruction, known as the MUSCL (Monotone Upstream-centred

cheme for Conservation Laws) approach [30] . We present it here

or the one-dimensional case. The formulation is easily extended

o two- and three-dimensional cases, treating the fluxes in each of

he separate directions in a locally one-dimensional fashion. 

In the MUSCL approach the states inside the cells are not con-

idered to be piecewise constant. Instead we may reconstruct e.g.,

iecewise linear distributions of state values inside the cells. It is

referable to reconstruct in this way the primitive variables, rather

han the conservative variables, or any other formulation [31] . In

ach cell we may define a linear function for each of the primitive

ariables individually: 

 i (x ) = W i + 

x − x i 
�x 

�i , x ∈ [0 , �x ] , (18)

here 
�i 
�x 

is a suitably chosen slope; the method to choose the

lope will be outlined in the following. 

This approach allows us to construct higher-order accurate

ethods. However, a careless implementation would result in over-

hoots at discontinuities, as sketched in Fig. 4 . For the system un-

er consideration this is a very undesirable situation, since we
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Fig. 3. The values for a state variable in a number of cells. In (a) the value in the cells is the average, in (b) a linear distribution has been constructed. 
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ave strict demands on our variables: the absolute pressure and

ensity must be positive, because of the calculation of the speed of

ound, and the volume fraction must remain in the [0,1]-interval. 

We need a numerical scheme that does not exhibit these

vershoots and the spurious oscillations that result from it.

onotonicity-preserving schemes form an important class of nu-

erical methods, that do not suffer from spurious oscillations.

hey have the property that a system with a monotone initial

ondition will remain monotone in future time steps. This means

he scheme mimics a property which is also exhibited by the

xact solution of the system [20] . Godunov’s theorem states that

onotonicity-preserving linear schemes can be at most first-order

ccurate [13] . 

To overcome this barrier, we use the more lenient demand of

otal variation diminishing. To quantify the oscillations we consider

he total variation, which is defined for functions with a discrete

omain as the sum of the differences between state variables in

djacent cells: 

 V (u 

n ) := 

∑ 

i 

| u 

n 
i +1 − u 

n 
i | . (19) 

e want this total variation as a function of our variables to be

on-increasing for progressing time steps. A numerical scheme

hat exhibits this property is called total variation diminishing

T VD). T VD schemes are monotonicity preserving, meaning that no

ew (unphysical) local extrema are created. TVD schemes therefore

o not create spurious oscillations. 

To prevent the spurious oscillations in the MUSCL method and

ake the scheme TVD we apply a slope limiter ϕ to the primitive

ariables W i : 

 

L 
i + 1 2 

= W i −
1 

2 

ϕ 

L 
i + 1 2 

(W i − W i −1 ) , (20a)

 

R 
i + 1 2 

= W i +1 −
1 

2 

ϕ 

R 
i + 1 2 

(W i +1 − W i ) . (20b)

We apply the limiter to each of the primitive variables individu-

lly. In the next step the Riemann problem is solved for the limited

ariables to obtain the fluxes: 

 i + 1 2 
= F i + 1 2 

(
W 

L 
i + 1 2 

, W 

R 
i + 1 2 

)
, (21a) 

 i − 1 
2 

= F i − 1 
2 

(
W 

L 
i − 1 

2 

, W 

R 
i − 1 

2 

)
. (21b) 

The limiter has the function of switching between a favorite

igher-order method of our own choice, for smooth regions of the

olution, and the first-order method (corresponding to the piece-

ise constant solution representation illustrated in Figs. 3 a and 4 a)

n regions with steep gradients. We therefore define it as a func-

ion of the adjacent slopes of each of the individual primitive vari-

bles: 

 

L 
i + 1 2 

= ϕ 

(
r L 

i + 1 2 

)
, ϕ 

R 
i + 1 2 

= ϕ 

(
r R 

i + 1 2 

)
, (22a) 
ith 

 

L 
i + 1 2 

= 

W i +1 − W i 

W i − W i −1 

, r R 
i + 1 2 

= 

W i − W i +1 

W i +1 − W i +2 

. (22b) 

The theory of spatial reconstruction and slope limiting is usu-

lly presented for a 1-D linear advection equation. In that context,

e gain insight in the meaning of the limiter: 

• Setting the limiter to zero: ϕ(r) = 0 is the same as simply

applying the first-order upwind Godunov method. 

• The second-order central method is obtained for ϕ(r) = r. 

• For ϕ(r) = 1 we obtain the second-order upwind method. 

Spekreijse [26] outlined sufficient conditions for the limiter to

e met in order for the method to be TVD. They can be put in the

orm 

 ≤ ϕ(r) ≤ M, ∀ r ∈ R , (23a)

M ≤ ϕ(r) 

r 
≤ 2 + m, ∀ r ∈ R . (23b)

Here m can be chosen in the [ −2 , 0] interval. The choice of the

ther parameter, M , if chosen to be greater than 1, causes a time

tep restriction according to, following [15] , 

FL ≤ 2 

M + 2 

(24) 

For the method to be fully second-order accurate we require

hat ϕ(1) = 1 [26] . 

Often, the parameters in the TVD condition from Spekreijse are

hosen to be m = 0 and M = 2 . This leads to a region in the r , ϕ-

lane, called the Sweby region [27] . In this case, for the method

ot to be overly compressive, the limiter must not exceed the up-

er bound of Sweby’s TVD domain. Excessive compression could

or example result in a smooth transition being steepened to a dis-

ontinuity. 

We give a summary of some commonly used limiters. The min-

od limiter is the most diffusive limiter inside the Sweby region;

t follows the lower bound of it: 

(r) = max (0 , min (1 , r)) . (25) 

n the other hand, the superbee limiter, given by 

(r) = max ( 0 , max ( min (2 r, 1) , min (r, 2) ) ) , (26) 

ollows the upper bound of the Sweby region and is the most com-

ressive limiter. 

A well-known class of schemes is formed by the van Leer κ-

chemes [30] , which correspond to ϕ(r) = 

1 −κ
2 + 

1+ κ
2 r, κ ∈ [ −1 , 1] .

hey are second-order accurate, and for κ = 

1 
3 third-order accu-

ate, but not monotone. The Koren limiter [18] follows the κ = 

1 
3 -

cheme as much as possible inside the second-order Sweby region.

t reads: 

(r) = 

{
0 , r ≤ 0 , 

min 

(
2 r, min 

(
1 
3 

+ 

2 
3 

r, 2 

))
, r > 0 . 

(27) 
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Fig. 4. The values for a state variable in a number of cells. Here, application of spatial reconstruction causes an overshoot, due to a slope being chosen too large. 

Fig. 5. The second-order accurate Sweby region. 
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Here we propose an extended κ = 

1 
3 -limiter, which for a range of

negative r -values around r = −1 coincides with κ = 

1 
3 as well: 

ϕ(r) = 

{ 

min 

(
0 , max 

(
− 2 

3 
, 1 

3 
+ 

2 
3 

r 
))

, r ≤ 0 , 

min 

(
4 
3 

r, min 

(
1 
3 

+ 

2 
3 

r, 2 

))
, r > 0 . 

(28)

As illustrated in Fig. 6 , the newly proposed limiter function falls

within the Spekreijse region with M = 2 . Therefore, following

Eq. (24) , using the limiter requires a time step with a CFL-number

of at most 1 
2 . 

To illustrate the effect of the limiters, we compare them for a

simple linear advection equation. The initial condition in Fig. 7 a

is a block profile, in 7 b a sinusoid. Both move at constant speed.

The domain has periodic boundary conditions, so the shape of the

exact solution after n periods, (n = 1 , 2 , . . . ) is equal to the ini-

tial condition. We look at the numerical solutions after five peri-

ods, with 80 finite volumes. We see that all limiters result in a

much sharper resolution of the traveling discontinuities, compared

to the first-order method. The minmod limiter is indeed the most

diffusive, whereas the superbee limiter the most compressive, even

overly compressive in Fig. 7 a, flattening the smooth gradient. The

Koren limiter and the newly proposed one are in between these

two extremes. 

To examine the accuracy behavior of the new limiter, we per-

form an experimental error analysis. We numerically simulate the

test case from Fig. 7 a for 10,20,40,80,160 and 320 finite volumes.

The time step size remains the same for all grid sizes. The time

step is sufficiently small, such that for all grids, the temporal error

is negligible with respect to the spatial error. The errors are de-

termined by comparing the numerical results to the exact solution

with the 1-norm. The results, in Fig. 8 , show that both the Koren
imiter and the newly proposed limiter perform between second

nd third order accurately. 

.2. HLLC Riemann solver 

To calculate the fluxes in Eq. (16) , we apply an HLLC-type solver

o the homogeneous system, dimension by dimension. The next

teps will be described in the following sections. Whereas the

quations are in terms of conservative variables, the flux compu-

ation through the approximate Riemann solver is based on the

rimitive variables ρ , u, v, p, β , α. Using the equations of state

8a) and (8b) we convert one set of variables into the other.

he fluxes F are determined using an HLLC-type method. We will

resent this method for the x -direction, the y -direction is treated

nalogously. 

For the current system of equations, the HLLC scheme assumes

our regions of constant states separated by three wave fronts, see

ig. 9 . This boils down to the assumption that the outer two are

hock waves. The resolution of shock waves is therefore exact. The

iddle wave front, a contact discontinuity, is also numerically ex-

ct. The middle two states are referred to as star regions, and we

ill denote the variables within these regions with the superscript

. The outer two states are taken as the primitive variables result-

ng from the MUSCL method on either side of the cell face consid-

red. We distinguish them with subscripts L and R . 

Various estimates for the wave speeds have been suggested in

he literature [29] . Care must be taken when selecting one, because

he various estimates described in the literature differ a lot, affect-

ng the numerical scheme, and because they are defined through

he equation of state, with the speed of sound [3] . We will work

ith the following estimates for the wave speed of the three fronts

29] : 

 L = min 

(
u L − c L , (u − c) Roe 

)
, (29a)

 R = max 
(
u R + c R , (u + c) Roe 

)
, (29b)

 M 

= 

p R − p L + ρL u L (S L − u L ) − ρR u R (S R − u R ) 

ρL (S L − u L ) − ρR (S R − u R ) 
. (29c)

Here, the superscript Roe denotes Roe averaging, which is de-

ned through the density, velocity and enthalpy ( H = E + 

p 
ρ ): 

Roe = 

√ 

ρL ρR , (30a)

 

Roe = 

√ 

ρL u L + 

√ 

ρR u R √ 

ρL + 

√ 

ρR 

, (30b)

 

Roe = 

√ 

ρL H L + 

√ 

ρR H R √ 

ρL + 

√ 

ρR 

. (30c)

Furthermore, following the model’s underlying assumptions,

q. (3) , we impose the following conditions: 

 

∗
L = u 

∗
R = S M 

, (31a)

p ∗L = p ∗R = p ∗. (31b)
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Fig. 6. The limiters ϕ( r ) considered herein. On the left we see the Koren limiter inside the second-order Sweby region, on the right the new limiter, inside the Spekreijse 

region for M = 2 and m = − 2 
3 

. 

Fig. 7. Comparison of various limiters and their effect on the linear advection, over 5 periods, of a discontinuous (a) and an infinitely smooth (b) initial condition. 
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To obtain the quantities in the star region we consider the

ankine-Hugoniot jump conditions across the outer two wave

ronts, assuming these are both shock waves: 

 K Q 

∗
K − F (Q 

∗
K ) = S K Q K − F (Q K ) , (32a)

 K 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ∗
K 

ρ∗
K S M 

ρ∗
K v 

∗
K 

ρ∗
K E 

∗
K 

α∗
K ρ

∗
1 K 

α∗
K 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

−

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ∗
K S M 

ρ∗
K S 

2 
M 

+ p ∗

ρ∗
K S M 

v ∗K 
S M 

(ρ∗
K E 

∗
K + p ∗) 

α∗
K ρ

∗
1 K S M 

S M 

α∗
K 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= S K 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρK 

ρK u K 

ρK v K 
ρK E K 
αK ρ1 K 

αK 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

−

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρK u K 

ρK u 

2 
K + p K 

ρK u K v K 
u K (ρK E K + p K ) 

αK ρ1 K u K 

u K αK 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (32b) 
d  
ith K = L, R . The equations are solved algebraically in a straight-

orward manner to obtain: 

∗
K = ρK 

S K − u K 

S K − S M 

, (33a) 

 

∗
K = v K , (33b) 

p ∗ = p K + ρK (S M 

− u K )(S K − u K ) , (33c)

 

∗
K = E K + (S M 

− u K ) 
(

S M 

+ 

p K 
ρK (S K − u K ) 

)
, (33d)

∗
K ρ

∗
1 K = αK ρ1 K 

S K − u K 

S K − S M 

, (33e) 

∗
K = αK 

S K − u K 

S K − S M 

. (33f) 

Next we determine the flux in x = 0 , at the cell interface. We

efine four fluxes. The choice of the final flux is based on the sign
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Fig. 8. Error analysis for the smooth initial condition from Fig. 7 b, for various limiter functions (first-, second- and third-order accuracy indicated by dashed lines). 

Fig. 9. The regions used in the HLLC solver. 
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w  
of the three wave speed estimates: 

F = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

F 1 , S L , S M 

, S R ≥ 0 , 

F 2 , S R , S M 

≥ 0 , S L < 0 , 

F 3 , S R ≥ 0 , S L , S M 

< 0 , 

F 4 , S L , S M 

, S R < 0 , 

(34a)

with 

F 1 , 4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρK u K 

ρK u 

2 
K + p K 

ρK u K v K 
u K (ρK E K + p K ) 

ρ1 K αK u K 

αK u K 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, K = L, R respectively , (34b)
nd 

 2 = F 1 + S L (Q 

∗
L − Q L ) , F 3 = F 4 + S R (Q 

∗
R − Q R ) . (34c)

The flux F is calculated for every cell interface and comple-

ented with fluxes at the edges of the domain resulting from the

oundary conditions. 

.3. Non-conservative volume fraction term 

The non-conservative term in Eq. (15) , the right-hand side of

he volume fraction advection Eq. (6) , is handled in an HLLC-type

ay as well, in the way proposed in [16] . In the x -direction this is
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one by: 

 

n 
x,i = (αi − φi ) 

1 

�x 

⎛ 

⎜ ⎜ ⎝ 

⎛ 

⎜ ⎝ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

u L , S L , S M 

, S R ≥ 0 

S L −u L 
S L −S M 

S M 

, S R , S M 

≥ 0 , S L < 0 

S R −u R 
S R −S M 

S M 

, S R ≥ 0 , S L , S M 

< 0 

u R , S L , S M 

, S R < 0 

⎞ 

⎟ ⎠ 

i + 1 2 

−

⎛ 

⎜ ⎝ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

u L , S L , S M 

, S R ≥ 0 

S L −u L 
S L −S M 

S M 

, S R , S M 

≥ 0 , S L < 0 

S R −u R 
S R −S M 

S M 

, S R ≥ 0 , S L , S M 

< 0 

u R , S L , S M 

, S R < 0 

⎞ 

⎟ ⎠ 

i − 1 
2 

⎞ 

⎟ ⎟ ⎠ 

. (35) 

he y -direction is handled analogously. 

.4. Positivity of the volume fraction 

With the combination of the non-conservative term in the

quations, and the MUSCL method, it is not guaranteed that the

olume fraction remains positive in the simulation. Since the vol-

me fraction of fluid 2 must also be positive, the volume fraction

tself must remain in the [0,1]-interval. When applying the scheme

o initial conditions with volume fractions of 0 and 1, the volume

raction may lose positivity within several time steps. To prevent

his, the volume fractions in the initial conditions are changed into

and 1 − ε, for some small value of ε. The mass fractions are

hanged accordingly. Numerical tests have shown that the choice

f limiter has a major influence on the value of ε which needs to

e chosen. The newly proposed limiter allows a value of ε = 10 −10 ,

hereas the other limiter functions considered in this work require

n ε of O(10 −5 ) . Because of the large density ratio between the

wo fluids, which in the case of a liquid and a gas could easily

e O(10 3 ) , this could result in an error of O(10 −2 ) in the initial

ondition, which will propagate throughout the numerical simula-

ion. The newly proposed limiter clearly performs better for our

urposes. The main reason that it performs better is to be sought

n its negative values for negative r , corresponding to extrema. The

xtrema of the volume fraction are restrained more strongly. At the

ame time, the new limiter is third-order accurate in smooth re-

ions. 

.5. Time integration 

We implement an explicit third-order accurate Runge–Kutta

ethod, in line with the spatial discretization, which is lo-

ally third-order accurate in smooth regions. The time integration

ethod is described by the Butcher tableau [15] 

0 

1 1 

1 
2 

1 
4 

1 
4 

1 
6 

1 
6 

2 
3 

(36) 

his time integrator has been outlined in [25] , where it was shown

o be a TVD Runge–Kutta method [20] , meaning that the TVD prop-

rty of the explicit Euler method extends to this time integrator. 

.6. Boundary condition treatment 

Two types of boundary conditions are considered herein; one

epresenting a solid wall, the other outflow. The numerical imple-

entation of this is done by adding virtual cells around the edges

f the domain. Then, a Riemann problem is solved, as is done in

he interior cells, to determine the fluxes. 

In the case of an outflow boundary the state in the virtual cell

s copied from that of the adjacent interior cell. This lets waves run

ut of the computational domain as if the domain extends further.

f  
he resulting Riemann problem is trivial; F ( q L , q r ) with q L = q R = q,

ence F (q, q ) = f (q ) . 

The solid wall is modeled by reflection; the state in the adja-

ent cell is copied, with the exception of the velocity in the di-

ection perpendicular to the cell boundary, which changes sign.

his results in a Riemann problem with either two identical shock

aves or two identical rarefaction waves. The middle wave has

peed zero. The only nonzero flux in the conservative part of the

quations is in the momentum equation, due to the pressure. 

The non-conservative part of the flux is determined in the same

ay as for the cell boundaries in the interior. 

.7. Gravity forces 

In the next section we will consider a liquid column, driven by

 gravity force g . This is modeled by adding a source term s g to

he system (7a) , in one dimension: 

∂ 

∂t 
q + 

∂ 

∂x 
f = s + s g , (37a) 

ith 

q = 

⎡ 

⎢ ⎢ ⎣ 

ρ
ρu 

ρE 
αρ1 

α

⎤ 

⎥ ⎥ ⎦ 

, f = 

⎡ 

⎢ ⎢ ⎣ 

ρu 

ρu 

2 + p 
u (ρE + p) 

αρ1 u 

αu 

⎤ 

⎥ ⎥ ⎦ 

, s = 

⎡ 

⎢ ⎢ ⎣ 

0 

0 

0 

0 

(α − φ)(u x ) 

⎤ 

⎥ ⎥ ⎦ 

, 

 g = 

⎡ 

⎢ ⎢ ⎣ 

0 

ρg 
ρgu 

0 

0 

⎤ 

⎥ ⎥ ⎦ 

. (37b) 

This small addition to the model does not affect the underlying

tructure of the system. The additional source term due to gravity

s handled separately. In numerical calculations of s g we naturally

ake the cell averages for ρ and u . 

. Generalized Bagnold model 

In 1939, Bagnold pioneered research on wave impacts [2] . He

rovided a comprehensive overview of breaking and non-breaking

ree-surface waves, and performed experiments in which he stud-

ed the impact. He introduced a one-dimensional model of break-

ng wave impact with entrapped air to predict pressures. 

In the original work of Bagnold [2] wave impacts are modeled

y a solid piston with an initial velocity, moving towards a wall,

ith an ideal gas trapped in between, see also [22,28] . The prob-

em then depends on only two parameters: the adiabatic constant

f the gas, γ g , and the dimensionless Bagnold number S B , describ-

ng the magnitude of the impact. 

We consider a generalized Bagnold model [6] , which consists of

 tube closed on both ends, containing an incompressible liquid in

etween two gas columns. The liquid piston is driven by a body

orce instantaneously applied at t = 0 , for instance gravity. The sit-

ation is illustrated in Fig. 10 . 

This situation is simulated using the computational method

resented before. The numerical results are compared to analyti-

al results which we outline in the following. 

.1. Analytical solution 

The dimensionless formulation of the generalized Bagnold

odel is given briefly. For a more elaborate description, see [6] .

e assume the wave impact process to be adiabatic and reversible.

urthermore, the liquid is assumed incompressible, and we there-

ore represent it as a solid piston. The compression in the gas is
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Fig. 10. The initial condition in the generalized Bagnold model. 

Table 1 

Description of the cases. 

Case Scale Liquid Gas Temperature ( ◦C) Pressure (Pa) Impact number 

1 1: 1 LNG NG −162 10 5 0.357 

2 1: 40 LNG NG −162 10 5 0.00893 

3 1: 40 Water Air 20 10 5 0.0196 

4 1: 40 Water SF 6 + N 2 20 10 5 0.0196 

5 1: 40 1: 40-scaled LNG 1: 40-scaled NG −162 2500 0.357 
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Table 2 

Fluid properties. 

Fluid γ ρ0 (kg/m 

3 ) c (m/s) 

LNG (−162 ◦C) 15.35 455 1300 

Water (20 o C) 7 1000 1500 

1:40-scaled LNG 15.35 455 206 

NG (−162 ◦C) 1.3 1.82 267 

Air (20 o C) 1.4 1.2 342 

SF 6 + N 2 (20 o C) 1.13 4 168 

1:40-scaled NG 1.3 1.82 42 

Table 3 

Lengths. 

Length (m) 

H 15 

L 0 8 

h 0 2 
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uniform. The solid piston model results in the following equation

for the height of the gas pocket at time t : 

h 

′′ (t) = − g − p 0 
ρl L 0 

((
H − L 0 − h 0 

H − L 0 − h (t) 

)γg 

−
(

h 0 

h (t) 

)γg 
)

, h (0) = h 0

(38)

Here, g is the gravitational acceleration, p 0 is the pressure at t = 0 ,

and ρ l is the density of the liquid piston. The other parameters are

related to the dimensions of the system and shown in Fig. 10 . The

velocity h ′ ( t ) can be calculated analytically [28] . The compression

of the gas pocket is considered to be adiabatic: 

p 

ργg 
= constant . (39)

Since the density is inversely proportional to the length of the gas

pocket, Eqs. (38) and (39) are enough to determine the pressure in

the gas pocket. 

In this generalized model, the situation is completely described

by four dimensionless numbers: 

• length aspect ratio between the liquid column and the lower

gas pocket, 

• density ratio between the gas and the liquid, 

• Bagnold number S B , given by S B = 

L 0 ρ0 ,l g 

p 0 
, 

• adiabatic constant of the gas γ g . 

In the numerical method the liquid is compressible, so a fifth

dimensionless number is added to this list: liquid compressibility
p 0 

ρ0 ,l ( c 0 ,l ) 
2 . If the model is scaled in such a way that these dimen-

sionless quantities remain the same, the scaling is completely sim-

ilar. Brosset et al. [6] discuss this model, with a non-zero initial

velocity, and refer to the scaling as complete Froude scaling. 

4.2. Comparison of analytical and numerical results 

At the ISOPE conference in 2010, the simulation of the gener-

alized Bagnold model was given as a benchmark study for wave

impact simulation methods [12] . The participants were given five

sets of initial data to be simulated, given in Table 1 . 

The scaling in the second column refers to Froude scaling. The

1:40 scaled LNG and NG refer to complete Froude scaling, in which

the fluid properties are changed to obtain a complete similarity in

the different scales between Cases 1 and 5, which should yield ex-

actly the same results. The scaling results in fluids that are not

physically meaningful, but provide valuable results anyhow. Fur-

thermore the time of the numerical calculation can be decreased

by scaling in this way, because the speed of sound of the fluids is

affected by it. 
In all of these cases the compressibility of the liquid and the

coustics of the gas do not play a significant role. We expect the

apila model and the piston model to produce the same results.

he relevant properties of the fluids are given in Table 2 and the

engths are given in Table 3 . These are the dimensions of the initial

roblem, Case 1. In the other cases, these dimensions are scaled

own by a factor 40. 

Like in Dias et al. [12] we plot the pressures of all cases in

ne figure ( Fig. 11 ). This requires a rescaling of the results accord-

ng to complete Froude scaling, time and pressure are for instance

escaled by factors of 
√ 

40 and 40 respectively. All numerical cal-

ulations are performed with 150 finite volumes and a CFL number

f 0.4 (For the time integrator and limiter used, the upper bound

or this CFL number, a TVD bound, is 0.5). 

We note that the two-fluid model and the Bagnold model show

n excellent agreement. Furthermore the complete Froude similar-

ty of Cases 1 and 5 is demonstrated in Fig. 12 . 

The analytic solution assumes an incompressible liquid. The dif-

erence between this solution and our numerical solution, which

ncludes liquid compressibility, is seen clearly when raising g from

.81 m/s 2 to for instance a 30 times larger value, thereby raising

he impact number. 

In Fig. 13 we see that the solutions from the two models di-

erge for increasing values of g . The liquid compressibility has the

xpected cushioning effect on the impact pressures. 
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Fig. 11. Pressure histories in the compressed gas pocket at h = 0 . Comparison of the two-fluid model and the Bagnold model for the five test cases defined in [12] . Pressure 

p in Pascal and time t in seconds.. 

Fig. 12. Zoom in on Fig. 11 . Pressure p in Pascal and time t in seconds.. 
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. Shock-bubble interaction 

Haas and Sturtevant [14] performed experiments on shock-

ubble interaction. We consider in the experiments the results ob-

ained with cylindrical bubbles, which we compare with our two-

imensional numerical simulations. 

The bubble is filled with a gas different from the surrounding

ir and contained within a thin film. Both the bubble and the sur-

ounding air are at rest initially. A shock wave hits the cylindrical
ubble from aside and interacts with it. The length and time scales

nvolved are such that mixing of the fluids does not have a signif-

cant effect, making the two-fluid model suitable to describe the

ituation. 

Two variants have been considered: one in which the bubble is

lled with a heavier gas than the surrounding air (R22) and one

ith a lighter gas (helium, mixed with some air). The density of

he gas has a major effect on the deformations the bubble under-

oes. 



12 R. de Böck, A.S. Tijsseling and B. Koren / Computers and Fluids 193 (2019) 104272 

Fig. 13. Pressure histories in the compressed gas pocket. Pressure p in Pascal and time t in seconds. Comparison of the two-fluid model and the piston model with values 

of g : (a) for g(= 9 . 81 m/s 2 ), (b) 3 g , (c) 10 g , (d) 30 g . Due to liquid compressibility, the results from the two models diverge for higher values of g . 

Fig. 14. Sketch of the initial condition of the Haas and Sturtevant experiment [14] . 
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The experiment resulted in a number of shadow photographs

which clearly show what happens to the bubble. This has become

a benchmark for numerical simulation of compressible two-fluid

flows [19,21] . In both cases, we numerically simulate the situa-
ion on a 356 × 960 rectangular grid with the new limiter func-

ion and a CFL number of 0.24. The limiters that we are using al-

ow for a maximal CFL number of 1 
2 in one dimension. Simulat-

ng in two dimensions further decreases this CFL number with a

actor 2 [29] , yielding an upper bound for the CFL number of 1 
4 .

e use a CFL number slightly below this upper bound. Numerical

ests have shown that this allows us to take the value of ε intro-

uced in Section 3.4 to be 10 −10 , whereas the other limiter func-

ions considered require a value of ε = 10 −5 to preserve positivity

f the volume fraction. The symmetry in the y -direction is utilized

o simulate only half of the domain, so symmetry in the flow is

mposed. 

.1. R22 

For the case with a heavy gas in the bubble, R22, the den-

ity resulting from the numerical simulation and the shadow pho-

ographs from the experiment in [14] are juxtaposed. Note that the

hadow photographs still show the initial position of the bubble,
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Fig. 15. Results for the Haas–Sturtevant test case with the heavier bubble. Top: shadow photographs of the experiment; bottom: corresponding bulk densities resulting from 

the numerical simulation. The color scheme in the plot from the simulation has been adjusted to highlight the important density gradients. 
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5

 

ue to a remainder of the film. For a better comparison, we added

his to the plots of the numerical results as well. 

The speed of sound inside the bubble is lower than that of the

urrounding air, making the shock move around the bubble faster

han inside the bubble. The progressively darker colors inside the

ubble indicate the coalescence of the refracted shocks, causing a

trong rise in density. The bubble is initially compressed and later

xpands sideways. A good qualitative agreement is shown between

he experiment and the numerical solution, especially in the outer

r  
egion, where the wave speeds match and the same shock pattern

s obtained. The numerical results show instabilities at the free

urface, which in the experiment also occur and are Richtmyer–

eshkov instabilities. 

.2. Helium 

In the second case the bubble has a lower density than the sur-

ounding air, so that the shock reaches its far side faster through
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Fig. 16. Results for the Haas–Sturtevant test case with lighter bubble. Top: shadow photographs of the experiment; bottom: corresponding bulk density distributions from 

the numerical simulation. The color scheme in the plot from the simulation has been adjusted to highlight the important gradients. 
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the bubble than around it. The bubble compresses and later ex-

pands into a peanut-like shape. Eventually it splits up. Fig. 16

shows the numerical simulation together with the measurements.

A good agreement is seen with regard to the propagation of the

shock wave. The wave pattern, resulting from the interplay be-

tween the two fluids and the upper and lower walls is correctly

captured as well. 
.3. Importance of the parameter ε

As indicated in Section 3.4 , the parameter ε is used to slightly

hange the initial condition, for positivity purposes. We take a low

alue for ε ( 10 −10 ) and numerically simulate the R22 bubble again,

or a longer time, for different limiter functions, all other parame-

ers being the same. For this value of ε the new limiter is able to
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Fig. 17. Volume fraction for R22-bubble case for very low ε (10 −10 ) , using the newly proposed limiter function (a) and the Koren limiter function (b). Volume fractions 

within the [0, 1] range are in grayscale, values outside the range are displayed in red. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 18. Density for R22-bubble case for very low ε (10 −10 ) , using the newly proposed limiter function (a) and the Koren limiter function (b). 
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p  
aintain positivity of the volume fraction, whereas the other lim-

ter functions discussed in this paper are not. In Fig. 17 , we com-

are results obtained with the new limiter and the Koren limiter.

he new limiter result maintains positivity, whereas the Koren lim-

ter locally does not. (For ε = 10 −5 , the Koren limiter yields nearly

he same result as that in Fig. 17 a.) 

The corresponding density results are shown in Fig. 18 . Even

hough the loss of positivity occurs very locally, it clearly has dras-

ic effects. The spurious oscillations in the right half of Fig. 18 b are

 results. 

. Conclusion 

In order to obtain a better understanding of the phenomenon

f sloshing of LNG inside tanks, numerical simulations are required

o supplement the data from experiments. To prepare for this, we

onsidered a compressible two-fluid flow formulation, which uses

he Kapila model. 
A shock-capturing finite-volume method is employed to dis-

retize the two-fluid flow equations. In here the HLLC approximate

iemann solver is used in evaluating both the convective operator

nd the source term. To achieve higher-order accuracy we employ

he MUSCL approach, which requires a limiter function for posi-

ivity. We introduced a novel limiter function and showed that it

as better positivity properties than the commonly used ones. It

s shown to have higher than second-order convergence. A third-

rder accurate explicit Runge-Kutta method is applied for time in-

egration. 

Two types of test cases are considered: a one-dimensional

ave-impact problem (the generalized Bagnold model) and a

wo-dimensional shock-bubble interaction problem (the Haas and

turtevant experiment). 

The generalized Bagnold model is a one-dimensional simplifi-

ation of a breaking wave. It allows for an analytic solution, pro-

ided that the liquid is considered incompressible. For wave im-

acts where the Bagnold number , describing the severity of the im-

act, is low, this compared well with the two-fluid model. The ex-
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pected divergence of the two models for higher impact numbers is

shown. 

An often-used benchmark case for two-dimensional compress-

ible two-fluid flow is provided by experiments conducted by Haas

and Sturtevant. The numerical method shows a good qualitative

agreement with the shadow photographs from the experiments.

The method is able to reproduce free-surface instabilities. The next

step is to extend this model to include phase transition using

source terms. We think that the improved positivity property of

the newly proposed limiter function will prove its worth there,

since positivity of the volume fraction is harder to maintain when

there are source terms that affect it. 
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