840 research outputs found
Guidelines for the functional annotation of microRNAs using the Gene Ontology
MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual)
R&D and innovation policy in the Western Balkans: are there additionality effects?
This article examines three types of additionality—input, output, and behavioural—in a cross-country framework. Besides conducting a systemic evaluation, which is scarce even in developed economies, this is among the first studies to investigate the effectiveness of R&D and innovation policy in transition economies. We estimate treatment effects for small and medium-sized firms in six Western Balkan countries. Empirical findings from matching estimators indicate no input and output additionality, while we find evidence of behavioural additionality. These results highlight the importance of conducting a systemic evaluation of innovation public support. We discuss theoretical and policy implications stemming from our empirical findings
Automatic Modulation Classification of Real Signals in AWGN Channel Based on Sixth-Order Cumulants
Automatic modulation classification (AMC) represents an important integral part of modern communication systems. While novel AMC algorithms based on complex neural network structures showed significant performance improvements, in practical applications low algorithm complexity of AMC algorithms based on higher-order cumulants still make them very attractive. AMC algorithm based on sixth-order cumulants showed very good performance in this context, especially when it comes to distinguishing Binary Phase Shift Keying (BPSK) signals from complex constellations. Still, no further analysis of expected performance with other real constellations was presented for this algorithm so far. In this paper, the performance was explored in a wider context of real signals classification, by observing various Pulse Amplitude Modulation (PAM) constellations, whose statistical features are presented for the first time. Their classification performance was tested via Monte – Carlo simulations, and explained through the presence of bias under conditions of strong additive white Gaussian noise channel, reported in this paper for real signals for the first time. One new approach in AMC is proposed, which ensures improvement in the classification of real signal constellations. Achieved improvement is confirmed in many Monte – Carlo experiments, where proposed new AMC scheme is tested versus the most popular standard higher-order cumulants-based algorithms
Physical forcing and physical/biochemical variability of the Mediterranean Sea:A review of unresolved issues and directions of future research
Recommended from our members
Recent progress in understanding and projecting regional and global mean sea-level change
Considerable progress has been made in understanding the present and future regional and global sea level in the 2 years since the publication of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. Here, we evaluate how the new results affect the AR5’s assessment of (i) historical sea level rise, including attribution of that rise and implications for the sea level budget, (ii) projections of the components and of total global mean sea level (GMSL), and (iii) projections of regional variability and emergence of the anthropogenic signal. In each of these cases, new work largely provides additional evidence in support of the AR5 assessment, providing greater confidence in those findings. Recent analyses confirm the twentieth century sea level rise, with some analyses showing a slightly smaller rate before 1990 and some a slightly larger value than reported in the AR5. There is now more evidence of an acceleration in the rate of rise. Ongoing ocean heat uptake and associated thermal expansion have continued since 2000, and are consistent with ocean thermal expansion reported in the AR5. A significant amount of heat is being stored deeper in the water column, with a larger rate of heat uptake since 2000 compared to the previous decades and with the largest storage in the Southern Ocean. The first formal detection studies for ocean thermal expansion and glacier mass loss since the AR5 have confirmed the AR5 finding of a significant anthropogenic contribution to sea level rise over the last 50 years. New projections of glacier loss from two regions suggest smaller contributions to GMSL rise from these regions than in studies assessed by the AR5; additional regional studies are required to further assess whether there are broader implications of these results. Mass loss from the Greenland Ice Sheet, primarily as a result of increased surface melting, and from the Antarctic Ice Sheet, primarily as a result of increased ice discharge, has accelerated. The largest estimates of acceleration in mass loss from the two ice sheets for 2003–2013 equal or exceed the acceleration of GMSL rise calculated from the satellite altimeter sea level record over the longer period of 1993–2014. However, when increased mass gain in land water storage and parts of East Antarctica, and decreased mass loss from glaciers in Alaska and some other regions are taken into account, the net acceleration in the ocean mass gain is consistent with the satellite altimeter record. New studies suggest that a marine ice sheet instability (MISI) may have been initiated in parts of the West Antarctic Ice Sheet (WAIS), but that it will affect only a limited number of ice streams in the twenty-first century. New projections of mass loss from the Greenland and Antarctic Ice Sheets by 2100, including a contribution from parts of WAIS undergoing unstable retreat, suggest a contribution that falls largely within the likely range (i.e., two thirds probability) of the AR5. These new results increase confidence in the AR5 likely range, indicating that there is a greater probability that sea level rise by 2100 will lie in this range with a corresponding decrease in the likelihood of an additional contribution of several tens of centimeters above the likely range. In view of the comparatively limited state of knowledge and understanding of rapid ice sheet dynamics, we continue to think that it is not yet possible to make reliable quantitative estimates of future GMSL rise outside the likely range. Projections of twenty-first century GMSL rise published since the AR5 depend on results from expert elicitation, but we have low confidence in conclusions based on these approaches. New work on regional projections and emergence of the anthropogenic signal suggests that the two commonly predicted features of future regional sea level change (the increasing tilt across the Antarctic Circumpolar Current and the dipole in the North Atlantic) are related to regional changes in wind stress and surface heat flux. Moreover, it is expected that sea level change in response to anthropogenic forcing, particularly in regions of relatively low unforced variability such as the low-latitude Atlantic, will be detectable over most of the ocean by 2040. The east-west contrast of sea level trends in the Pacific observed since the early 1990s cannot be satisfactorily accounted for by climate models, nor yet definitively attributed either to unforced variability or forced climate change
SUM’20: State-based user modelling
Capturing and effectively utilising user states and goals is becoming a timely challenge for successfully leveraging intelligent and usercentric systems in differentweb search and data mining applications. Examples of such systems are conversational agents, intelligent assistants, educational and contextual information retrieval systems, recommender/match-making systems and advertising systems, all of which rely on identifying the user state in order to provide the most relevant information and assist users in achieving their goals. There has been, however, limited work towards building such state-aware intelligent learning mechanisms. Hence, devising information systems that can keep track of the user's state has been listed as one of the grand challenges to be tackled in the next few years [1]. It is thus timely to organize a workshop that re-visits the problem of designing and evaluating state-aware and user-centric systems, ensuring that the community (spanning academic and industrial backgrounds) works together to tackle these challenges
Accumulation of fibronectin in the heart after myocardial infarction: a putative stimulator of adhesion and proliferation of adipose-derived stem cells
Stem cell therapy is a promising treatment after myocardial infarction (MI). A major problem in stem cell therapy, however, is that only a small proportion of stem cells applied to the heart can survive and differentiate into cardiomyocytes. We hypothesized that fibronectin in the heart after MI might positively affect stem cell adhesion and proliferation at the site of injury. Therefore, we investigated the kinetics of attachment and proliferation of adipose-tissue-derived stem cells (ASC) on fibronectin and analysed the time frame and localization of fibronectin accumulation in the human heart after MI. ASCs were seeded onto fibronectin-coated and uncoated culture wells. The numbers of adhering ASC were quantified after various incubation periods (5-30 min) by using DNA quantification assays. The proliferation of ASC was quantified after culturing ASC for various periods (0-9 days) by using DNA assays. Fibronectin accumulation after MI was quantified by immunohistochemical staining of heart sections from 35 patients, after different infarction periods (0-14 days old). We found that ASC attachment and proliferation on fibronectin-coated culture wells was significantly higher than on uncoated wells. Fibronectin deposition was significantly increased from 12 h to 14 days post-infarction, both in the infarction area and in the border-zone, compared with the uninfarcted heart. Our results suggest that a positive effect of fibronectin on stem cells in the heart can only be achieved when stem cell therapy is applied at least 12 h after MI, when the accumulation of fibronectin occurs in the infarcted heart. © 2008 The Author(s)
RNAcentral : a hub of information for non-coding RNA sequences
RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences, collating information on ncRNA sequences of all types from a broad range of organisms. We have recently added a new genome mapping pipeline that identifies genomic locations for ncRNA sequences in 296 species. We have also added several new types of functional annotations, such as tRNA secondary structures, Gene Ontology annotations, and miRNA-target interactions. A new quality control mechanism based on Rfam family assignments identifies potential contamination, incomplete sequences, and more. The RNAcentral database has become a vital component of many workflows in the RNA community, serving as both the primary source of sequence data for academic and commercial groups, as well as a source of stable accessions for the annotation of genomic and functional features. These examples are facilitated by an improved RNAcentral web interface, which features an updated genome browser, a new sequence feature viewer, and improved text search functionality. RNAcentral is freely available at https://rnacentral.org
Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research
This paper is the outcome of a workshop held in Rome in November 2011 on the occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) program. In the workshop discussions, a number of unresolved issues were identified for the physical and biogeochemical properties of the Mediterranean Sea as a whole, i.e., comprising the Western and Eastern sub-basins. Over the successive two years, the related ideas were discussed among the group of scientists who participated in the workshop and who have contributed to the writing of this paper.
Three major topics were identified, each of them being the object of a section divided into a number of different sub-sections, each addressing a specific physical, chemical or biological issue:
1. Assessment of basin-wide physical/biochemical properties, of their variability and interactions.
2. Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing through straits) vs. internal variability.
3. Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how they affect the sub-basin circulation and property distribution.
Furthermore, a number of unresolved scientific/methodological issues were also identified and are reported in each sub-section after a short discussion of the present knowledge. They represent the collegial consensus of the scientists contributing to the paper. Naturally, the unresolved issues presented here constitute the choice of the authors and therefore they may not be exhaustive and/or complete. The overall goal is to stimulate a broader interdisciplinary discussion among the scientists of the Mediterranean oceanographic community, leading to enhanced collaborative efforts and exciting future discoveries
- …
