991 research outputs found

    Small Universal Accepting Networks of Evolutionary Processors with Filtered Connections

    Full text link
    In this paper, we present some results regarding the size complexity of Accepting Networks of Evolutionary Processors with Filtered Connections (ANEPFCs). We show that there are universal ANEPFCs of size 10, by devising a method for simulating 2-Tag Systems. This result significantly improves the known upper bound for the size of universal ANEPFCs which is 18. We also propose a new, computationally and descriptionally efficient simulation of nondeterministic Turing machines by ANEPFCs. More precisely, we describe (informally, due to space limitations) how ANEPFCs with 16 nodes can simulate in O(f(n)) time any nondeterministic Turing machine of time complexity f(n). Thus the known upper bound for the number of nodes in a network simulating an arbitrary Turing machine is decreased from 26 to 16

    Unary patterns under permutations

    Get PDF
    Thue characterized completely the avoidability of unary patterns. Adding function variables gives a general setting capturing avoidance of powers, avoidance of patterns with palindromes, avoidance of powers under coding, and other questions of recent interest. Unary patterns with permutations have been previously analysed only for lengths up to 3. Consider a pattern p=πi1(x)πir(x)p=\pi_{i_1}(x)\ldots \pi_{i_r}(x), with r4r\geq 4, xx a word variable over an alphabet Σ\Sigma and πij\pi_{i_j} function variables, to be replaced by morphic or antimorphic permutations of Σ\Sigma. If Σ3|\Sigma|\ge 3, we show the existence of an infinite word avoiding all pattern instances having x2|x|\geq 2. If Σ=3|\Sigma|=3 and all πij\pi_{i_j} are powers of a single morphic or antimorphic π\pi, the length restriction is removed. For the case when π\pi is morphic, the length dependency can be removed also for Σ=4|\Sigma|=4, but not for Σ=5|\Sigma|=5, as the pattern xπ2(x)π56(x)π33(x)x\pi^2(x)\pi^{56}(x)\pi^{33}(x) becomes unavoidable. Thus, in general, the restriction on xx cannot be removed, even for powers of morphic permutations. Moreover, we show that for every positive integer nn there exists NN and a pattern πi1(x)πin(x)\pi^{i_1}(x)\ldots \pi^{i_n}(x) which is unavoidable over all alphabets Σ\Sigma with at least NN letters and π\pi morphic or antimorphic permutation

    Detecting One-variable Patterns

    Full text link
    Given a pattern p=s1x1s2x2sr1xr1srp = s_1x_1s_2x_2\cdots s_{r-1}x_{r-1}s_r such that x1,x2,,xr1{x,x}x_1,x_2,\ldots,x_{r-1}\in\{x,\overset{{}_{\leftarrow}}{x}\}, where xx is a variable and x\overset{{}_{\leftarrow}}{x} its reversal, and s1,s2,,srs_1,s_2,\ldots,s_r are strings that contain no variables, we describe an algorithm that constructs in O(rn)O(rn) time a compact representation of all PP instances of pp in an input string of length nn over a polynomially bounded integer alphabet, so that one can report those instances in O(P)O(P) time.Comment: 16 pages (+13 pages of Appendix), 4 figures, accepted to SPIRE 201

    Local Patterns

    Get PDF
    A pattern is a word consisting of constants from an alphabet Sigma of terminal symbols and variables from a set X. Given a pattern alpha, the decision-problem whether a given word w may be obtained by substituting the variables in alpha for words over Sigma is called the matching problem. While this problem is, in general, NP-complete, several classes of patterns for which it can be efficiently solved are already known. We present two new classes of patterns, called k-local, and strongly-nested, and show that the respective matching problems, as well as membership can be solved efficiently for any fixed k

    Probing the N = 32 shell closure below the magic proton number Z = 20: Mass measurements of the exotic isotopes 52,53K

    Get PDF
    The recently confirmed neutron-shell closure at N = 32 has been investigated for the first time below the magic proton number Z = 20 with mass measurements of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly lower than for 52Ca, highlighting the doubly-magic nature of this nuclide. Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.Comment: 5 pages, 5 figure

    Matching structure and bargaining outcomes in buyer–seller networks

    Get PDF
    We examine the relationship between the matching structure of a bipartite (buyer-seller) network and the (expected) shares of the unit surplus that each connected pair in this network can create. We show that in different bargaining environments, these shares are closely related to the Gallai-Edmonds Structure Theorem. This theorem characterizes the structure of maximum matchings in an undirected graph. We show that the relationship between the (expected) shares and the tructure Theorem is not an artefact of a particular bargaining mechanism or trade centralization. However, this relationship does not necessarily generalize to non-bipartite networks or to networks with heterogeneous link values

    Precision Mass Measurements of 129-131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process

    Full text link
    Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning- trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N = 82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A = 128 - 132 region and a reduction of the uncertainties from the precision mass input data

    Dynamic multilateral markets

    Get PDF
    We study dynamic multilateral markets, in which players' payoffs result from intra-coalitional bargaining. The latter is modeled as the ultimatum game with exogenous (time-invariant) recognition probabilities and unanimity acceptance rule. Players in agreeing coalitions leave the market and are replaced by their replicas, which keeps the pool of market participants constant over time. In this infinite game, we establish payoff uniqueness of stationary equilibria and the emergence of endogenous cooperation structures when traders experience some degree of (heterogeneous) bargaining frictions. When we focus on market games with different player types, we derive, under mild conditions, an explicit formula for each type's equilibrium payoff as the market frictions vanish

    Fault kinematics in northern Central America and coupling along the subduction interface of the Cocos Plate, from GPS data in Chiapas (Mexico), Guatemala and El Salvador

    Get PDF
    International audienceNew GPS measurements in Chiapas (Mexico), Guatemala and El Salvador are used to constrain the fault kinematics in the North America (NA), Caribbean (CA) and Cocos (CO) plates triple junction area. The regional GPS velocity field is first analysed in terms of strain partitioning across the major volcano-tectonic structures, using elastic half-space modelling, then inverted through a block model. We show the dominant role of the Motagua Fault with respect to the Polochic Fault in the accommodation of the present-day deformation associated with the NA and CA relative motion. The NA/CA motion decreases from 18-22 mm yr−1 in eastern Guatemala to 14-20 mm yr−1 in central Guatemala (assuming a uniform locking depth of 14-28 km), down to a few millimetres per year in western Guatemala. As a consequence, the western tip of the CA Plate deforms internally, with ≃9 mm yr−1 of east-west extension (≃5 mm yr−1 across the Guatemala city graben alone). Up to 15 mm yr−1 of dextral motion can be accommodated across the volcanic arc in El Salvador and southeastern Guatemala. The arc seems to mark the northern boundary of an independent forearc sliver (AR), pinned to the NA plate. The inversion of the velocity field shows that a four-block (NA, CA, CO and AR) model, that combines relative block rotations with elastic deformation at the block boundaries, can account for most of the GPS observations and constrain the overall kinematics of the active structures. This regional modelling also evidences lateral variations of coupling at the CO subduction interface, with a fairly high-coupling (≃0.6) offshore Chiapas and low-coupling (≃0.25) offshore Guatemala and El Salvador
    corecore