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Abstract
A pattern is a word consisting of constants from an alphabet Σ of terminal symbols and variables
from a set X. Given a pattern α, the decision-problem whether a given word w may be obtained
by substituting the variables in α for words over Σ is called the matching problem. While this
problem is, in general, NP-complete, several classes of patterns for which it can be efficiently
solved are already known. We present two new classes of patterns, called k-local, and strongly-
nested, and show that the respective matching problems, as well as membership can be solved
efficiently for any fixed k.
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1 Introduction

A pattern is a string (word) that consists of terminal symbols (e. g., a, b, c), treated as
constants, and variables (e. g., x1, x2, x3). A pattern is mapped to a word by substituting the
variables by strings of terminals. For example, x1x1babx2x2 can be mapped to acacbabcc
or ccbabaa by the substitution (x1 → ac, x2 → c) and (x1 → c, x2 → a), respectively. If a
pattern α can be mapped to a string of terminals w, we say that α matches w.

Patterns with variables appear in various areas of theoretical computer science, such as
combinatorics on words (word equations [13, 20], unavoidable patterns [19]), pattern matching
(generalized function matching [1, 23]), language theory (pattern languages [2]), learning
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theory (inductive inference [2, 22, 24, 5], PAC-learning [14]), database theory (extended
conjunctive regular path queries [3]), as well as in practice, e.g., extended regular expressions
with backreferences [4, 12, 10], used in programming languages like Perl, Java, Python,
etc. In most of these settings, patterns are used to express combinatorial pattern matching
questions, e.g., whether a string contains certain types of regularities, encoded in the pattern.
Thus, it is often necessary to solve efficiently the matching problem: given a pattern α and a
string w, does α match w? The set of words (over a given alphabet of terminal symbols)
matched by a pattern α is called the pattern language of α, denoted L(α). Thereby, the
matching problem for inputs α and w becomes testing whether w ∈ L(α).

Unfortunately, the matching problem is NP-complete [2] in general. This is especially bad
for some computational tasks on patterns which implicitly solve the matching problem and
are therefore also intractable. For instance, in the field of algorithmic learning theory, this is
the case for the task of computing descriptive patterns for finite sets of words [2, 7]: given a
set of words S, find a pattern α that matches all words in S (i.e., S ⊆ L(α)), and for any
other pattern α′ with S ⊆ L(α′) we have that L(α′) 6⊂ L(α) (in a sense, α is minimal in the
set of patterns matching S, so it describes S as accurately as possible). As illustrated by
Angluin in [2], descriptive patterns are useful for the inductive inference of pattern languages,
which are important in the context of learning theory since they constitute a prominent
example of a language class that is inferable from positive data (see, e. g., [17, 26, 28, 30, 21]
and, for a survey, [29]). Moreover, descriptive patterns have also been applied in approaches
of learning upper-best approximations of other types of formal languages (see [15, 11]). This,
combined the other mentioned applications of pattern matching, provides good reason to
identify cases in which this problem becomes tractable, and, moreover, to optimize as far as
possible the corresponding algorithms.

In order to facilitate this, one looks at restricted classes of patterns. A thorough
analysis [25, 28, 8, 9, 6, 27] of the complexity of the matching problem has provided some
subclasses of patterns for which the matching problem is in P, when some (sometimes
sophisticated) structural parameters of patterns are bounded by constants.

Our Contribution. In this paper we continue this line of work, and propose a series of
new classes for which both the membership to the class and the matching problem can
be decided in polynomial time. The first, k-local patterns, are a natural generalization of
non-cross patterns, introduced in [28]. In these patterns, no occurrence of a variable x2 6= x1
is allowed between any two occurrences of the variable x1. For instance, x1aax1bx2ax2x3x3
is a non-cross pattern. We can test in linear time whether a pattern is non-cross, and an
efficient matching algorithm for non-cross patterns was given in [6]. The general idea behind
a matching algorithm for such patterns is rather easy: for a pattern α, one can order its
variables in a sequence x1, x2, . . . , xk such that α can be written as α1α2 . . . αk with αi
containing only occurrences of xi and terminals for all i ∈ [k]. To match this to a word w,
we first look for all ways to replace x1 by a factor of w such that α1 is mapped to some
prefix w[1..i1] of w. Then we look for all ways to replace x2 by a factor of w such that α2 is
mapped to a factor w[i1 + 1..i2] of w with w[1..i1] being a possible image of α1, and so on.
In general, we try to find all possible ways to map α1 · · ·αj to a prefix w[1..ij ] of w looking
at how α1 · · ·αj−1 were mapped to a prefix w[1..ij−1] of w. In the end, we check if there is
a way to map α to w. This can be clearly implemented in polynomial time using dynamic
programming; see [6] for an efficient algorithm based on combinatorics on words insights.

We extend this matching idea to define the class of k-local patterns, which are defined in
full in Section 3. It is possible to match such patterns by substituting the variables with
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strings in such an order that at any given point, one has matched (at most) k separate
factors (blocks) of the pattern to the same number of factors of the input word. Thus,
we can keep track of the k matched factors, which will be extended by assigning the next
variable, in the aforementioned order. So, instead of aligning a prefix of the pattern with
a prefix of the word, we align j ≤ k factors of the pattern to j factors of the word. For
fixed k, a dynamic programming strategy will also work in this case to obtain a polynomial
algorithm for matching k-local patterns, once we have the order in which the variables of
the patterns are to be assigned. However, the definition of k-local patterns is much more
involved than the definition of non-cross patterns and leads to a deeper understanding of the
combinatorial structure of the pattern, also when compared to, for instance, patterns with
a bounded number of variables or a bounded number of repeated variables. As such, it is
not surprising that the problem of testing whether a pattern is k-local is a more involved
computational task. Provided that k is fixed, we produce two polynomial-time algorithms.
The first one decides in time O(km2k) whether a pattern of length m is k-local. In this
process we can construct the order in which the variables are to be assigned and we derive a
second algorithm that, given a pattern α of length m and a word w of length n ≥ m, decides
whether α is k-local and, if so, whether α matches w in time O(mkn3k−1).

While the definition of k-local patterns is somehow algorithmic, it does not say much
about the syntactic structure of these patterns. We give precise structural characterizations of
the 1- and 2-local patterns, and show that in the case of 1-local patterns this leads to a linear
algorithm deciding whether a pattern is 1-local (Theorem 10) and an O(mn2 logn)-time
algorithm matching a 1-local pattern of length m to a word of length n (Theorem 11).

These algorithms are not a direct implementation of the straightforward dynamic pro-
gramming approach, but rather they combine this with some insights in the structure of
k-local patterns and use non-trivial string processing data structures. Moreover, while k-local
patterns (for fixed k) can be shown also to have bounded treewidth, and hence the techniques
from [25] may be used to derive a polynomial time matching algorithm, it is worth noting
that both for general k, and especially in the case k = 1, the algorithms presented in the
current paper provide a significant improvement in complexity.

The palindromic structure of 1-local patterns (see Lemma 9) also gives rise to the idea of
separating parts of a pattern with parenthesizing variables. We define the class of strongly-
nested patterns (Definition 19, Section 5), which are a restriction on the nested patterns,
and more generally, the mildly entwined patterns introduced in [25]. This further restriction
comes with advantages: we show that one can decide whether a pattern is nested in linear
time, and that one can match a pattern of length m to a word of length n in O(mn3) time,
also a significant improvement on the O(mn6) algorithm known for mildly entwined patterns.

Additionally, we show that there is no constant k such that all strongly-nested patterns are
k-local. In particular, we construct a simple algorithm based on combinatorial insights which
computes, for a nested pattern α, the minimum ` such that α is `-local. It is straightforward
to infer from the algorithm that there are nested patterns of length m that are Θ(logm)-local.

Shinohara Classes. In addition to considering restricted classes of patterns, one can restrict
the concept of descriptiveness to any given class Π of patterns: a pattern α is Π-descriptive
if α ∈ Π, S ⊆ L(α) and there is no other pattern β ∈ Π with S ⊆ L(β) ⊂ L(α). Based
on this idea, in [28], Shinohara initiated a line of research by providing a polynomial-time
algorithm, for a (very) restricted class of patterns and a finite set of strings. This approach
was extended in [7] to the notion of a Shinohara-class of patterns: a class of patterns Π is a
Shinohara-class if it contains the set {x1x2 · · ·xk | k ∈ N} and, for every α ∈ Π, the pattern
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α′ obtained by substituting some length i suffix of α by a sequence of new variables y1y2 · · · yi
is also in Π. Within the set of Shinohara-classes of patterns, it was shown that Π-descriptive
patterns can be computed in polynomial time if and only if the question whether α ∈ Π
and the matching problem for Π are polynomial-time decidable. Hence, it is interesting to
identify Shinohara classes for which the matching problem can be solved efficiently. It is
easily seen that both k-local patterns and strongly-nested patterns are Shinohara classes
(provided k ≥ 1). Thus, we can conclude that, provided k is treated as constant, descriptive
patterns can be computed for both these classes in polynomial time.

2 Basic Definitions

For detailed definitions regarding combinatorics on words we refer to [18], [19]. For n, i, j ∈ N0
with i ≤ j, let [n] = {1, . . . , n} and [i, j] = {i, i+1, . . . , j−1, j}. In this paper, Σ = {a, b, . . .}
denotes a finite alphabet of terminal symbols and X = {x1, x2, . . .} a potentially infinite
alphabet of variables. We assume Σ ∩X = ∅. Words in (X ∪ Σ)∗ are patterns, while words
in Σ∗ are terminal words (usually just words). Patterns in X∗ are called terminal-free. We
denote the set of patterns by PatΣ = (X ∪Σ)∗ and define Pat =

⋃
Σ PatΣ. The empty word

is denoted by ε and the length of a word w by |w|. Given a pattern α, let alph(α) and var(α)
be respectively the smallest sets ∆ ⊆ Σ and Y ⊆ X such that α ∈ (∆ ∪ Y )∗. Given a word
w = a1a2 . . . an, the reversal wR of w is anan−1 . . . a1. For w ∈ Σ∗ and each i, j ∈ [|w|] with
i ≤ j, let w[i..j] = w[i] · · ·w[j], where w[k] represents the kth letter of w for k ∈ [|w|]. Each
word w[i..j] is a factor of w. If 0 < |w[i..j]| < |w| then w[i..j] is a proper factor of w. We
use the term ‘blocks’ for factors which satisfy a property but which are not contained strictly
within a larger factor satisfying the same property. Given a variable x and pattern α, a block
of x is a factor β = α[i..j] with var(β) = {x} such that either i = 1 or α[i− 1] = y1 6= x and
either j = |α| or α[j + 1] = y2 6= x. Marked blocks are defined similarly in Section 3. Given a
variable x, we denote a block of x by [x]b (resp. xb if it necessarily contains at least one x).
Using this notation we can define classes of patterns, e.g., α ∈ [x]byzb implies that α has the
form given by the regular expression (Σ ∪ {x})∗y(Σ ∪ {z})+.

A substitution (for α) is a mapping h : var(α)→ Σ+. For every x ∈ var(α), we say that
x is substituted by h(x). The word obtained by substituting every occurrence of a variable
x in α by h(x) and leaving the terminals unchanged is denoted by h(α). For instance, we
consider the pattern β = x1ax2bx2 and the words u = bacabca, v = aaaabaa. It can be
verified that h(β) = u, where h(x1) = b, h(x2) = ca and g(β) = v, where g(x1) = a and
g(x2) = aa. Given a pattern α, the set {h(α) | h is a substitution} is the pattern language of
α, denoted L(α). The matching problem, denoted by Match, is to decide for a given pattern
α and word w, whether there exists a substitution h with h(α) = w.1 For any P ⊆ Pat, the
matching problem for P is to decide for a given pattern α ∈ P and word w, whether there
exists a substitution h with h(α) = w.

A pattern α is regular if each variable x ∈ X occurs at most once. Given a pattern α and
y ∈ var(α), the scope of y in α is defined by scα(y) = [i, j], where i is the leftmost and j the
rightmost occurrence of y in α. The scopes of some variables y1, y2, . . . , yk ∈ var(α) coincide
in α if

⋂
1≤i≤k scα(yi) 6= ∅. We denote the scope coincidence degree (scd for short) of α by

scd(α), which is the maximum number of variables in α such that their scopes coincide. For
example, the scopes of all variables coincide in α1 = x1x2x1x2x3x1x2x3, but the scopes of

1 There exist variants of the matching problem where substitutions can also erase variables by mapping
them to ε. Here we only consider non-erasing substitutions.
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x1 and x3 do not coincide in α2 = x1x2x1x2x3x2x3x3; thus, scd(α1) = 3 and scd(α2) = 2.
For every k ∈ N, let Patscd≤k denote the set of patterns α with scd(α) ≤ k. The class
of non-cross patterns (see [28])) coincides exactly with Patscd≤1. A set Π ⊆ (X ∪ Σ)∗
is a Shinohara class if {x1x2 · · ·xk | k ∈ N} ⊆ Π and, for every α ∈ Π and i ∈ [|α|], we
have α′ = α[1..i]y1y2 . . . y|α|−i ∈ Π, where y1, y2, . . . , y|α|−i ∈ X\ var(α) with yj 6= yk for
1 ≤ j < k ≤ |α|−i. For a class Π of patterns and a finite set of words S ⊂ Σ∗, a pattern α ∈ Π
is Π−descriptive of S if there does not exist a pattern β ∈ Π such that S ⊆ L(β) ⊂ L(α).

3 k-Local Patterns

In the following section, the main ideas surrounding k-locality are presented along with the
formal definition and some initial observations. At the end of the section, two of the main
results motivating the idea of k-locality are presented: namely that if k is a fixed constant,
then the membership and matching problems may be solved efficiently for k-local patterns.

Intuitively, the notion of k-locality involves marking the variables in the pattern in some
arbitrary order until all the variables are marked. The pattern is k-local if this marking
can be done while never creating more than k marked blocks. Variables which only occur
adjacent to those which are already marked can be marked “for free” – without creating any
new blocks, and thus a valid marking sequence allows a sort-of parsing of the pattern whilst
maintaining a degree of closeness (locality) to the parts already parsed.

As with various other classes of patterns motivated by efficient matching algorithms
(bounded scd, non-cross, etc.), k-locality deals only with the relative positions of variables,
while the terminal symbols are not taken into account. Hence, before we introduce k-locality
formally, it is convenient to consider the underlying pattern consisting only of variables – the
skeleton. For example, the skeleton of β = aaxxcybazayay would be α = xxyzyy.

I Definition 1. Let β ∈ (X ∪ Σ)∗. The skeleton of β is the (unique) pattern α = y1 . . . yn
with yi ∈ X for i ∈ [n], n ∈ N, such that there exist words a0, . . . , an ∈ Σ∗ with β =
a0y1a1 . . . an−1ynan.

Next, the idea of marking a variable is formalized. For each variable x ∈ X, we produce a
marked version x. Marking x corresponds to substituting every occurrence of x in a pattern
with its marked equivalent x.

I Definition 2. Let X = {x | x ∈ X} be the set of marked variables (with X ∩X = ∅). For
the skeleton α of a pattern β ∈ (X ∪ Σ)∗, a marking sequence of the variables occurring in
β, is an enumeration x1, x2, . . . , x| var(β)| of var(β). A variable xi is called marked at point
k ∈ N (both in β and α) if i ≤ k. Moreover, we define αk, the marked skeleton of β at point
k, as the string obtained from α by replacing all xi with i ≤ k by xi. A factor of αk is a
marked block if it consists of one or more marked variables and is maximal in the sense that
it is not contained within another such factor.

Using the idea of a marking sequence, we can now define the k-locality of a pattern.

I Definition 3. A pattern β ∈ (X ∪Σ)∗, with skeleton α, is k-local for k ∈ N0 if there exists
a marking sequence x1, . . . , x` of var(β), such that, for all i ≤ ` we have that αi, the marked
skeleton of β at point i, has at most k marked blocks. A pattern is called strictly k-local if it
is k-local but not (k − 1)-local. Let Patk-loc denote the class of k-local patterns.

Consider the pattern β = axayxbyazabxz, whose skeleton is α = xyxyzxz. If we consider
the marking sequence y, x, z, then we obtain the following (partially) marked patterns:

α1 = x y x y z x z, α2 = x y x y z x z, α3 = x y x y z x z.

FSTTCS 2017
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Figure 1 Lemma 5: if i blocks are already marked (grey areas), the next variable in the marking
sequence may appear at 2i positions next to the marked blocks (chessboard), and at k − 2i positions
not connected to marked blocks (striped).

Note that the final pattern (in this case α3) will always be completely marked, and hence has
exactly one marked block. However, since α1 and α2 both have exactly two marked blocks, β
(and α) are 2-local. On the other hand, they are not 1-local since every alternative marking
results in at least two blocks: the other possibilities for α1 are x y x y z x z and x y x y z x z.
The particular cases of 1- and 2-local patterns are considered in more detail in Section 4
where structural characterizations are given.

Before moving on to the first main results regarding the membership and matching
problems, a few basic observations for k-local patterns are presented. Firstly the relationship
between a k-local pattern and its factors is considered. Lemma 5 is illustrated by Figure 1.

I Lemma 4. Let β ∈ (X ∪ Σ)∗ be k-local. Then every factor of β is k-local. Moreover, if β
is strictly k-local and k ≥ 2, then there exists a proper factor of β which is not (k − 2)-local.

I Lemma 5. Let β ∈ (X∪Σ)∗ be a strictly k-local pattern with skeleton α. For all x ∈ var(β),
the number of blocks xb occurring in α is at most 2k. Moreover, there exists a variable
y ∈ var(β) such that the number of blocks yb occurring in α is at most k.

With regards to existing classes of patterns for which the matching problem may be
efficiently solved, k-local patterns generalize the non-cross patterns in a significant manner. In
fact, it follows from the results in Section 4 that non-cross (and therefore regular) patterns are
1-local. On the other hand, it can be seen with a little effort that for fixed k, k-local patterns
also have treewidth bounded by 2k. Thus are a more restricted subclass of the patterns
considered in [25]. Furthermore, k-locality is incomparable to the notion of bounded scope
coincidence degree, as witnessed by the following examples. The pattern (xy)k+1 has scope
coincidence degree one, while it is strictly (k+ 1)-local: marking either x or y first will result
in exactly k+ 1 marked blocks. On the other hand, the pattern x1x2 . . . xn−1xnxn−1 . . . x2x1
is 1-local (simply mark the xis in decreasing order), but has scope coincidence degree n
provided xi 6= xj for all i, j ∈ [n]. Note also the special degenerate case of 0-local patterns.
I Remark 6. Let β ∈ (X ∪ Σ)∗ be a pattern. Then β is 0-local if and only if β ∈ Σ∗.

Finally, the main results of this section are given. Theorems 7 and 8 show that, if k is
fixed, it is possible to decide whether a pattern is k-local and also to match a k-local pattern
to a word in polynomial time. The degree of the polynomial, however, depends on k. In
particular, Theorem 8 provides an improvement when compared to patterns with bounded
treewidth in general.

I Theorem 7. Given a pattern β ∈ (X ∪ Σ)∗ of length m, we can decide in O(m2kk) time
whether β ∈ Patk-loc. If the answer is positive, we can produce in the same time a marking
sequence witnessing that β is k-local.

The algorithm deciding whether a pattern is k-local keeps track of all possibilities having
j ≤ k marked blocks in the skeleton of β, after exactly i variables were marked. Then, for
each possibility, a new (the (i + 1)th) variable is selected, its (at most 2k, see Lemma 5)
blocks are marked, and they are merged with the already marked blocks. If the resulting
skeleton has at most k marked blocks, it is saved and will be processed later, when the
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next variable has to be marked. The pattern is k-local if and only if its entire skeleton can
be marked in this way. To get the stated running time, one has to be careful when a new
variable is selected: if we already have k marked blocks in our skeleton (and there are O(m2k)
possibilities), then the new variable has to be adjacent to one of them. If there are less than
k marked blocks, then we are not so restricted on how to choose it; however, in this case, the
number of skeletons with j < k marked blocks that we consider is lower, only O(m2k−2).

We are also able to take advantage of the k-locality structure to solve the matching
problem more efficiently than the more general (but less direct) approach given in [25].

I Theorem 8. Match for Patk-loc can be decided in O(mknmax (3k−1,2k+1)) time, where m
is the length of the input pattern and n is the length of the input word.

To solve the matching problem for Patk-loc we use essentially the same idea as above. We
now have the order in which the variables have to be assigned, so also the marked factors in
the pattern, but we need to keep track to which factors of the input word they correspond.
Then we try to assign every new variable so that it fits nicely around the already matched
factors. This is done efficiently using a data structure from [16]: given a word w and a
one-variable pattern γ (so, | var(γ)| = 1), one can produce a compact representation of all
the g factors of w matching γ in O(|γ||w|) time; moreover, we can obtain all the g factors of
w matching γ in O(|g|) time. This allows us to test efficiently which factors of w match any
of the one-variable blocks of β, and, ultimately, to assign a value to each variable.

In comparison to the algorithm from [25] for patterns of bounded treewidth, which firstly
constructs relational structures (which may be thought of as graphs) from α and w, and solves
the homomorphism problem on these relational structures, the above algorithm exploits
directly the locality structure present in the patterns. The advantage of this more focussed
approach is that it allows for a considerable improvement in the required time, reducing the
exponent of n from 4k + 4 to 3k − 1.

In [8, 9] it was shown that for many choices of numerical parameters, the matching
problem is W [1]-hard. In particular, the problem is W [1]-hard when parameterized by the
number of variables and the maximum number of occurrences of a variable. Since these
values bound the total number of variables (i.e., the length of the skeleton), they also bound
the strict k-locality of a pattern. Consequently, the matching problem is also W [1]-hard
when parameterized by strict k-locality. In addition to this observation, we add the following
two conjectures: deciding whether a pattern is k-local, when given k as input together with
the pattern, is NP-complete; and thus that computing the minimum k such that a pattern is
k-local is a computationally hard problem as well. Finally, we conjecture that the problem
of deciding whether a pattern is k-local, parametrized in k, is also W [1]-hard.

4 1-Local and 2-Local Patterns

For 0-local patterns, a straightforward structural characterization exists: they are precisely
the patterns without variables. The general case, however, is considerably more complex.
Nevertheless, for small k (1 and 2), it is possible to give some recursive, structural character-
izations. Firstly, given a 1-local pattern α, and a variable x /∈ var(α), we can add occurrences
of x to the start of α, the end, or both, while preserving 1-locality. Moreover, this operation
is sufficient to characterize 1-local patterns recursively. Since k-locality depends only on the
skeleton of a pattern, in the following lemma, only terminal-free patterns are considered.

I Lemma 9. A terminal-free pattern α ∈ X∗ is 1-local if and only if α is empty or there
exist a shorter, 1-local pattern α′ and a variable x 6∈ var(α′) such that α ∈ [x]bα′[x]b holds.
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empty y-blockempty u-block

Figure 2 Extending a 1-local structure at both sides simultaneously by a possibly empty block
of the same variable preserves the 1-locality.

It follows from this characterization that the structure of 1-local patterns has at its core
a sort-of palindromic structure. In particular, if each new variable x is added to both sides
of α, then, ignoring the number of repetitions, we get a palindrome in the variables. More
generally, if a new variable x is added to only one side of α, then this may be viewed as
adding a zero-repetition of x to the other, and hence it is still possible to infer an underlying
palindromic structure (Figure 2). This structure, along with Lemma 9 is useful because it
leads to more efficient membership and matching algorithms for 1-local patterns.

I Theorem 10. Given a pattern β ∈ (X ∪ Σ)∗ of length m, we can decide in O(m) time
whether β ∈ Pat1-loc. If the answer is positive, we can produce in the same time a marking
sequence witnessing that β is 1-local.

While the theorem above follows immediately, as only a stack is needed to check that the
variables occurring in more than one block in the skeleton of β form this palindromic structure,
solving the matching problem efficiently requires a much finer combinatorial analysis of the
way we can assign values to the variables of the pattern β. Intuitively, matching a 1-local
pattern β, of length m, to a word w, of length n, is done as follows. We first get the marking
sequence witnessing the 1-locality of β and then start assigning values to its variables, in the
order indicated by this sequence. Doing this, after trying to assign the first s variables, we
identify all possibilities to match the factor β′ of β, which contains all the occurrences of the
s assigned variables, to factors w[i..j] of w. Now, if the next variable to be assigned is x,
then the blocks of this variable x must match factors adjacent to w[i..j]. Our algorithm has
now two phases. First, for each pair i, j such that w[i..j] was a match for β′, we identify in
O(logn) time some basic ways to assign the variable x, as described above. This gives us
some new factors w[i′..j′] that match β′′, the factor of β that includes β′ and all occurrences
of x. In overall O(n2 logn) time, we can extend these factors using their combinatorial
properties (for instance, periodicity) to find all pairs i′′, j′′ such that w[i′′..j′′] matches β′′.
We extend, thus, the matchings constructed by assigning one variable at a time, in the order
of the marking sequence, just as we did in the algorithm of Theorem 8, but this time we do
it more efficiently using combinatorics on words insights.

I Theorem 11. Match for Pat1-loc can be decided in O(mn2 logn) time, where m is the
length of the input pattern and n is the length of the input word.

The “palindromic” structure present in 1-local patterns, while simple, is also an integral
part of understanding patterns with larger values k, since it describes precisely when additional
variables may be marked without creating new marked blocks and hence the idea of locality.
The characterization given in the lemma rests on the fact that, when marking a 1-local
pattern, at any point we have a single marked block. Since two marked blocks are not
allowed, it is then only possible to mark variables which only occur directly to either side
of the current block. In the more general case, we may have a number of blocks which are
not 1-local, but rather k-local for some values k. Then, using the same idea, it is possible to
continue to mark variables only occurring adjacent to each of the blocks in order, and we get
the same palindromic structure. Formally, this generalization is as follows.
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I Definition 12. Patterns γ1, γ2, . . . , γn ∈ (X ∪ Σ)∗ are homogeneously ordered if for every
x, y ∈ X, x 6= y such that γi = δ1xδ2yδ3 for some i ∈ [n] and δ1, δ2, δ3 ∈ (X ∪ Σ)∗, there
does not exist j ∈ [n] such that γj = δ′1yδ

′
2xδ
′
3 where δ′1, δ′2, δ′3 ∈ (X ∪Σ)∗. A pair of patterns

(γ1, γ2) is called mutually-palindromic if γ1 and γR2 are homogeneously ordered.

Essentially, patterns are homogeneously ordered if they are non-cross, and the variables
appear in the same order from left to right in every pattern (though some variables may not
appear in every pattern). Pairs in which one pattern is reversed provide the necessary outward
palindromic structure. For example, the patterns xyzw, xw, yw and w are homogeneously
ordered, while the patterns xxyzz and zxyy are not. Similarly, the pair (xxyzzz, zzxx) is
mutually-palindromic, since xxzz and xxyzzz are homogeneously ordered.
I Remark 13. Lemma 9 implies that for every non-empty 1-local pattern α ∈ (X ∪ Σ)∗
there exists a (not necessarily unique) mutually-palindromic pair (γ1, γ2) such that α = γ1γ2.
Moreover, concatenating a mutually-palindromic pair always gives a 1-local pattern.
A more general version of this observation demonstrates how mutually-palindromic patterns
allow for blocks (or patterns) to be extended without increasing the k-locality.

I Lemma 14. Let α, β1, β2 ∈ (X ∪Σ)∗ such that (β1, β2) is a mutually-palindromic pair and
var(α) ∩ var(β1β2) = ∅. Then β1αβ2 is k-local if and only if α is k-local, for all k ∈ N.

Before giving the characterization of 2-local patterns, which, as is to be expected, is more
involved than for 1-local patterns, the idea of 2-local pairs is considered.

I Definition 15. Let α1, α2 ∈ (X ∪ Σ)∗. Then (α1, α2) is a 2-local pair if there exists a
marking sequence of the variables in var(α1)∪var(α2) such that when applied simultaneously
to mark α1 and α2, the sum of the number of blocks in the marked skeletons at every point
is at most two.

For example, (xyxyz, x) is a 2-local pair, due to the marking sequence y, z, x, while
(xyxy, xy) is not, since whichever of x, y is marked first, there will be a total of three marked
blocks (two blocks in the first pattern and one in the second). Moreover, if (α1, α2) is a
2-local pair, then for a pattern β1α1β2α2β3 such that var(α1α2) ∩ var(β1β2β3) = ∅, there
exists a marking sequence which marks all the variables in α1 and α2 using at most two
marked blocks. If β2, α1 and α2 are non-empty, then the marking sequence requires exactly
two marked blocks. A consequence is the following simple characterization of 2-local patterns.

I Lemma 16. A pattern α ∈ (X ∪ Σ)∗ is 2-local if and only if there exist homogeneously
ordered patterns β1, β2, β3, β4 ∈ (X ∪ Σ)∗ and a 2-local pair (α′, α′′) ∈ ((X ∪ Σ)∗)2 such that
α = β1α

′βR2 β3α
′′βR4 , where var(β1β2β3β4) ∩ var(α′α′′) = ∅, and |α′α′′| < |α|.

Nevertheless, the characterization still says little about the structure of 2-local patterns
due to the fact that the structure of 2-local pairs is not discussed. A recursive characterization,
conceptually similar to Lemma 9 is given for 2-local pairs below.

I Lemma 17. Let α, β ∈ (X ∪ Σ)∗ be patterns such that var(α) ∩ var(β) 6= ∅. Then (α, β)
is a 2-local pair if and only if there exists a 2-local pair α′, β′ ∈ (X ∪ Σ)∗, homogeneously
ordered patterns γ1, γ2, γ3, γ4 ∈ (X ∪ Σ)∗ and a variable x ∈ X such that either

α ∈ γ1[x]bα′[x]bβ′[x]bγR2 and β ∈ γ3[x]bγR4 , or
α ∈ γ1[x]bγR2 and β ∈ γ3[x]bα′[x]bβ′[x]bγR4 .

where var(γ1γ2γ3γ4), {x}, and var(α′β′) are pairwise disjoint.

I Lemma 18. Let α, β ∈ (X ∪ Σ)∗ be patterns with var(α) ∩ var(β) = ∅. Then (α, β) is a
2-local pair if and only if both α and β are 2-local, and at most one of α, β is strictly 2-local.
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Using Lemmas 16, 17 and 18, it is possible to derive a dynamic programming algorithm
for recognizing 2-local patterns. However, it is worth pointing out that such an algorithm
runs in the same time as the one given by Theorem 7 and hence, even in the case of 2-locality,
it is reasonable to expect that any improvements would require significant effort.

5 Strongly-Nested Patterns

In the current section, another class of patterns which satisfy certain locality-inspired
structural constraints are considered, namely the strongly-nested patterns, which form a
subclass of the nested patterns, and consequently the mildly entwined patterns defined in [25].
It is shown that the membership problem for the class of strongly-nested patterns can be
solved in linear time, and that the matching problem can be solved in O(mn3) time, where
m is the length of the pattern and n is the length of the word to be matched: a considerable
improvement on the mildly entwined patterns in general, for which the state of the art
algorithm requires O(mn6) time. It is then shown that being strongly-nested is orthogonal
to k-locality for fixed k, and that the optimal k – the smallest such that a pattern is k-local –
can be computed efficiently for this class. The definition of strongly-nested patterns is given
formally as follows.

I Definition 19. A pattern α ∈ (X ∪ Σ)∗ is strongly-nested if, for every variable x ∈ var(α)
there exist α1, α2, α3 ∈ X∗ such that α ∈ α1[x]bα2[x]bα3, where {x}, var(α1α3) and var(α2)
are pairwise disjoint. The set of all strongly-nested patterns is denoted Patnest.

An alternative, inductive definition for strongly-nested patterns is the following: Patterns
β with | var(β)| = 1 are basic strongly-nested patterns. If β1, β2 are variable-disjoint strongly-
nested patterns, x is a variable not contained in β1, and γ1, γ2 ∈ (Σ ∪ {x})∗, then both β1β2
and γ1β1γ2 are strongly-nested patterns. Essentially, the construction of γ1β1γ2 corresponds
to wrapping blocks of x around the skeleton of β1, which suggests the idea of nesting.

The alternative definition of strongly-nested patterns suggests also a notion of depth of such
a pattern. To begin with, we say that the depth(β) = 1 if | var(β)| = 1. Further, if β1, β2 are
variable-disjoint strongly-nested patterns, then depth(β1β2) = max(depth(β1), depth(β2)).
Finally, if x is a variable not contained in β1, and γ1, γ2 ∈ (Σ∪{x})∗ with x ∈ var(γ1)∩var(γ2),
then depth(γ1β1γ2) = 1 + depth(β1). It is a simple consequence that scd(β) = depth(β), if
β is a strongly-nested pattern.

I Theorem 20. For a pattern β ∈ (X ∪ Σ)∗, of length m, we can decide in O(m) time
whether β ∈ Patnest.

As for 1-local patterns, the theorem above follows easily, as we can use a stack to check
that the variables which occur in more than one block in the skeleton of β form a correct
strongly-nested structure (i.e., they do not interleave like ..x..y..x..y.. and occur in at most
two blocks). In fact, we can represent the strongly-nested structure of a pattern as follows:
let γ ∈ (X ∪ Σ)∗ be a strongly-nested pattern that starts with a variable. We associate to γ
a binary tree Tγ defined as follows:
1. If | var(γ)| = 1, then Tγ has a single node, labelled with γ.
2. If γ = γ′γ′′ where γ′ and γ′′ are variable disjoint strongly-nested patterns, both starting

with a variable, then the tree associated with γ consists of a node labelled with � which
has two children. The left child is the tree Tγ′ , and the right child is the tree Tγ′′ . If there
are multiple ways to write γ as the catenation of two variable disjoint strongly-nested
patterns γ′ and γ′′, we choose the one where γ′ has minimal length.
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Figure 3 In the pattern, embedded in the z-blocks, two patterns are nested, which are again
nested itself, namely the ones starting and ending in x and y respectively.

3. If γ = γ′γ′′γ′′′, where var(γ′) = var(γ′′′) = {x} and x /∈ var(γ′′) and γ′, γ′′, and γ′′′ start
with a variable, then the tree Tγ consists of a node labelled with (γ′, γ′′′) which has a
single child: the tree Tγ′′ .

I Lemma 21. The tree Tγ can be constructed in linear time O(|γ|).

Using the tree structure defined in the previous lemma, we can solve the matching problem
for strongly-nested patterns efficiently.

I Theorem 22. Match for Patnest can be decided in O(mn3) time, where m is the length
of the input pattern β ∈ (X ∪ Σ)∗ and n is the length of the input word w ∈ Σ∗.

In this algorithm, we assign the variables of β following, again, a local approach: we first
assign all the variables in a subtree of Tβ , and only then move on to its sibling (if it has one).
We start with the trees consisting of single nodes, and then move on to more complex trees.
Generally, we consider the trees in increasing order of their depth. The key observation
is that the way the variables occurring in a subtree are assigned does not influence in any
way the assignment of the variables outside this subtree (thus, enforcing a locality flavour)
because a subtree only shares variables with its own subtrees.

Finally, the k-locality of strongly-nested patterns is considered. In particular, while it can
be expected that the problem of computing the optimal k such that a pattern is k-local is
intractable, it is shown that for strongly-nested patterns this can be done in polynomial time,
and thus that they are not among the (expected) hard cases. Moreover, as a by-product of
the algorithm, logarithmic bounds on the strict k-locality of strongly-nested patterns are
given relative to their length, providing a clear formal comparison between the two classes.

The key to the algorithm is that, if we consider a factor x..x, it is assured that all other
variables occurring in the factor do not occur outside as well, and thus the factor may be
treated, to an extent, as independent from the rest of the pattern. Since such factors are
fundamental to the remaining exposition, they are defined formally below.

I Definition 23. For a strongly-nested pattern α ∈ (X ∪Σ)∗ and each x ∈ var(α), let αx be
the shortest factor with α = βαxγ and x /∈ var(βγ).

In other words, αx is the factor of α from the leftmost to the rightmost occurrence of x.
The approach is based around dynamic programming on the factors αx, starting with the
shortest (just blocks of the same variable). Precisely how this may be achieved is presented
in Lemma 25 which gives the main recursive combinatorial insight. Firstly, however, it is
necessary to distinguish between two types of marking sequences: those at which the edges
are marked ‘early’ – i.e., as soon as the maximum number of marked blocks is reached – and
those at which the edges are marked ‘late’. Patterns permitting optimal marking sequences
of the former variety are less likely to introduce a higher number of marked blocks, since at
least one of the marked blocks may be absorbed by an existing marked block to the left/right.

I Definition 24. Let α ∈ (X ∪Σ)+ be a non-empty strictly k-local pattern. Let x and y be
the leftmost and rightmost variables of α. Then α is border priority markable (BPM) if there
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exists an optimal marking sequence for α (in the sense that no other marking sequence exists
which requires strictly fewer marked blocks, or equivalently, that the maximum number of
marked blocks required is k), such that whenever there are k distinct marked blocks, x and
y are marked.

I Lemma 25. Let α ∈ X∗ be a (terminal-free) non-empty strongly-nested pattern and
let x ∈ var(α). Then either αx ∈ {x}+, or there exist y1, y2, . . . yn ∈ var(α) such that
αx ∈ xbαy1αy2 . . . αynx

b. Moreover, suppose that αyi is strictly ki-local for i ∈ [n] and let
µ = max

i∈[n]
{ki}. Then:

αx is (strictly) µ-local if and only if there exists exactly one i ∈ [n] such that ki = µ with
αyi

is not BPM. Otherwise αx is strictly (µ+ 1)-local.
αx is BPM if and only if there exists exactly one i ∈ [n] such that ki = µ, there exists at
most one j ∈ [n] such that kj = µ− 1 with αyj

is not BPM, and αyi
is BPM.

I Theorem 26. Given a strongly-nested pattern α ∈ (X ∪ Σ)∗, the smallest value k such
that α is k-local can be computed in polynomial time.

In addition to Theorem 26, it is also possible to infer the following bound on the strict
k-locality of strongly-nested patterns from Lemma 25. Note the contrast to the general case
for which a pattern of length n may be strictly n

2 -local, as witnessed e.g., by (xy) n
2 .

I Theorem 27. Let α ∈ (X∪Σ)∗ be a strongly-nested pattern, and let k ∈ N with k > log |α|.
Then α is k-local. Moreover, for each k ∈ N, there exist strongly-nested patterns of length
2k+1 + 2k−1 − 4 which are strictly k-local.

Finally, we propose the following extension of strongly-nested patterns. Let Π be a
class of patterns for which we can decide in polynomial time both whether a pattern α

is in Π and Match. We define strongly-Π-nested patterns as follows. Patterns β ∈ Π
are strongly-Π-nested patterns. If β1, β2 are variable-disjoint patterns, β1 ∈ Π and β2 is
a strongly-Π-nested pattern, x ∈ X\ var(β1), γ1, γ2 ∈ (Σ ∪ {x})∗, and β′2β

′′
2 = β2, then

β′2γ1β1γ2β
′′
2 is a strongly-Π-nested pattern (i.e., we just shuffle γ1β1γ2 inside β2 to obtain

β′2γ1β1γ2β
′′
2 ). Note that for γ1 = γ2 = β′2 = ε, we obtain that β1β2 is a strongly-Π-nested

pattern.
It is not hard to see that one can decide whether a pattern is strongly-Π-nested in

polynomial time. Essentially, to test whether β is such a pattern, we need to decide whether
β ∈ Π or there exist 1 ≤ i < j ≤ |β| such that j − i + 1 < |β|, β[i..j] consists of a nested
Π-pattern surrounded by two blocks of a variable x, and β[1..i−1]β[j+1..|β|] is in Π. This can
be clearly implemented in polynomial time. A similar strategy works for matching strongly-
Π-nested patterns. Assume we want to match β to a word w, with |β| = m and |w| = n.
If β ∈ Π, then we just check if β matches w. Otherwise, for β there exist 1 ≤ i < j ≤ m

such that j − i+ 1 < m, β[i..j] consists of a strongly-Π-nested pattern surrounded by two
patterns containing only the variable x, and β[1..i− 1]β[j + 1..n] ∈ Π. Then we match first
β[i..j] to some factor w[i′..j′] of w, and then check if β[1..i − 1]β[j + 1..m], which is in Π,
can be matched to w[1..i′ − 1]w[j′ + 1..n]. Again, this clearly works in polynomial time.

6 Conclusions

We introduce the classes of k-local and strongly-nested patterns. We give polynomial time
algorithms (assuming k is treated as constant) for the membership of these classes and for
the matching problem, in both cases gaining a significant improvement compared to existing
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algorithms for more general classes (i.e., those given in [25]). We have also considered the
structure of patterns belonging to these classes, giving characterizations for patterns which
are 1- and 2-local, as well as an optimized algorithm for matching 1-local patterns. We leave
two interesting open problems outstanding, namely finding lower bounds for the time needed
to decide whether a pattern is k-local, and for matching k-local patterns.

Acknowledgements. The authors wish to thank the referees of the paper for their helpful
remarks and suggestions, in particular for their insightful comments on patterns with bounded
treewidth which have helped to place the classes in the present paper more precisely within
the literature.
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