1,047 research outputs found
The radio lighthouse CU Virginis: the spindown of a single main sequence star
The fast rotating star CU Virginis is a magnetic chemically peculiar star
with an oblique dipolar magnetic field. The continuum radio emission has been
interpreted as gyrosyncrotron emission arising from a thin magnetospheric
layer. Previous radio observations at 1.4 GHz showed that a 100% circular
polarized and highly directive emission component overlaps to the continuum
emission two times per rotation, when the magnetic axis lies in the plane of
the sky. This sort of radio lighthouse has been proposed to be due to cyclotron
maser emission generated above the magnetic pole and propagating
perpendicularly to the magnetic axis. Observations carried out with the
Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this
discovery show that this radio emission is still present, meaning that the
phenomenon responsible for this process is steady on a timescale of years. The
emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On
the light of recent results on the physics of the magnetosphere of this star,
the possibility of plasma radiation is ruled out. The characteristics of this
radio lighthouse provides us a good marker of the rotation period, since the
peaks are visible at particular rotational phases. After one year, they show a
delay of about 15 minutes. This is interpreted as a new abrupt spinning down of
the star. Among several possibilities, a quick emptying of the equatorial
magnetic belt after reaching the maximum density can account for the magnitude
of the breaking. The study of the coherent emission in stars like CU Vir, as
well as in pre main sequence stars, can give important insight into the angular
momentum evolution in young stars. This is a promising field of investigation
that high sensitivity radio interferometers such as SKA can exploit.Comment: Accepted to MNRAS, 8 pages, 7 figures, updated versio
Observations of radio pulses from CU Virginis
The magnetic chemically peculiar star CU Virginis is a unique astrophysical
laboratory for stellar magnetospheres and coherent emission processes. It is
the only known main sequence star to emit a radio pulse every rotation period.
Here we report on new observations of the CU Virginis pulse profile in the 13
and 20\,cm radio bands. The profile is known to be characterised by two peaks
of 100 circularly polarised emission that are thought to arise in an
electron-cyclotron maser mechanism. We find that the trailing peak is stable at
both 13 and 20\,cm, whereas the leading peak is intermittent at 13\,cm. Our
measured pulse arrival times confirm the discrepancy previously reported
between the putative stellar rotation rates measured with optical data and with
radio observations. We suggest that this period discrepancy might be caused by
an unknown companion or by instabilities in the emission region. Regular
long-term pulse timing and simultaneous multi-wavelength observations are
essential to clarify the behaviour of this emerging class of transient radio
source.Comment: Accepted by MNRAS Letters; 5 pages, 2 figures, 3 table
The Patterns of High-Level Magnetic Activity Occurring on the Surface of V1285 Aql: The OPEA Model of Flares and DFT Models of Stellar Spots
Statistically analyzing Johnson UBVR observations of V1285 Aql during the
three observing seasons, both activity level and behavior of the star are
discussed in respect to obtained results. We also discuss the out-of-flare
variation due to rotational modulation. Eighty-three flares were detected in
the U-band observations of season 2006 . First, depending on statistical
analyses using the independent samples t-test, the flares were divided into two
classes as the fast and the slow flares. According to the results of the test,
there is a difference of about 73 s between the flare-equivalent durations of
slow and fast flares. The difference should be the difference mentioned in the
theoretical models. Second, using the one-phase exponential association
function, the distribution of the flare-equivalent durations versus the flare
total durations was modeled. Analyzing the model, some parameters such as
plateau, half-life values, mean average of the flare-equivalent durations,
maximum flare rise, and total duration times are derived. The plateau value,
which is an indicator of the saturation level of white-light flares, was
derived as 2.421{\pm}0.058 s in this model, while half-life is computed as 201
s. Analyses showed that observed maximum value of flare total duration is 4641
s, while observed maximum flare rise time is 1817 s. According to these
results, although computed energies of the flares occurring on the surface of
V1285 Aql are generally lower than those of other stars, the length of its
flaring loop can be higher than those of more active stars.Comment: 44 pages, 10 figures, 5 tables, 2011PASP..123..659
Quiescent Radio Emission from Southern Late-type M Dwarfs and a Spectacular Radio Flare from the M8 Dwarf DENIS 1048-3956
We report the results of a radio monitoring program conducted at the
Australia Telescope Compact Array to search for quiescent and flaring emission
from seven nearby Southern late-type M and L dwarfs. Two late-type M dwarfs,
the M7 V LHS 3003 and the M8 V DENIS 1048-3956, were detected in quiescent
emission at 4.80 GHz. The observed emission is consistent with optically thin
gyrosynchrotron emission from mildly relativistic (~1-10 keV) electrons with
source densities n_e ~ 10 G magnetic fields. DENIS
1048-3956 was also detected in two spectacular, short-lived flares, one at 4.80
GHz (peak f_nu = 6.0+/-0.8 mJy) and one at 8.64 GHz (peak f_nu = 29.6+/-1.0
mJy) approximately 10 minutes later. The high brightness temperature (T_B >~
10^13 K), short emission period (~4-5 minutes), high circular polarization
(~100%), and apparently narrow spectral bandwidth of these events imply a
coherent emission process in a region of high electron density (n_e ~
10^11-10^12 cm^-3) and magnetic field strength (B ~ 1 kG). If the two flare
events are related, the apparent frequency drift in the emission suggests that
the emitting source either moved into regions of higher electron or magnetic
flux density; or was compressed, e.g., by twisting field lines or gas motions.
The quiescent fluxes from the radio-emitting M dwarfs violate the Gudel-Benz
empirical radio/X-ray relations, confirming a trend previously noted by Berger
et al. (abridged)Comment: 28 pages, 8 figures, accepted for publication in Ap
First Extended Catalogue of Galactic bubble infrared fluxes from WISE and Herschel surveys
In this paper, we present the first extended catalogue of far-infrared fluxes of Galactic bubbles. Fluxes were estimated for 1814 bubbles, defined here as the ‘golden sample’, and were selected from the Milky Way Project First Data Release (Simpson et al.) The golden sample was comprised of bubbles identified within the Wide-field Infrared Survey Explorer (WISE) dataset (using 12- and 22-μm images) and Herschel data (using 70-, 160-, 250-, 350- and 500-μm wavelength images). Flux estimation was achieved initially via classical aperture photometry and then by an alternative image analysis algorithm that used active contours. The accuracy of the two methods was tested by comparing the estimated fluxes for a sample of bubbles, made up of 126 H ii regions and 43 planetary nebulae, which were identified by Anderson et al. The results of this paper demonstrate that a good agreement between the two was found. This is by far the largest and most homogeneous catalogue of infrared fluxes measured for Galactic bubbles and it is a step towards the fully automated analysis of astronomical datasets
Multifrequency Photo-polarimetric WEBT Observation Campaign on the Blazar S5 0716+714: Source Microvariability and Search for Characteristic Timescales
Here we report on the results of the WEBT photo-polarimetric campaign
targeting the blazar S5~0716+71, organized in March 2014 to monitor the source
simultaneously in BVRI and near IR filters. The campaign resulted in an
unprecedented dataset spanning \,h of nearly continuous, multi-band
observations, including two sets of densely sampled polarimetric data mainly in
R filter. During the campaign, the source displayed pronounced variability with
peak-to-peak variations of about and "bluer-when-brighter" spectral
evolution, consisting of a day-timescale modulation with superimposed hourlong
microflares characterized by \,mag flux changes. We performed an
in-depth search for quasi-periodicities in the source light curve; hints for
the presence of oscillations on timescales of \,h and \,h do
not represent highly significant departures from a pure red-noise power
spectrum. We observed that, at a certain configuration of the optical
polarization angle relative to the positional angle of the innermost radio jet
in the source, changes in the polarization degree led the total flux
variability by about 2\,h; meanwhile, when the relative configuration of the
polarization and jet angles altered, no such lag could be noted. The
microflaring events, when analyzed as separate pulse emission components, were
found to be characterized by a very high polarization degree () and
polarization angles which differed substantially from the polarization angle of
the underlying background component, or from the radio jet positional angle. We
discuss the results in the general context of blazar emission and energy
dissipation models.Comment: 16 pages, 17 Figures; ApJ accepte
Vitamin D in cancer chemoprevention
Context: There is increasing evidence that Vitamin D (Vit D) and its metabolites, besides their well-known calcium-related functions, may also exert antiproliferative, pro-differentiating, and immune modulatory effects on tumor cells in vitro and may also delay tumor growth in vivo.
Objective: The aim of this review is to provide fresh insight into the most recent advances on the role of Vit D and its analogues as chemopreventive drugs in cancer therapy.
Methods: A systematic review of experimental and clinical studies on Vit D and cancer was undertaken by using the major electronic health database including ISI Web of Science, Medline, PubMed, Scopus and Google Scholar.
Results and conclusion: Experimental and clinical observations suggest that Vit D and its analogues may be effective in preventing the malignant transformation and/or the progression of various types of human tumors including breast cancer, prostate cancer, colorectal cancer, and some hematological malignances. These findings suggest the possibility of the clinical use of these molecules as novel potential chemopreventive and anticancer agent
The Detection and Characterization of cm Radio Continuum Emission from the Low-mass Protostar L1014-IRS
Observations by the Cores to Disk Legacy Team with the Spitzer Space
Telescope have identified a low luminosity, mid-infrared source within the
dense core, Lynds 1014, which was previously thought to harbor no internal
source. Followup near-infrared and submillimeter interferometric observations
have confirmed the protostellar nature of this source by detecting scattered
light from an outflow cavity and a weak molecular outflow. In this paper, we
report the detection of cm continuum emission with the VLA. The emission is
characterized by a quiescent, unresolved 90 uJy 6 cm source within 0.2" of the
Spitzer source. The spectral index of the quiescent component is between 6 cm and 3.6 cm. A factor of two increase in 6 cm
emission was detected during one epoch and circular polarization was marginally
detected at the level with Stokes {V/I} % . We have
searched for 22 GHz H2O maser emission toward L1014-IRS, but no masers were
detected during 7 epochs of observations between June 2004 and December 2006.
L1014-IRS appears to be a low-mass, accreting protostar which exhibits cm
emission from a thermal jet or a wind, with a variable non-thermal emission
component. The quiescent cm radio emission is noticeably above the correlation
of 3.6 cm and 6 cm luminosity versus bolometric luminosity, indicating more
radio emission than expected. We characterize the cm continuum emission in
terms of observations of other low-mass protostars, including updated
correlations of centimeter continuum emission with bolometric luminosity and
outflow force, and discuss the implications of recent larger distance estimates
on the physical attributes of the protostar and dense molecular core.Comment: 14 pages. Accepted for publication in Ap
Multiwavelength Observations of the Gamma-Ray Blazar PKS 0528+134 in Quiescence
We present multiwavelength observations of the ultraluminous blazar-type
radio loud quasar PKS 0528+134 in quiescence during the period July to December
2009. Significant flux variability on a time scale of several hours was found
in the optical regime, accompanied by a weak trend of spectral softening with
increasing flux. We suggest that this might be the signature of a contribution
from the accretion disk at the blue end of the optical spectrum. The optical
flux is weakly polarized with rapid variations of the degree and direction of
polarization, while the polarization of the 43 GHz radio core remains steady.
Optical spectropolarimetry suggests a trend of increasing degree of
polarization with increasing wavelength, providing additional evidence for an
accretion disc contribution towards the blue end of the optical spectrum. We
constructed four SEDs indicating that even in the quiescent state, the
bolometric luminosity of PKS 0528+134 is dominated by its gamma-ray emission. A
leptonic single-zone jet model produced acceptable fits to the SEDs with
contributions to the high-energy emission from synchrotron self-Compton
radiation and Comptonization of direct accretion disk emission. Fit parameters
close to equipartition were obtained. The moderate variability on long time
scales implies the existence of on-going particle acceleration, while the
observed optical polarization variability seems to point towards a turbulent
acceleration process. Turbulent particle acceleration at stationary features
along the jet therefore appears to be a viable possibility for the quiescent
state of PKS 0528+134.Comment: Accepted for Publication in The Astrophysical Journal. -
Acknowledgement adde
WEBT multiwavelength monitoring and XMM-Newton observations of BL Lacertae in 2007-2008. Unveiling different emission components
In 2007-2008 we carried out a new multiwavelength campaign of the Whole Earth
Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the
XMM-Newton satellite, to study its emission properties. The source was
monitored in the optical-to-radio bands by 37 telescopes. The brightness level
was relatively low. Some episodes of very fast variability were detected in the
optical bands. The X-ray spectra are well fitted by a power law with photon
index of about 2 and photoelectric absorption exceeding the Galactic value.
However, when taking into account the presence of a molecular cloud on the line
of sight, the data are best fitted by a double power law, implying a concave
X-ray spectrum. The spectral energy distributions (SEDs) built with
simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations
suggest that the peak of the synchrotron emission lies in the near-IR band, and
show a prominent UV excess, besides a slight soft-X-ray excess. A comparison
with the SEDs corresponding to previous observations with X-ray satellites
shows that the X-ray spectrum is extremely variable. We ascribe the UV excess
to thermal emission from the accretion disc, and the other broad-band spectral
features to the presence of two synchrotron components, with their related SSC
emission. We fit the thermal emission with a black body law and the non-thermal
components by means of a helical jet model. The fit indicates a disc
temperature greater than 20000 K and a luminosity greater than 6 x 10^44 erg/s.Comment: 11 pages, 7 figures, accepted for publication in A&
- …
