94 research outputs found

    Testing the companion hypothesis for the origin of the X-ray emission from intermediate-mass main-sequence stars

    Full text link
    There is no straightforward explanation for intrinsic X-ray emission from intermediate-mass main-sequence stars. Therefore the observed emission is often interpreted in terms of (hypothesized) late-type magnetically active companion stars. We use Chandra imaging observations to spatially resolve in X-rays a sample of main-sequence B-type stars with recently discovered companions at arcsecond separation. We find that all spatially resolved companions are X-ray emitters, but seven out of eleven intermediate-mass stars are also X-ray sources. If this emission is interpreted in terms of additional sub-arcsecond or spectroscopic companions, this implies a high multiplicity of B-type stars. Firm results on B star multiplicity pending, the alternative, that B stars produce intrinsic X-rays, can not be discarded. The appropriate scenario in this vein is might be a magnetically confined wind, as suggested for the X-ray emission of the magnetic Ap star IQ Aur. However, the only Ap star in the Chandra sample is not detected in X-rays, and therefore does not support this picture.Comment: 12 pages; accepted for publication in Astronomy & Astrophysic

    Unveiling the Cygnus OB2 stellar population with Chandra

    Get PDF
    The aim of this work is to identify the so far unknown low mass stellar population of the ~2Myr old Cygnus OB2 region, and to investigate the X-ray and near-IR stellar properties of its members. We analyzed a 97.7 ksec Chandra ACIS-I observation pointed at the core of the Cygnus OB2 region. X-ray variability ans spectral analysis of sources was characterized through the KS-test and XSPEC thermal models, respectively. We detected 1003 X-ray sources. Of these, 775 have near-IR counterparts associated with Cygnus OB2 members. We estimate a typical absorption toward Cygnus OB2 of Av~7.0 mag. Although the region is young, very few stars (~4.4 %) show disk-induced excesses in the near-IR. X-ray variability is detected in ~13 % of the sources. Flares account for at least 60 % of the variability. O- that early B-type stars are not significantly variable. Typical X-ray spectral parameters are log(Nh)~22.25 and kT~1.35 keV. Variable and flaring sources have harder spectra with median kT=3.3 and 3.8 keV, respectively. OB stars are typically softer (kT~0.75 keV). X-ray luminosities range between 1E+30 and 1E+31 erg/s for intermediate- and low-mass stars, and 2.5x10^30 and between 6.3E+33 erg/s for OB stars. The Cygnus OB2 region has a very rich population of low-mass X-ray emitting stars. Circumstellar disks seem to be very scarce.Comment: Accepted for publication in A&A. 20 pages, 17 figure

    Reliability of two goniometric methods of measuring active inversion and eversion range of motion at the ankle

    Get PDF
    BACKGROUND: Active inversion and eversion ankle range of motion (ROM) is widely used to evaluate treatment effect, however the error associated with the available measurement protocols is unknown. This study aimed to establish the reliability of goniometry as used in clinical practice. METHODS: 30 subjects (60 ankles) with a wide variety of ankle conditions participated in this study. Three observers, with different skill levels, measured active inversion and eversion ankle ROM three times on each of two days. Measurements were performed with subjects positioned (a) sitting and (b) prone. Intra-class correlation coefficients (ICC([2,1])) were calculated to determine intra- and inter-observer reliability. RESULTS: Within session intra-observer reliability ranged from ICC([2,1] )0.82 to 0.96 and between session intra-observer reliability ranged from ICC([2,1] )0.42 to 0.80. Reliability was similar for the sitting and the prone positions, however, between sessions, inversion measurements were more reliable than eversion measurements. Within session inter-observer measurements in sitting were more reliable than in prone and inversion measurements were more reliable than eversion measurements. CONCLUSION: Our findings show that ankle inversion and eversion ROM can be measured with high to very high reliability by the same observer within sessions and with low to moderate reliability by different observers within a session. The reliability of measures made by the same observer between sessions varies depending on the direction, being low to moderate for eversion measurements and moderate to high for inversion measurements in both positions

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape

    The Giant Accreting Protoplanet Survey (GAPlanetS) -- Results from a Six Year Campaign to Image Accreting Protoplanets

    Get PDF
    Accreting protoplanets represent a window into planet formation processes. We report H{\alpha} differential imaging results from the deepest and most comprehensive accreting protoplanet survey to date, acquired with the Magellan Adaptive Optics (MagAO) system's VisAO camera. The fourteen transitional disks targeted are ideal candidates for protoplanet discovery due to their wide, heavily depleted central cavities, wealth of non-axisymmetric circumstellar disk features evocative of ongoing planet formation, and ongoing stellar accretion. To address the twin challenges of morphological complexity in the target systems and PSF instability, we develop novel approaches for frame selection and optimization of the Karhounen-Loeve Image Processing algorithm pyKLIP. We detect one new candidate protoplanet, CS Cha "c", at a separation of 75mas and a {\Delta}mag of 5.1 and robustly recover the HD142527 B and HD100453 B low mass stellar companions across multiple epochs. Though we cannot rule out a substantial scattered light contribution to its emission, we also recover LkCa 15 b. Its presence inside of the cleared disk cavity and consistency with a forward-modeled point source suggest that it remains a viable protoplanet candidate. The protoplanet PDS 70 c was marginally recovered under our conservative general methodology. However, through targeted optimization in H{\alpha} imagery, we tentatively recover PDS 70 c in three epochs and PDS 70 b in one epoch. Of the many other previously-reported companions and companion candidates around objects in the sample, we do not recover any additional robust candidates. However, lack of recovery at moderate H{\alpha} contrast does not rule out the presence of protoplanets at these locations, and we report limiting H{\alpha} contrasts in such cases.Comment: Accepted for publication in A

    Development and implementation of high-throughput SNP genotyping in barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High density genetic maps of plants have, nearly without exception, made use of marker datasets containing missing or questionable genotype calls derived from a variety of genic and non-genic or anonymous markers, and been presented as a single linear order of genetic loci for each linkage group. The consequences of missing or erroneous data include falsely separated markers, expansion of cM distances and incorrect marker order. These imperfections are amplified in consensus maps and problematic when fine resolution is critical including comparative genome analyses and map-based cloning. Here we provide a new paradigm, a high-density consensus genetic map of barley based only on complete and error-free datasets and genic markers, represented accurately by graphs and approximately by a best-fit linear order, and supported by a readily available SNP genotyping resource.</p> <p>Results</p> <p>Approximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Data from three barley doubled haploid mapping populations supported the production of an initial consensus map. Over 200 germplasm selections, principally European and US breeding material, were used to estimate minor allele frequency (MAF) for each SNP. We selected 3,072 of these tested SNPs based on technical performance, map location, MAF and biological interest to fill two 1536-SNP "production" assays (BOPA1 and BOPA2), which were made available to the barley genetics community. Data were added using BOPA1 from a fourth mapping population to yield a consensus map containing 2,943 SNP loci in 975 marker bins covering a genetic distance of 1099 cM.</p> <p>Conclusion</p> <p>The unprecedented density of genic markers and marker bins enabled a high resolution comparison of the genomes of barley and rice. Low recombination in pericentric regions is evident from bins containing many more than the average number of markers, meaning that a large number of genes are recombinationally locked into the genetic centromeric regions of several barley chromosomes. Examination of US breeding germplasm illustrated the usefulness of BOPA1 and BOPA2 in that they provide excellent marker density and sensitivity for detection of minor alleles in this genetically narrow material.</p

    On Solving the Coronal Heating Problem

    Full text link
    This article assesses the current state of understanding of coronal heating, outlines the key elements of a comprehensive strategy for solving the problem, and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic

    Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions

    Get PDF
    BackgroundTargeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing.ResultsAll panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5-20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden.ConclusionThis comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.Peer reviewe
    • …
    corecore