182 research outputs found

    Parameter identification of JONSWAP spectrum acquired by airborne LIDAR

    Get PDF
    International audienceIn this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment, which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density. After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting

    Nanodispersed UV blockers in skin-friendly silica vesicles with superior UV-attenuating efficiency

    Get PDF
    Using a pig ear skin model, it is demonstrated that silica vesicles show higher skin safety compared to dense silica nanoparticles with similar sizes. A hydrophobic UV blocker is efficiently dispersed in silica vesicles in an amorphous state, leading to ultrahigh UV-attenuating efficiency and a sun protection factor of 100 in a sunscreen formulation

    Rechargeable aluminum–selenium batteries with high capacity

    Get PDF
    Rechargeable aluminum (Al) batteries are emerging as a promising post lithium-ion battery technology. Herein, we demonstrate a conceptually new design of rechargeable aluminum-selenium (Al-Se) batteries by understanding the selenium chemistry and controlling the electrode reaction. The Al-Se battery consists of a composite cathode including selenium nanowires and mesoporous carbon (CMK-3) nanorods, an Al metal anode and chloroaluminate ionic liquid electrolyte. The working mechanism of the Al-Se battery is the reversible redox reaction of the SeCl/Se pair confined in the mesopores of CMK-3 nanorods. Al-Se batteries deliver a high reversible capacity of 178 mA h g (by Se mass), high discharge voltages (mainly above 1.5 V), and good cycling/rate performances

    Chinese Expert Consensus on Critical Care Ultrasound Applications at COVID-19 Pandemic

    Get PDF
    The spread of new coronavirus (SARS-Cov-2) follows a different pattern than previous respiratory viruses, posing a serious public health risk worldwide. World Health Organization (WHO) named the disease as COVID-19 and declared it a pandemic. COVID-19 is characterized by highly contagious nature, rapid transmission, swift clinical course, profound worldwide impact, and high mortality among critically ill patients. Chest X-ray, computerized tomography (CT), and ultrasound are commonly used imaging modalities. Among them, ultrasound, due to its portability and non-invasiveness, can be easily moved to the bedside for examination at any time. In addition, with use of 4G or 5G networks, remote ultrasound consultation can also be performed, which allows ultrasound to be used in isolated medial areas. Besides, the contact surface of ultrasound probe with patients is small and easy to be disinfected. Therefore, ultrasound has gotten lots of positive feedbacks from the frontline healthcare workers, and it has played an indispensable role in the course of COVID-19 diagnosis and follow up

    Bees in China: A Brief Cultural History

    Get PDF

    Advances in silica based nanoparticles for targeted cancer therapy

    No full text
    Targeted delivery of anticancer drug specifically to tumor site without damaging normal tissues has been the dream of all scientists fighting against cancer for decades. Recent breakthrough on nanotechnology based medicines has provided a possible tool to solve this puzzle. Among diverse nanomaterials that are under development and extensive study, silica based nanoparticles with vast advantages have attracted great attention. In this review, we concentrate on the recent progress using silica based nanoparticles, particularly mesoporous silica nanoparticles (MSNs), for targeted drug delivery applications. First, we discuss the passive targeting capability of silica based nanoparticles in relation to their physiochemical properties. Then, we focus on the recent advances of active targeting strategies involving tumor cell targeting, vascular targeting, nuclear targeting and multistage targeting, followed by an introduction to magnetic field directed targeting approach. We conclude with our personal perspectives on the remaining challenges and the possible future directions

    ANALYSIS OF THE STRESS CHARACTERISTICS OF CFG PILE COMPOSITE FOUNDATION UNDER IRREGULARITY CONDITION

    No full text
    By the excitation load function corresponding to the irregularity management standard the vertical load of the train is simulated. Based on the finite difference software FLAC3D the three-dimensional dynamic coupling finite difference model of track-embankment-pile-soil composite foundation is established. Focuses on the analysis of the dynamic response characteristics of the embankment, pile and soil foundation caused by the change of foundation, pile and cushion elastic modulus and cushion thickness. Results show: by the excitation load, the centre pile dynamic stresses are maximum, piles dynamic stress away from the centre side pile decreases gradually. The dynamic response of the pile and soil caused by subgrade surface elastic modulus variation has a little effect with more obvious by the cushion effect. With the increase of elastic modulus and thickness of cushion, the dynamic interaction between pile and cushion is increased while the dynamic interaction between soil and cushion is weakened. Therefore, the bearing capacity of the pile is fully utilized. With the increase of the elastic modulus of the pile, the dynamic stress of pile top increases correspondingly, but the dynamic stress increases gradually, and the pile bears most of the load, thus effectively reduce the dynamic load of the foundation soil

    ANALYSIS OF THE STRESS CHARACTERISTICS OF CFG PILE COMPOSITE FOUNDATION UNDER IRREGULARITY CONDITION

    No full text
    By the excitation load function corresponding to the irregularity management standard the vertical load of the train is simulated. Based on the finite difference software FLAC3D the three-dimensional dynamic coupling finite difference model of track-embankment-pile-soil composite foundation is established. Focuses on the analysis of the dynamic response characteristics of the embankment, pile and soil foundation caused by the change of foundation, pile and cushion elastic modulus and cushion thickness. Results show: by the excitation load, the centre pile dynamic stresses are maximum, piles dynamic stress away from the centre side pile decreases gradually. The dynamic response of the pile and soil caused by subgrade surface elastic modulus variation has a little effect with more obvious by the cushion effect. With the increase of elastic modulus and thickness of cushion, the dynamic interaction between pile and cushion is increased while the dynamic interaction between soil and cushion is weakened. Therefore, the bearing capacity of the pile is fully utilized. With the increase of the elastic modulus of the pile, the dynamic stress of pile top increases correspondingly, but the dynamic stress increases gradually, and the pile bears most of the load, thus effectively reduce the dynamic load of the foundation soil

    Silica-based nanoparticles for biomedical applications: from nanocarriers to biomodulators

    No full text
    ConspectusSilica-based nanoparticles (SNPs) are a classic type of material employed in biomedical applications because of their excellent biocompatibility and tailorable physiochemical properties. Typically, SNPs are designed as nanocarriers for therapeutics delivery, which can address a number of intrinsic drawbacks of therapeutics, including limited bioavailability, short circulation lifetime, and unfavorable biodistribution. To improve the delivery efficiency and spatiotemporal precision, tremendous efforts have been devoted to engineering the physiochemical properties of SNPs, including particle size, morphology, and mesostructure, as well as conjugating targeting ligands and/or "gatekeepers" to endow improved cell selectivity and on demand release profiles. Despite significant progress, the biologically inert nature of the bare silica framework has largely restricted the functionalities of SNPs, rendering conventional SNPs mainly as nanocarriers for targeted delivery and controlled release. To meet the requirements of next generation nanomedicines with improved efficacy and precision, new insights on the relationship between the physiochemical properties of SNPs and their biological behavior are highly valuable. Meanwhile, a conceptual shift from a simple spatiotemporal control mechanism to a more sophisticated biochemistry and signaling pathway modulation would be of great importance.In this Account, an overview of our recent contribution to the field is presented, wherein SNPs with rationally designed nanostructures and nanochemistry are applied as nanocarriers (defined as "nanomaterials being used as a transport module for another substance" according to Wikipedia) and/or biomodulators (defined as "any material that modifies a biological response" according to Wiktionary). This Account encompasses two main sections. In the first section, we focus on the conventional nanocarriers concept with new insights on the design principles of the nanostructures. We present examples to demonstrate the engineering of pore geometry, surface topology, and asymmetry of nanoparticles to achieve enhanced drug, gene, and protein delivery efficiency. The contribution of surface roughness of SNPs on improving the cellular uptake efficiency, adhesion property, and DNA transfection capacity is particularly highlighted. In the second section, we discuss novel SNPs designed as biomodulators to regulate intracellular microenvironment and cell signaling, such as the oxidative stress and glutathione levels for improving the anticancer efficacy of therapeutics and mRNA transfection in specific cell lines. The interplay between the nanoparticles, biological system, and drugs is discussed. We further discuss how to engineer the composition of SNPs to modulate metal hemostasis to realize inherent anticancer activity. Two typical examples, including modulating copper signaling for tumor vasculature targeted therapy and controlling iron signaling for macrophage polarization based immunotherapy, are presented to highlight the unique advantages of SNPs as nanosized therapeutics in comparison to molecular drugs. Moreover, utilizing these two examples, we showcase the possibility of designing SNPs with intrinsic pharmaceutical activity to indirectly control tumor growth without inducing significant cytotoxicity, thus alleviating the biosafety concerns of nanomedicines. At the end of this Account, we discuss our personal perspectives on the promises, opportunities, and issues in engineered SNPs as nanocarriers as well as their transition toward biomodulators. With a major focus on the latter scenario, the current status and possible future directions are outlined
    corecore