11 research outputs found

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Impact of Smoking during Pregnancy on Functional Coagulation Testing

    No full text
    Abstract Compounds that are systemically absorbed during the course of cigarette smoking, and their metabolites, affect the coagulation system and cause endothelial dysfunction, dyslipidemia, and platelet activation leading to a prothrombotic state. In addition, smoking increases the activity of fibrinogen, homocysteine, and C-reactive protein. We hypothesize that smoking may affect functional coagulation testing during pregnancy. A secondary analysis of 371 women pregnant with a singleton pregnancy and enrolled in a multicenter, prospective observational study of complications of factor V Leiden mutation subsequently underwent functional coagulation testing for antithrombin III, protein C antigen and activity, and protein S antigen and activity. Smoking was assessed by self-report at time of enrollment (<14 weeks). None of the functional coagulation testing results was altered by maternal smoking during pregnancy. Smoking does not affect the aforementioned functional coagulation testing results during pregnancy

    Impact of Smoking during Pregnancy on Functional Coagulation Testing

    No full text
    OBJECTIVE: We sought to estimate the frequency of pregnancy-related thromboembolic events among carriers of the factor V Leiden (FVL) mutation without a personal history of thromboembolism, and to evaluate the impact of maternal and fetal FVL mutation carriage or other thrombophilias on the risk of adverse outcomes. METHODS: Women with a singleton pregnancy and no history of thromboembolism were recruited at 13 clinical centers before 14 weeks of gestation from April 2000 to August 2001. Each was tested for the FVL mutation, as was the resultant conceptus after delivery or after miscarriage, when available. The incidence of thromboembolism (primary outcome), and of other adverse outcomes, was compared between FVL mutation carriers and noncarriers. We also compared adverse outcomes in a secondary nested carrier-control analysis of FVL mutation and other coagulation abnormalities. In this secondary analysis, we defined carriers as women having one or more of the following traits: carrier for FVL mutation, protein C deficiency, protein S deficiency, antithrombin III deficiency, activated protein C resistance, or lupus anticoagulant-positive, heterozygous for prothrombin G20210A or homozygous for the 5,10 methylenetetrahydrofolate reductase mutations. Carriers of the FVL mutation alone (with or without activated protein C resistance) were compared with those having one or more other coagulation abnormalities and with controls with no coagulation abnormality. RESULTS: One hundred thirty-four FVL mutation carriers were identified among 4,885 gravidas (2.7%), with both FVL mutation status and pregnancy outcomes available. No thromboembolic events occurred among the FVL mutation carriers (0%, 95% confidence interval 0–2.7%). Three pulmonary emboli and one deep venous thrombosis occurred (0.08%, 95% confidence interval 0.02–0.21%), all occurring in FVL mutation noncarriers. In the nested carrier-control analysis (n = 339), no differences in adverse pregnancy outcomes were observed between FVL mutation carriers, carriers of other coagulation disorders, and controls. Maternal FVL mutation carriage was not associated with increased pregnancy loss, preeclampsia, placental abruption, or small for gestational age births. However, fetal FVL mutation carriage was associated with more frequent preeclampsia among African-American (15.0%) and Hispanic (12.5%) women than white women (2.6%, P = .04), adjusted odds ratio 2.4 (95% confidence interval 1.0–5.2, P = .05). CONCLUSION: Among women with no history of thromboembolism, maternal heterozygous carriage of the FVL mutation is associated with a low risk of venous thromboembolism in pregnancy. Neither universal screening for the FVL mutation, nor treatment of low-risk carriers during pregnancy is indicated

    The effect of body mass index on therapeutic response to bacterial vaginosis in pregnancy.

    Get PDF
    Our objective was to determine the effect of body mass index (BMI) on response to bacterial vaginosis (BV) treatment. A secondary analysis was conducted of two multicenter trials of therapy for BV and TRICHOMONAS VAGINALIS. Gravida were screened for BV between 8 and 22 weeks and randomized between 16 and 23 weeks to metronidazole or placebo. Of 1497 gravida with asymptomatic BV and preconceptional BMI, 738 were randomized to metronidazole; BMI was divided into categories: \u3c 25, 25 to 29.9, and \u3e or = 30. Rates of BV persistence at follow-up were compared using the Mantel-Haenszel chi square. Multiple logistic regression was used to evaluate the effect of BMI on BV persistence at follow-up, adjusting for potential confounders. No association was identified between BMI and BV rate at follow-up ( P = 0.21). BMI was associated with maternal age, smoking, marital status, and black race. Compared with women with BMI of \u3c 25, adjusted odds ratio (OR) of BV at follow-up were BMI 25 to 29.9: OR, 0.66, 95% CI 0.43 to 1.02; BMI \u3e or = 30: OR, 0.83, 95% CI 0.54 to 1.26. We concluded that the persistence of BV after treatment was not related to BMI
    corecore