2,380 research outputs found

    Student Conceptual Difficulties in Hydrodynamics

    Get PDF
    We describe a study on the conceptual difficulties faced by college students in understanding hydrodynamics of ideal fluids. This study was based on responses obtained in hundreds of written exams and oral interviews, which were held with first-year Engineering and Science university students. Their responses allowed us to identify a series of misconceptions unreported in the literature so far. The study findings demonstrate that the most important difficulties arise from the students' inability to establish a link between the kinematics and dynamics of moving fluids, and from a lack of understanding regarding how different regions of a system interact.Comment: 12 pages, 10 figures (small corrections

    Dark matter cores in the Fornax and Sculptor dwarf galaxies: joining halo assembly and detailed star formation histories

    Get PDF
    We combine the detailed Star Formation Histories of the Fornax and Sculptor dwarf Spheroidals with the Mass Assembly History of their dark matter (DM) halo progenitors to estimate if the energy deposited by Supernova type II (SNeII) is sufficient to create a substantial DM core. Assuming the efficiency of energy injection of the SNeII into DM particles is ϵgc=0.05\epsilon_{\rm gc}=0.05, we find that a single early episode, zzinfallz \gtrsim z_{\rm infall}, that combines the energy of all SNeII due to explode over 0.5 Gyr, is sufficient to create a core of several hundred parsecs in both Sculptor and Fornax. Therefore, our results suggest that it is energetically plausible to form cores in Cold Dark Matter (CDM) halos via early episodic gas outflows triggered by SNeII. Furthermore, based on CDM merger rates and phase-space density considerations, we argue that the probability of a subsequent complete regeneration of the cusp is small for a substantial fraction of dwarf-size haloes.Comment: ApJL accepted versio

    Modulated Reheating and Large Non-Gaussianity in String Cosmology

    Get PDF
    A generic feature of the known string inflationary models is that the same physics that makes the inflaton lighter than the Hubble scale during inflation often also makes other scalars this light. These scalars can acquire isocurvature fluctuations during inflation, and given that their VEVs determine the mass spectrum and the coupling constants of the effective low-energy field theory, these fluctuations give rise to couplings and masses that are modulated from one Hubble patch to another. These seem just what is required to obtain primordial adiabatic fluctuations through conversion into density perturbations through the `modulation mechanism', wherein reheating takes place with different efficiency in different regions of our Universe. Fluctuations generated in this way can generically produce non-gaussianity larger than obtained in single-field slow-roll inflation; potentially observable in the near future. We provide here the first explicit example of the modulation mechanism at work in string cosmology, within the framework of LARGE Volume Type-IIB string flux compactifications. The inflationary dynamics involves two light Kaehler moduli: a fibre divisor plays the role of the inflaton whose decay rate to visible sector degrees of freedom is modulated by the primordial fluctuations of a blow-up mode (which is made light by the use of poly-instanton corrections). We find the challenges of embedding the mechanism into a concrete UV completion constrains the properties of the non-gaussianity that is found, since for generic values of the underlying parameters, the model predicts a local bi-spectrum with fNL of order `a few'. However, a moderate tuning of the parameters gives also rise to explicit examples with fNL O(20) potentially observable by the Planck satellite.Comment: 42 pages, 2 figure

    Surprising Evolution of the Parsec-scale Faraday Rotation Gradients in the Jet of the BL Lac Object B1803+784

    Get PDF
    Several multi-frequency polarization studies have shown the presence of systematic Faraday Rotation gradients across the parsec-scale jets of Active Galactic Nuclei (AGN), taken to be due to the systematic variation of the line-of-sight component of a helical magnetic (B) field across the jet. Other studies have confirmed the presence and sense of these gradients in several sources, thus providing evidence that these gradients persist over time and over large distances from the core. However, we find surprising new evidence for a reversal in the direction of the Faraday Rotation gradient across the jet of B1803+784, for which multi-frequency polarization observations are available at four epochs. At our three epochs and the epoch of Zavala & Taylor (2003), we observe transverse Rotation Measure (RM) gradients across the jet, consistent with the presence of a helical magnetic field wrapped around the jet. However, we also observe a "flip" in the direction of the gradient between June 2000 and August 2002. Although the origins of this phenomena are not entirely clear, possibly explanations include (i) the sense of rotation of the central supermassive black hole and accretion disc has remained the same, but the dominant magnetic pole facing the Earth has changed from North to South; (ii) a change in the direction of the azimuthal B field component as a result of torsional oscillations of the jet; and (iii) a change in the relative contributions to the observed rotation measures of the "inner" and "outer" helical fields in a magnetic-tower model. Although we cannot entirely rule out the possibility that the observed changes in the RM distribution are associated instead with changes in the thermal-electron distribution in the vicinity of the jet, we argue that this explanation is unlikely.Comment: 21 pages, 10 figures. Accepted for publication in MNRA

    Understanding responses to political conflict: interactive effects of the need for closure and salient conflict schemas.

    Get PDF
    Two studies examined the relationship between the need for cognitive closure and preferences for conflict-resolution strategies in two different samples of elite political actors. While research suggests that the high need for closure should be associated with competitiveness, we argue that this relationship should be strongest among political actors with a hostile “conflict schema,” or representation of what a conflict is and how it should be dealt with. We provide evidence for this hypothesis using archival survey data on American foreign policy officials’ attitudes toward international conflict at the height of the Cold War (Study 1) and our own data on the relationship between the need for closure and conflict-strategy preferences among samples of activists from two political parties in Poland – a centrist party with a reputation for cooperativeness and an extremist party with a reputation for confrontation (Study 2). The broader implications of these findings are discussed

    Polynomial embedding algorithms for controllers in a behavioral framework

    Get PDF
    In this correspondence, we will establish polynomial algorithms for computation of controllers in the behavioral approach to control, in particular for the computation of controllers that regularly implement a given desired behavior and for controllers that achieve pole placement and stabilization by behavioral full interconnection and partial interconnection. These synthesis problems were studied before in articles by Belur and Trentelman, Rocha and Wood, and Willems in the reference section. In the algorithms, we will apply ideas around the unimodular and stable embedding problems. The algorithms that are presented in this correspondence can be implemented by means of the Polynomial Toolbox of Matlab

    Tracking sea bed topography in the Jurassic. The Lotena Group in the Sierra de la Vaca Muerta (Neuquén Basin, Argentina)

    Get PDF
    The Lotena Group is a clastic to evaporitic unit up to 650 m thick that accumulated during the Middle to Late Jurassic in the Neuquén Basin, western Argentina. Extensive field work carried out in the Sierra de la Vaca Muerta and Arroyo Covunco areas, including the measurement of seven detailed stratigraphic sections and geological mapping allow the discrimination of six unconformity-bounded units or sequences. The first sequence is composed of red beds and evaporites belonging to the Tábanos Formation that unconformably overlies strata of the Lower to Middle Jurassic Cuyo Group. Sequences 2 to 5 are shallow marine and display a basal sandstone interval attributed to confined shelfal sandstone lobes. These grade vertically into unconfined shelfal sandstone lobes, and terminate with carbonate deposits. The basal interval is restricted to the thickest areas of each sequence, a relationship attributed to structural relief. Sequence 6 has a very irregular shape and strongly truncates the underlying deposits. It is composed almost entirely of massive carbonate strata that were deposited by density currents. Facies analysis and stratigraphic mapping suggest periodic recycling of previous accumulations. Stratigraphic evidence suggests that the Lotena Group in the Sierra de la Vaca Muerta and adjacent areas probably accumulated over a tectonically unstable basement. Sequences 1, 2 and 3 display evidence of accumulation in an extensional tectonic setting, while sequences 4, 5 and 6 experienced a northward shift of their depocentres associated with extensive erosional truncation of the marginal areas, suggesting that accumulation was affected by early stages of growth of the Covunco anticline
    corecore