

 University of Groningen

Polynomial embedding algorithms for controllers in a behavioral framework
Trentelman, Hendrikus; Zavala Yoe, R.; Praagman, Cornelis; Zavala Yoé, 27772

Published in:
IEEE Transactions on Automatic Control

DOI:
10.1109/TAC.2007.906455

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Trentelman, H. L., Zavala Yoe, R., Praagman, C., & Zavala Yoé, . (2007). Polynomial embedding
algorithms for controllers in a behavioral framework. IEEE Transactions on Automatic Control, 52(11),
2182-2188. DOI: 10.1109/TAC.2007.906455

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

http://dx.doi.org/10.1109/TAC.2007.906455
https://www.rug.nl/research/portal/en/publications/polynomial-embedding-algorithms-for-controllers-in-a-behavioral-framework(1c190383-ab2a-483d-ae91-b8db0b5c49d2).html

2182 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007

much less. Similar to algorithms for standard MDPs, value iterations
generally requires more number of iterations to converge as compared
with policy iteration.

For FVI, the replacement problem meets the convergence condition:
a state (three components fail at the same time) is reachable from any
state under any action with a positive probability ranging between 10�6

and 10�5. However, this probability is so small that directly using it to
set the parameter “�” for the algorithm as recommended in [4] leads
unacceptable slow convergence. Therefore, a larger value “0.1” is op-
tionally chosen by us. Such adjusted parameter setting violates the con-
vergence condition (11) in [4] but still leads to an optimal policy after
103 iterations as shown in Table I. This reveals that, on one hand, the
computing load of FVI is affected by the parameter “�” which depends
on both transition probabilities and Bu (see (11) in [4]). On the other
hand, the strong convergence condition needs to be weakened as men-
tioned in [4]. In contrast, our algorithm does not have such difficulties
on parameter selections or convergence requirements. However, our al-
gorithm solves a set of standard MDPs which may bring extra compu-
tational requirements. Fortunately, �n converges fast especially when
Bu and Bl are close as proved in Theorem 2 and 3. This means that
we generally only solve a few numbers of standard MDPs to obtain a
near optimal policy. The results summarized in Table I show that only
four standard MDPs are solved with 19 total number of iterations, i.e.,
n = 4, m = 19 for IVI. The fast converged trajectories of �n are il-
lustrated in Fig. 1.

VI. CONCLUDING REMARKS

Standard algorithms may be intractable to solve an MDP with a large
state space. If the problem possesses structural features such as having
a large number of uncontrollable states, our algorithm performs stan-
dard value iteration on those controllable states based on time aggrega-
tion. Compared to existing algorithms for time aggregated MDPs, our
algorithm requires less storage and computation during iterations than
policy iteration in [1] and converges under a much weaker assumption
than that required by the value iteration algorithm in [4].

Existing algorithms for standard MDPs can be used in step 2) of
the incremental optimization approach. For example, employing the
R-learning algorithm (see, e.g., [5]) will result in a new R-learning al-
gorithm for time aggregated MDPs. All the algorithms developed in
this note for time aggregated MDPs are directly applicable to MDPs
with fractional costs.

REFERENCES

[1] X. R. Cao, Z. Y. Ren, S. Bhatnagar, M. Fu, and S. Marcus, “A time
aggregation approach to Markov decision process,” Automatica, vol.
38, pp. 929–943, 2002.

[2] R. Dekker, R. E. Wildeman, and R. Egmond, “Joint replacement in
an operational planning phase,” European J. Oper. Res., vol. 91, pp.
74–88, 1996.

[3] M. L. Puterman, Markov Decision Process: Discrete Stochastic Dy-
namic Programming. New York: Wiley, 1994.

[4] Z. Ren and B. H. Krogh, “Markov decision processes with fractional
costs,” IEEE Trans. Autom. Control, vol. 50, pp. 646–650, 2005.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

Polynomial Embedding Algorithms for Controllers in a
Behavioral Framework

H. L. Trentelman, Member, IEEE, R. Zavala Yoe, and C. Praagman

Abstract—In this correspondence, we will establish polynomial al-
gorithms for computation of controllers in the behavioral approach to
control, in particular for the computation of controllers that regularly
implement a given desired behavior and for controllers that achieve pole
placement and stabilization by behavioral full interconnection and partial
interconnection. These synthesis problems were studied before in articles
by Belur and Trentelman, Rocha and Wood, and Willems in the reference
section. In the algorithms, we will apply ideas around the unimodular
and stable embedding problems. The algorithms that are presented in this
correspondence can be implemented by means of the Polynomial Toolbox
of Matlab.

Index Terms—Behavioral systems, controller design, regular implemen-
tation, stabilization and pole placement, unimodular embedding problem.

I. INTRODUCTION

In the behavioral approach, a system is defined as a triple � =

(; q;), where is the time axis, q is the signal space, and the
behavior is the subspace of Lloc

1 (; q) (the space of all locally
integrable functions from to q) of all solutions of a set of higher
order, linear, constant coefficient differential equations. In particular,

= fw 2 Lloc
1 (; q)jR(d=dt)w = 0g. Here, R is a real polyno-

mial matrix with q columns, and R(d=dt)w = 0 is understood to hold
in the distributional sense. � is called a linear differential system. The
set of all linear differential systems with q variables is denoted by Lq .
Often, we speak about the system 2 Lq (instead of � 2 Lq). The
representation R(d=dt) = 0 of is called a kernel representation of

, and we often write = ker(R). The kernel representation is called
minimal if R has the minimal number of rows. This holds if and only
if the polynomial matrix R has full-row rank. This minimal number of
rows is denoted by p(), and is called the output cardinality of . It
corresponds to the number of outputs in any input/output representation
of . For a given 2 Lq we denote by cont the largest controllable
subbehavior of , (see [6]). This subbehavior of is called the con-
trollable part of . If = ker(R) is a minimal representation, then
any factorization of R as R = DR1 with D square and nonsingular
and R1(�) full-row rank for all �, yields cont = ker(R1).

A polynomial p is called is called Hurwitz if its zeroes are contained
in the open left half complex plane � := f� 2 jRe(�) < 0g. A
square polynomial matrix P is called Hurwitz if det(P) is Hurwitz.

Manuscript received December 13, 2005; revised January 13, 2007. Recom-
mended by Associate Editor M. Fujita.

H. L. Trentelman is with the Institute for Mathematics and Computing Sci-
ence, University of Groningen, 9700 AV Groningen, The Netherlands (e-mail:
h.l.trentelman@math.rug.nl).

R. Z. Yoe is with the Instituto Tecnologico y de Estudios Superiores de Mon-
terrey, Departamento de Ingenieria, Col. Ejidos de Tlalpan, CP. 14380, Mexico
DF, Mexico (e-mail: zavalay@itesm.mx).

C. Praagman is with the Institute of Economics and Econometrics, University
of Groningen, 9700 AV Groningen, The Netherlands (e-mail: c.praagman@eco.
rug.nl).

Digital Object Identifier 10.1109/TAC.2007.906455

0018-9286/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007 2183

II. THE UNIMODULAR AND STABLE EMBEDDING PROBLEMS

In our algorithms, at several points we need to embed a given poly-
nomial matrix into a unimodular one, or one that is Hurwitz. The uni-
modular embedding problem was studied before, e.g., in [2], using ma-
trix pencils. Numerical experiments have shown that the matrix pencil
method in [2] is not numerically reliable, and therefore in this section
we propose a new algorithm.

We will first briefly recall the unimodular and stable embedding
problems, and next discuss new, simple, algorithms for unimodular
and stable embedding. First we discuss the unimodular embedding
problem. Let P be a polynomial matrix with k rows and q columns,
where k < q. The unimodular embedding problem is to find a polyno-
mial matrix Q with q � k rows and q columns such that the stacked
matrix (P ;Q) is unimodular. It is well-known that such Q exists if
and only if P (�) has full-row rank k for every complex number �,
equivalently, the Smith form of P is equal to [Ik 0], where Ik denotes
the k � k identity matrix. Below we will describe an algorithm to
compute a required Q.

Algorithm 2.1

Input: a k � q polynomial matrix P; k < q.
1. (column compression). Find a q � q unimodular polynomial

matrix U such that PU = [P1 0] with P1 full column rank.
2. Check whether P1 is square and unimodular, if not then a

required Q does not exist, otherwise go to step 3.
3. Compute Q as the solution of the polynomial equation

QU = [0 Iq�k]. Then

P

Q
U =

P1 0

0 Iq�k
:

Since the matrix on the right in this equation is unimodular, the
same holds for the matrix on the left. Thus Q does the job.

In a similar way an algorithm for stable embedding can be established.
Again, let P be a polynomial matrix with k rows and q columns, where
k < q. The stable embedding problem is to find a polynomial matrix
Q with q� k rows and q columns such that the stacked matrix (P ;Q)

is Hurwitz. Obviously such Q exists if and only if P (�) has full-row
rank k for every complex number � with Re(�) � 0. The algorithm
mimics the previous one:

Algorithm 2.2

Input: a k � q polynomial matrix P; k < q.
1. (column compression). Find a q � q unimodular polynomial

matrix U such that PU = [P1 0] with P1 full column rank.
2. Check whether P1 is square and Hurwitz, if not then a required

Q does not exist, otherwise go to step 3.
3. Compute Q as the solution of the polynomial equation

QU = [0 Iq�k]. Then

P

Q
U =

P1 0

0 Iq�k
:

Since the matrix on the right in this equation is Hurwitz, the
same holds for the matrix on the left. Thus Q does the job.

These algorithms can be implemented using standard tools from the
Polynomial Toolbox in Matlab. The column compression uses colred,

which actually computes the full column rank matrix P1 in column re-
duced form. In fact, colred also computes the inverse of the unimod-
ular matrix U , which can be used to obtain Q in step 3.

The reader might wonder why we did not use the Smith form in order
to compute unimodular and stable embeddings. In fact, computation of
the Smith form is also a standard command in the Polynomial Toolbox.
The reason why we did not use the Smith form is that, in our numer-
ical experiments, computations based on the Smith form did not lead
to correct answers. Indeed, it was argued in [11] that in general the re-
duction to Smith canonical form is numerically unstable. In contrast to
this, the method of column compression using colred performs very
satisfactory.

III. ALGORITHMS FOR REGULAR IMPLEMENTABILITY

In this section, we will establish algorithms to check whether a
given desired subbehavior is regularly implementable. We will also
give algorithms to compute controllers that regularly implement a
given behavior.

We will first briefly review the notions of implementability and reg-
ular implementability. We first consider the full interconnection case,
the case that all system variables are available for control. Let P 2 Lq

be a plant behavior. A controller for P is a system behavior C 2 Lq .
The full interconnection of P and C is defined as the system which
has the intersection P \ C as its behavior. This controlled behavior is
again an element of Lq . The full interconnection is called regular if
p(P \ C) = p(P) + p(C), see [13]. Let K 2 Lq be a given behavior,
to be interpreted as a ‘desired’ behavior. If K can be achieved as con-
trolled behavior, i.e. if there exists C 2 Lq such that K = P \ C, then
we call K implementable by full interconnection (with respect to P).
If K can be achieved by regular interconnection, i.e., if there exists C
such that K = P \ C and p(P \ C) = p(P) + p(C), then we call K
regularly implementable by full interconnection. The following result
from [7] gives conditions for regular implementability by full intercon-
nection (see also [1], [4], [8]).

Theorem 3.1: Let P;K 2 Lq . Let R(d=dt)w = 0 and
K(d=dt)w = 0 be minimal kernel representations of P and K,
respectively. Then the following statements are equivalent:

1) K is regularly implementable w.r.t. P by full interconnection;
2) there exists a polynomial matrix F with F (�) full-row rank for

all � 2 , such that R = FK ;
3) K + Pcont = P .

Here, Pcont denotes the controllable part of P .
We propose now an algorithmic implementation of this result to

check regular implementability of a given behavior, and to compute
a controller that regularly implements it. The algorithm is based on the
equivalence of steps 1. and 2. Note that if K has full-row rank and the
polynomial equation R = FK has a solution F , then it is unique.

Algorithm 3.2

Input: full-row rank polynomial matrices R and K .
1. Solve the equation R = FK . If no solution exists, K is not

regularly implementable. If a solution F exists go to step 2.
2. (Column compression.) Compute a unimodular U such that

FU = [F1 0], with F1 full column rank.
3. Check if F1 is square and unimodular. If not, then K is not

regularly implementable, otherwise it is. In that case go to step 4
to compute a controller.

4. Compute W such that (F ;W) is unimodular.
5. Put C = WK . Then the controller ker(C) regularly implements
K.

2184 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007

An implementation of this algorithm uses the command axb for step
1, and colred for step 2. The command colred computes also the
inverse of U , which can be used in step 4 to compute an embedding
matrix W as in step 3 of algorithm 1: define W = [0 I]U�1, where I
denotes the identity matrix of appropriate size.

In the above we have restricted ourselves to full interconnection. We
will now deal with the general case of partial interconnection. Again,
let a plant behavior be given. If we are only allowed to interconnect the
plant to a controller through a specific subset of the system variables,
we use the term partial interconnection. In that case, our plant has two
kinds of variables, w and c. The variablesw are interpreted as the vari-
ables to be controlled, the variables c are those through which we can
interconnect the plant to a controller (the control variables). This setup
has been discussed before in [1], [4], [5], [10], [14]. More specific,
assume we have a linear differential plant behavior Pfull 2 Lq+k ,
with system variable (w; c), were w takes its values in q and c in
k . Let C 2 Lk be a controller behavior, with variable c. The inter-

connection of Pfull and C through c is defined as the system behavior
Kfull(C) 2 Lq+k, defined as

Kfull(C) = f(w; c)j(w; c) 2 Pfull and c 2 Cg ;

which is called the full controlled behavior. We define the manifest
controlled behavior as the behavior in Lq obtained by eliminating the
control variable c from Kfull(C). This behavior is given by

(Kfull(C))w = fwj9 c 2 C such that (w; c) 2 Pfullg
closure

;

where we take the closure in the topology of Lloc
1 . Let K 2 Lq be a

given behavior, to be interpreted as a “desired” behavior. If there exists
a controller C 2 Lq such that K = (Kfull(C))w we call K imple-
mentable by partial interconnection (through c, with respect to Pfull).
Necessary and sufficient conditions for a given K 2 Lq to be imple-
mentable by partial interconnection have been obtained in [14]. We
review these conditions here. They are given in terms of the manifest
plant behavior and hidden behavior associated with the full plant be-
haviorPfull, which are defined as follows. The manifest plant behavior
is the behavior (Pfull)w 2 Lq obtained from Pfull by eliminating
c : (Pfull)w =fwjthere exists c such that (w; c) 2 Pfullg

closure. The
hidden behavior consists of those w trajectories that appear in Pfull

with c equal to zero: N = fwj(w;0) 2 Pfullg. According to [14], a
given K 2 Lq is implementable by partial interconnection through c if
and only if N � K � (Pfull)w. In [9] these conditions were general-
ized to more general classes of systems.

If K can be achieved by regular partial interconnection, i.e. if there
exists C such that K = (Kfull(C))w and p(Kfull(C)) = p(Pfull) +

p(C), then we call K regularly implementable by partial interconnec-
tion. Conditions for regular implementability were given in [4] (see
also [1], [12]):

Proposition 3.3: Let Pfull 2 Lq+k . K 2 Lq is regularly imple-
mentable by partial interconnection through c if and only if N �
K � (Pfull)w and K is regularly implementable w.r.t. (Pfull)w by
full interconnection.

We now develop an algorithm to check regular implementability
by partial interconnection, and to compute a required controller. Sup-
pose that Pfull = ker[R1 R2] is a minimal kernel representation.
Clearly, the hidden behavior N is equal to ker(R1). Let U be a uni-
modular matrix such that UR2 = (R12; 0) and such that R12 has

full-row rank. LetR11 andR21 be obtained by partitioning in the same
way UR1 = (R11;R21). It is well known (see, e.g., [6, Ch. 6]), that
(Pfull)w = ker(R21) is a minimal kernel representation of the mani-
fest plant behavior. This leads to the following algorithm to check reg-
ular implementability of K with respect to Pfull.

Algorithm 3.4

Input: [R1 R2] and K of full-row rank.
1. Compute a solution L of K = LR1. If no solution exists, K is

not regularly implementable. Otherwise go to step 2.
2. (Row compression.) Compute a unimodular matrix U and a

full-row rank polynomial matrix R12 such that UR2 = (R12; 0).
3. Partition UR1 = (R11;R21) compatible with step 2.
4. Solve the equation R21 = FK . If no solution F exists, K is not

regularly implementable. If a solution F exists, go to step 5.
5. (Column compression.) Compute a unimodular U such that

FU = [F1 0], with F1 full column rank.
6. Check if F1 is square and unimodular. If not, then K is not

regularly implementable, otherwise it is. In that case go to step 7
to compute a controller.

7. Compute W such that (F ;W) is unimodular.
8. Compute C = WLR2. Then ker(C) regularly implements K.

An implementation of the algorithm again only uses the standard
commands from the Polynomial Toolbox that we already mentioned.

IV. ALGORITHMS FOR STABILIZATION AND POLE PLACEMENT

This section deals with the synthesis problems of stabilization and
pole placement by regular interconnection. We will give algorithms
to compute, for a given plant behavior, controllers that achieve pole
placement and stabilization. These algorithms require the computation
of unimodular and stable embeddings.

For completeness, we first discuss the problems of pole placement
and stabilization by regular full interconnection. Before reviewing
these problems, we first recall some facts on autonomous systems. If a
behavior 2 Lq has the property that p() = q (so all variables are
output), then we call autonomous. An autonomous system is called
stable if limt!1w(t) = 0 for all w 2 . For autonomous behaviors
we have the notion of characteristic polynomial. If is autonomous
then there exists a q � q polynomial matrix R with det(R) 6= 0 such
that = ker(R). We can choose R such that det(R) has leading
coefficient equal to 1. This monic polynomial is denoted by � and
is called the characteristic polynomial of . Of course is stable if
and only if � is Hurwitz.

Let P 2 Lq be a given plant behavior. The problem of pole place-
ment is defined as follows. Let r be a monic real polynomial. Find a
controller behavior C such that the controlled behavior K = P \ C
is autonomous, has characteristic polynomial �K = r, and the inter-
connection is regular. It was proven in [13] that for every monic real
polynomial r there exists such controller C if and only if the plant be-
havior P is controllable and p(P) < q. The stabilization problem is
the following: find a controller behavior C such that the controlled be-
havior K = P \ C is autonomous, its characteristic polynomial �K
is Hurwitz, and the interconnection is regular. It was proven in [13]
that there exists such controller C if and only if the plant behavior P is
stabilizable.

Assume now that P = ker(R) is a minimal representation. Then P
is controllable if and only if R(�) has full-row rank for all � 2 , see
[6]. Obviously, p(P) < q if and only if the number of rows ofR is less

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007 2185

than q. Assume this to be the case. In the following we first describe an
algorithm that checks controllability.

Algorithm 4.1

Input: a full-row rank polynomial matrix R.
1. (Column compression.) Find a unimodular polynomial matrix U

such that RU = [R1 0] with R1 full column rank.
2. Check if R1 is square and unimodular. If it is, then P is

controllable, otherwise it is not.

If P is controllable, the following simple algorithm computes a con-
troller that assigns the characteristic polynomial r.

Algorithm 4.2

Input: a full-row rank polynomial matrix R and a real monic
polynomial r.

1. Compute a real polynomial matrix C1 such that (R;C1) is
unimodular.

2. Take C to be any polynomial matrix obtained by multiplying one
of the rows of C1 by r.

Define the controller C = ker(C). Then the controlled system behavior
K = P \ C is represented by

R d

dt

C d

dt

w = 0

Clearly, det(R;C) = r, so the controlled system K is autonomous
and �K = r. As before, in the above, the column compression in
algorithm 4.1, step 1 can be implemented using colred. This com-
mand also computes U�1, which can be used to compute an embed-
ding C1 = [0 I]U�1 in algorithm 4.2.

Next, we consider the stabilization problem. Again, assume thatP is
represented by the minimal kernel representationR(d=dt)w = 0, with
R a real polynomial matrix. P is stabilizable if and only if R(�) has
full-row rank for all � 2 +. An algorithm to check stabilizability and
to compute a stabilizing controller has similar steps as algorithms 4.1
and 4.2: in algorithm 4.1, step 2 is replaced by checking whether R1

is square and Hurwitz, while algorithm 4.2 is replaced by the compu-
tation of a real polynomial matrix C such that (R;C) is Hurwitz. The
controller behavior C := ker(C) then stabilizes the system: det(R;C)

is a Hurwitz polynomial so the controlled systemK is autonomous and
stable.

We now consider the partial interconnection case. The problem of
pole placement by regular partial interconnection through c is formu-
lated as follows: given a real monic polynomial r, find a controller
C 2 L

k such that the manifest controlled behavior (Kfull(C))w is au-
tonomous, has characteristic polynomial r, and the interconnection is
regular. It was shown in [4] that for every real monic polynomial r
there exists a required controller C if and only if (Pfull)w is control-
lable, p((Pfull)w) < q and in Pfull , w is observable from c. This ob-
servability condition is equivalent with N = 0.

Suppose now that Pfull = ker[R1 R2] is a minimal kernel represen-
tation. We will now first establish an algorithm to check whether pole
placement is possible, i.e., whether the controllablity and observability
conditions are satisfied, and p((Pfull)w) < q. Clearly, N = ker(R1).
LetU be a unimodular matrix such that UR2 = (R12; 0) and such that

R12 has full-row rank. Let R11 and R21 be obtained by partitioning in
the same way UR1 = (R11;R21). Then Pfull has a minimal kernel
representation

R11
d

dt
R12

d

dt

R21
d

dt
0

w

c
= 0:

From this representation it is clear that (Pfull)w = ker(R21) is a min-
imal kernel representation of the manifest plant behavior. Furthermore,
the hidden behavior N is also represented by

R11
d

dt

R21
d

dt

w = 0: (1)

This yields the following algorithm.

Algorithm 4.3

Input: [R1 R2] of full-row rank.
1. (Row compression of R1.) Compute a unimodular V such that

V R1 = (R11; 0) with R11 full-row rank.
2. Check whether R11 is square and unimodular. If it is not, then

we do not have observability, otherwise go to step 3.
3. (Row compression of R2.) Compute a unimodular matrix U such

that UR2 = (R12; 0) with R12 full-row rank.
4. Partition UR1 = (R11;R21) compatible with step 3.
5. Check whether the number of rows of R21 is less than its number

of columns. If it is not, then pole placement is not possible. If
it is, then go to step 6.

6. Apply algorithm 4.1 to R21 (to check controllability of
ker(R21)).

After checking the conditions, the following algorithm computes, for
a given r, a required polynomial matrix C (representing a controller
C) that assigns the characteristic polynomial r. In the algorithm we
need to solve a unimodular embedding problem twice. We assume that
(Pfull)w is controllable, equivalently R21(�) has full-row rank for all
�, and that p((Pfull)w)< q, equivalently the number of rows ofR21 is
less than its number of columns. ThenR21 can be embedded into a uni-
modular polynomial matrix. We also assume thatN = 0, equivalently
(R11(�);R21(�)) has full column rank for all �. Thus (R11;R21) can
be embedded into a unimodular matrix as well. Choose polynomial ma-
trices U12 and U22 such that

R11 U12

R21 U22

(2)

is unimodular. Next, solve the polynomial equation (in the unknowns
X and Y)

R11 U12

R21 U22

X

Y
=

R12

0
: (3)

Then we have

R11 U12

R21 U22

I X

0 Y
=

R11 R12

R21 0

so Pfull also has the minimal kernel representation

I X d

dt

0 Y d

dt

w

c
= 0:

2186 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007

From this, note that (w; c) 2 Pfull implies w = �X(d=dt)c. Next,
let C0 be such that (R21;C0) is unimodular, with determinant, say,
a 6= 0, and let C1 be any polynomial matrix obtained by multiplying
one of the rows of C0 by the desired polynomial r. Then of course
det(R21;C1) = ar. Define now the controller behavior C 2 Lk as
the behavior represented by C(d=dt)c = 0, with C defined by C :=

C1X . We claim that the corresponding manifest controlled behavior
(Kfull(C))w is then represented by

R21
d

dt

C1
d

dt

w = 0;

and that the interconnection of Pfull with C is regular.
Indeed, let w 2 (Kfull(C))w. Then there exists c such that (w; c) 2

Pfull and c 2 C. Hence, C(d=dt)c = 0, so C1(d=dt)X(d=dt)c= 0.
Also, (w; c) 2 Pfull, so w = �X(d=dt)c. This yields C1(d=dt)w =

0. Also, R21(d=dt)w = 0. Conversely, assume that R21(d=dt)w = 0

and C1(d=dt)w = 0. There exists c such that (w; c) 2 Pfull. Hence
w = �X(d=dt)c so C1(d=dt)X(d=dt)c = 0, equivalently, c 2 C.
Thus we obtain (w; c) 2 Kfull, so w 2 (Kfull)w. We conclude that
(Kfull(C))w has characteristic polynomial r. It can also be shown that
the interconnection is regular. This leads to the following algorithm that
takes the polynomial matrices representing the full plant behavior and
the desired polynomial as input, and produces as output a polynomial
matrix representing a desired controller.

Algorithm 4.4

Input: a polynomial matrix [R1 R2] of full-row rank and a monic
real polynomial r.

1. (Row compression.) Compute a unimodular matrix U and a
full-row rank polynomial matrix R12 such that UR2 = (R12; 0)

2. Partition UR1 = (R11;R21) compatible with step 1.
3. Compute polynomial matrices U12 and U22 such that (2) is

unimodular
4. Compute polynomial matrices X and Y that solve the

polynomial equation (3).
5. Compute a polynomial matrix C0 such that (R21;C0) is

unimodular. Compute C1 as any polynomial matrix obtained by
multiplying one of the rows of C0 by r.

6. Compute C = C1X .

A required controller is then given by ker(C).
Next we consider the problem of stabilization by regular partial in-

terconnection. This problem is formulated as follows. Given Pfull 2

Lq+k , find a controller C 2 Lk such that the corresponding manifest
controlled behavior (Kfull(C))w is stable, and the interconnection is
regular. This problem was studied extensively in [4], and it was shown
that for the full plant behavior Pfull such controller exists if and only
if the manifest plant behavior (Pfull)w is stabilizable and in Pfullw

is detectable from c. This detectability condition is equivalent with
the condition that the hidden behavior N is stable, see [4]. Again, let
Pfull = ker[R1 R2] be a minimal kernel representation. An algorithm
to check stabilizability and detectability is analogous to algorithm 4.3:
step 2 is replaced by checking whether R11 is square and Hurwitz,
step 5 is omitted, and in step 6 one should check whether ker(R21) is
stabilizable.

We establish now an algorithm to compute a stabilizing controller
C = ker(C). LetU be a unimodular matrix that leads to the polynomial
matrices R11, R12 and R21 as in the above. Again, (Pfull)w is repre-
sented by R21(d=dt)w = 0 and N by (1). We assume that (Pfull)w
is stabilizable and N is stable. Then R21(�) has full-row rank for all
� 2 + and (R11(�);R21(�)) has full column rank for all � 2 +.
Hence there exists a Hurwitz polynomial matrixG and polynomial ma-
trices R0

11 and R0

21 such that

R11

R21

=
R0

11

R0

21

G (4)

and such that (R0

11(�);R
0

21(�)) has full column rank for all � 2 .
Choose polynomial matrices U12 and U22 such that

R0

11 U12

R0

21 U22

(5)

is unimodular. Next, solve the polynomial equation (in the unknowns
X and Y)

R0

11 U12

R0

21 U22

X

Y
=

R12

0
: (6)

Then we have

R0

11 U12

R0

21 U22

G X

0 Y
=

R11 R12

R21 0

so Pfull also has a minimal kernel representation

G X d

dt

0 Y d

dt

w

c
= 0:

From this, note that (w; c) 2 Pfull implies G(d=dt)w = �X(d=dt)c.
Next, let C0 be such that (R0

21;C0) is Hurwitz (such C0 exists since
R0

21(�) has full-row rank for all � 2 +. Define now the controller be-
havior C 2 Lk as the behavior represented by C(d=dt)c = 0, with C
defined byC := C0X . Similar as in the above, it can be shown that the
corresponding manifest controlled behavior (Kfull(C))w is then repre-
sented by

R21
d

dt

(C0G) d

dt

w = 0;

R =
�0:9 + 2s+ s2 + 0:1s3 + 2s4 �1:5 + 13s+ 2:5s2 + s3 + 4s4 + s5 11� 0:3s2 + 2s3 + 1:3s4

1:6� 8s+ 1:1s3 + 2s4 3� 9s� s2 + 1:5s3 + 7s4 + s5 1 + s+ 0:6s2 + 3s3 + 2s4 + 0:3s5

and

K =

1 1:5 + s s+ 0:3s2

0:1 + 2s 3s+ s2 s

0 s 1

:

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007 2187

U =

�s 1 s2

1:1s� 0:05s2 0:05s 1 + 0:05s3

1 + 0:058s� 0:0053s2 0:053 + 0:0053s 0:11 + 0:053s2 + 0:0053s3
:

and that the interconnection of Pfull with C is regular. Since
det(R21;C0G) = det(R0

21;C0) det(G), (Kfull(C))
w

is stable.
Summarizing, this leads to the following algorithm:

Algorithm 4.5

Input: a full-row rank polynomial matrix [R1 R2].
1. (Row compression.) Compute a unimodular matrix U and a

full-row rank polynomial matrix R12 such that UR2 = (R12; 0).
2. Partition UR1 = (R11;R21) compatible with step 1.
3. (Row compression.) Compute a unimodular V such that

V (R11;R21) = (G; 0) and G square and nonsingular. (Note: G
is Hurwitz!).

4. Compute (R0

11;R
0

21) from the equation V (R0

11;R
0

21) = (I; 0).
(Note: we then have (4) and (R0

11(�);R
0

21(�)) has full column
rank for all � 2 .)

5. Compute polynomial matrices U12 and U22 such that (5) is
unimodular.

6. Compute polynomial matrices X and Y that solve the
polynomial equation (6).

7. Compute a polynomial matrixC0 such that (R0

21;C0) is Hurwitz.
8. Compute C = C0X .

Note that implementations of all algorithms in this section only
require the Matlab commands that we have already mentioned in
Section II.

V. NUMERICAL EXAMPLES

In this section, we apply some of the algorithms developed in this
paper to concrete examples.

Example 5.1: In this example, we apply Algorithm 4 to check for
a given plant P = ker(R) whether K = ker(K) is regularly imple-
mentable, and to compute a polynomial matrix C such that the con-
troller C = ker(C) regularly implements K. Let (see the equations
shown at the bottom of the previous page).

1. Use xab to compute

F =
�1 + s2 1 + s3 11 + s3

2 + s3 �4 + s3 1 + 3s+ 3s3
:

2, 3. Use colred to compute F1 =
�2:4 11

�4:3 1
. F1 is

unimodular, so K is regularly implementable w.r.t. P . colred
also computes a required unimodular U and its inverse U�1.
4. Compute W as the last row of U�1, which is given by

W = [1� 0:04s� 0:085s2 + 0:12s3;

� 0:066s+ 0:15s2 � 0:092s3

0:16s+ 0:39s2 + 0:14s3]:

Then (F ;W) is unimodular: det(F ;W) = 45.
5. Compute C = WK = [1 � 0:046s� 0:2s2 + 0:4s3 �
0:18s4;1:5 + 0:94s � 0:21s2 + 0:85s3 + 0:13s4 �
0:092s5;1:2s+ 0:59s2 + 0:19s3 � 0:0016s4 + 0:035s5].

Example 5.2: In this example we apply algorithms 4.3 and 4.4 to
compute a controller that assigns a desired characteristic polynomial
to the manifest controlled behavior. Consider the full plant behavior
Pfull = ker(R1 R2) with R1 and R2 given by

R1(s) =

�1 �1

�s3 � 3s2 � s �s3 � 6s2 � s

s+ 3 s+ 6

R2(s) =

�1 �3

�s3 � 9s2 � s+ 1 �3:1s3 � 28s2 � 3s+ 1

s+ 9 3:1s+ 28

:

We first apply Algorithm 4.3:

1, 2. Use rowred to compute R11 =
�1 �1

3 6
. Obviously,

R11 is unimodular, so w is observable from c.

3. Use rowred to compute R12 =
1 1

9 28
, obtained using the

unimodular matrix as shown in the equation at the top of the page.
4. Premultiplying R1 by U yields R11 =

0 0

3� 0:05s 6� 0:05s
and R21 = [�0:68 �

0:0053s;�0:37 � 0:0053s].
5, 6. The number of rows of R21 is less than its number of
columns. Finally, use colred to columncompress R21 to
[�0.37,0]. This shows that ker(R21) is controllable.

We continue then with Algorithm 4.4.

1, 2. R12, R11 and R12 have already been computed in steps 3
and 4 above.
3. Compute U12 and U22 such that (2) is unimodular. These are
computed as U12 = [1; 0]0 and U22 = 0.
4. Use axb to solve the (3). This yields X =
�1:1� 0:016s �3:4� 0:049s

2:1 + 0:016s 6:4 + 0:049s
5, 6. With C0 := [1; 1], (R21;C0) is unimodular. Choose as
desired characteristic polynomial r(s) = (s + 2)2. Define
C1 = r(s)C0, and C = C1X = [4 + 4s+ s2; 12+ 12s+ 3s2].

The controller C(d=dt)c = 0 yields the characteristic polynomial
r(s). Indeed, applying this controller, and eliminating c we obtain that
the manifest controlled behavior is given by ker(R), with

R =
�0:68� 0:0053s �0:37� 0:0053s

�1:3� 4s� s2 �2:5� 4s� s2
:

We compute det(R) = 1:3 + 1:3s+ 0:32s2, the characteristic poly-
nomial of ker(R) is the monic polynomial with the same zeros, which
is indeed equal to r(s).

2188 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007

VI. CONCLUSION

In this correspondence, we have introduced algorithms to compute
controllers in the context of control by interconnection. These algo-
rithms act on the polynomial matrices that define kernel representa-
tions of the systems to be controlled. We have established algorithms
for the computation of controllers that regularly implement a given de-
sired controlled behavior, both for the full interconnection and the par-
tial interconnection case. Also, algorithms were proposed for checking
the properties of controllability, observability, stabilizability and de-
tectability in the behavioral framework. Finally, we gave algorithms
to compute controllers that assign the characteristic polynomial of the
manifest controlled behavior, and to compute stabilizing controllers. A
central role in our algorithms is played by the problems of unimod-
ular and stable embedding. The algorithms in this paper can all be
implemented using standard commands from the Matlab Polynomial
Toolbox.

REFERENCES

[1] M. N. Belur, “Control in a Behavioral Context,” Doctoral Dissertation,
University of Groningen, Groningen, The Netherlands, 2003.

[2] T. Beelen and P. Van Dooren, “A pencil approach for embedding a
polynomial matrix into a unimodular matrix,” SIAM J. Matrix Anal.
Appl., vol. 9, no. 1, pp. 77–89, 1988.

[3] M. Bisiacco and M. Valcher, “A note on the direct sum decompositions
of two-dimensional behaviors,” IEEE Trans. Circuits Syst., vol. 48, no.
4, pp. 490–494, 2001.

[4] M. N. Belur and H. L. Trentelman, “Stabilization, pole placement and
regular implementability,” IEEE Trans. Automat. Control, vol. 47, no.
5, pp. 735–744, 2002.

[5] J. W. Polderman and I. Mareels, “A behavioral approach to adaptive
control,” in The Mathematics of Systems and Control: From Intelligent
Control to Behavioral Systems, J. W. Polderman and H. L. Trentelman,
Eds. Groningen, The Netherlands: Foundation Systems and Control
Groningen, 1999, pp. 119–130.

[6] J. W. Polderman and J. C. Willems, Introduction to Mathematical Sys-
tems Theory: A Behavioral Approach. Berlin, Germany: Springer-
Verlag, 1997.

[7] C. Praagman, H. L. Trentelman, and R. Z. Yoe, “On the parametriza-
tion of all regularly implementing and stabilizing controllers,” SIAM J.
Contr. Optim., to be published.

[8] P. Rocha and J. Wood, “Trajectory control and interconnection of 1D
and nD systems,” SIAM J. Contr. Optim., vol. 40, pp. 107–134, 2001.

[9] A. J. van der Schaft, “Achievable behavior of general systems,” Syst.
Contr. Lett., vol. 49, pp. 141–149, 2003.

[10] H. L. Trentelman and J. C. Willems, “Synthesis of dissipative systems
using quadratic differential forms: Part II,” IEEE Trans. Automat. Con-
trol, vol. 47, pp. 70–86, 2002.

[11] P. Van Dooren, “The basics of developing numerical algorithms,” IEEE
Contr. Syst. Mag., pp. 18–27, Feb. 2004.

[12] A. A. Julius, J. C. Willems, M. N. Belur, and H. L. Trentelman, “The
canonical controller and regular interconnection,” Syst. Contr. Lett.,
vol. 54, no. 8, pp. 787–797, 2005, 141–149, 2003.

[13] J. C. Willems, “On interconnections, control and feedback,” IEEE
Trans. Automat. Control, vol. 42, pp. 326–339, 1997.

[14] J. C. Willems and H. L. Trentelman, “Synthesis of dissipative systems
using quadratic differential forms—Part I,” IEEE Trans. Automat. Con-
trol, vol. 47, no. 1, pp. 53–69, Jan. 2002.

The Controlled Center Systems

Boumediene Hamzi and Arthur J. Krener

Abstract—In this correspondence, we propose a methodology to stabilize
systems with control bifurcations by introducing “The Controlled Center
Systems.” A controlled center system is a reduced-order controlled dy-
namics consisting of the linearly uncontrollable dynamics with the first
variable of the linearly controllable dynamics as input. The controller of the
full order system is then constructed. We apply this methodology to systems
with a transcontrollable, a Hopf, and a double-zero, control bifurcation.

I. INTRODUCTION

Center manifold theory plays an important role in the study of the
stability of nonlinear systems when the equilibrium point is not hyper-
bolic. The center manifold is an invariant manifold of the differential
(difference) equation which is tangent at the equilibrium point to the
eigenspace of the neutrally stable eigenvalues. After determining the
reduced dynamics on the center manifold, we study its stability and
then conclude about the stability of the full order system [6].

This theory can be viewed as a model reduction technique for non-
linear dynamical systems with nonhyperbolic equilibrium points. In-
deed, the stability properties of a dynamical system around an equi-
librium where one or more eigenvalues of its linear part are on the
imaginary axis are characterized by the local asymptotic stability of
the dynamics on the center manifold. Thus, this leads to a reduction of
the dimension of the dynamics that needs to be analyzed to determine
local asymptotic stability of the equilibrium.

For a nonlinear control system around an equilibrium, the local
asymptotic stability of the linearly controllable directions can be easily
achieved by linear feedback. Therefore the stabilizability of the whole
system should depend on a reduced order model that corresponds
to the stabilizability of the linearly uncontrollable directions. The
Controlled Center Dynamics introduced in [9] formalizes this intuition.
By assuming that the stabilizing feedback has a certain structure and is
characterized by certain parameters, the controlled center dynamics is a
reduced order dynamical system characterized by the parameters of the
feedback. By finding the conditions under which this dynamical system
is stable, we deduce conditions on the parameters of the feedback,
and, thus, deduce a stabilizing controller for the full order system.

In this correspondence, we present a slightly different approach. In-
stead of assuming that the feedback has a certain structure and is char-
acterized by certain parameters, we synthesize a controller on a re-
duced-order control system called the Controlled Center System. This
system is a controlled dynamical system consisting of the linearly un-
controllable dynamics with the first variable of the linearly controllable
dynamics playing the role of the input. By constructing a stabilizing
controller, that satisfies certain conditions, for this reduced order con-
trol system, we are able to deduce a stabilizing controller for the full
order system.

The paper is organized as follows. In Section II, we review the con-
trolled center dynamics approach. Then, in Section III, we introduce
the quadratic controlled center systems and propose a methodology to
stabilize systems with control bifurcations. We apply this approach to
systems with a trancontrollable and Hopf control bifurcation. Finally, in

Manuscript received March 1, 2006; revised November 10, 2006 and Feb-
ruary 18, 2007. Recommended by Associate Editor S. Celikovsky.

The authors are with the Department of Mathematics, University of
California, Davis, CA 95616 USA (e-mail: hamzi@math.ucdavis.edu;
krener@math.ucdavis.edu).

Digital Object Identifier 10.1109/TAC.2007.902743

0018-9286/$25.00 © 2007 IEEE

