20 research outputs found

    Modeling Oculomotor Variability During Slow Cabin Decompression Using Infrared Technology

    Get PDF
    Slow cabin decompression is highly perilous due to its gradual and thus generally inconspicuous nature. In an applied approach to studying its effects upon oculomotor performance, experienced pilots performed a simulated flight task during slow decompression inside a high-altitude chamber while an infrared-based head-mounted eye-tracker measured oculomotor and pupillary changes at approximately 5% decrements in blood oxygen saturation. Saccade angle, saccade duration, saccadic velocity, microsaccade rate, fixation duration, and pupil diameter varied systematically in response to manipulation of blood oxygen saturation level, including recovery upon return to normoxia. Changes in these oculomotor variables can serve as biomarkers for early hypoxia exposure in pilots, likely before the first subjective symptom is recognized, and can be detected with lower-resolution, non-invasive infrared technology. Abstract Slow cabin decompression is highly perilous due to its gradual and thus generally inconspicuous nature. In an applied approach to studying its effects upon oculomotor performance, experienced pilots performed a simulated flight task during slow decompression inside a high-altitude chamber while an infrared-based head-mounted eye-tracker measured oculomotor and pupillary changes at approximately 5% decrements in blood oxygen saturation. Saccade angle, saccade duration, saccadic velocity, microsaccade rate, fixation duration, and pupil diameter varied systematically in response to manipulation of blood oxygen saturation level, including recovery upon return to normoxia. Changes in these oculomotor variables can serve as biomarkers for early hypoxia exposure in pilots, likely before the first subjective symptom is recognized, and can be detected with lower-resolution, non-invasive infrared technology. Keywords: Saccadic velocity, Oculometrics, Eye-tracking, Slow decompressio

    Polarization calibration of the BICEP3 CMB polarimeter at the South Pole

    Get PDF
    The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3's ~800 functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence

    Prospective cohort study reveals unexpected aetiologies of livestock abortion in northern Tanzania

    Get PDF
    Livestock abortion is an important cause of productivity losses worldwide and many infectious causes of abortion are zoonotic pathogens that impact on human health. Little is known about the relative importance of infectious causes of livestock abortion in Africa, including in subsistence farming communities that are critically dependent on livestock for food, income, and wellbeing. We conducted a prospective cohort study of livestock abortion, supported by cross-sectional serosurveillance, to determine aetiologies of livestock abortions in livestock in Tanzania. This approach generated several important findings including detection of a Rift Valley fever virus outbreak in cattle; high prevalence of C. burnetii infection in livestock; and the first report of Neospora caninum, Toxoplasma gondii, and pestiviruses associated with livestock abortion in Tanzania. Our approach provides a model for abortion surveillance in resource-limited settings. Our findings add substantially to current knowledge in sub-Saharan Africa, providing important evidence from which to prioritise disease interventions

    CMB-S4

    Get PDF
    We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4

    Polarization calibration of the BICEP3 CMB polarimeter at the South Pole

    Get PDF
    The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3's ~800 functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence

    Measurement of D∗±D^{*±} production in deep inelastic scattering at HERA

    Get PDF
    The production of D∗± mesons in deep inelastic ep scattering has been measured for exchanged photon virtualities 5<Q2<1000\gev2, using an integrated luminosity of 363 pb−1 with the ZEUS detector at HERA. Differential cross sections have been measured and compared to next-to-leading-order QCD calculations. The cross-sections are used to extract the charm contribution to the proton structure functions, expressed in terms of the reduced charm cross section, σccˉred. Theoretical calculations based on fits to inclusive HERA data are compared to the results.The production of D (*±) mesons in deep inelastic ep scattering has been measured for exchanged photon virtualities 5 < Q (2) < 1000 GeV(2), using an integrated luminosity of 363 pb(−1) with the ZEUS detector at HERA. Differential cross sections have been measured and compared to next-to-leading-order QCD calculations. The cross-sections are used to extract the charm contribution to the proton structure functions, expressed in terms of the reduced charm cross section, . Theoretical calculations based on fits to inclusive HERA data are compared to the results

    CMB-S4 Science Case, Reference Design, and Project Plan

    No full text
    We present the science case, reference design, and project plan for the Stage-4 ground-based cosmic microwave background experiment CMB-S4

    CMB-S4 Decadal Survey APC White Paper

    Get PDF
    International audienceWe provide an overview of the science case, instrument configuration and project plan for the next-generation ground-based cosmic microwave background experiment CMB-S4, for consideration by the 2020 Decadal Survey
    corecore