32 research outputs found

    Surface contamination analysis technology team overview

    Get PDF
    A team was established which consisted of representatives from NASA (Marshall Space Flight Center and Langley Research Center), Thiokol Corporation, the University of Alabama in Huntsville, AC Engineering, SAIC, Martin Marietta, and Aerojet. The team's purpose was to bring together the appropriate personnel to determine what surface inspection techniques were applicable to multiprogram bonding surface cleanliness inspection. In order to identify appropriate techniques and their sensitivity to various contaminant families, calibration standards were developed. Producing standards included development of consistent low level contamination application techniques. Oxidation was also considered for effect on inspection equipment response. Ellipsometry was used for oxidation characterization. Verification testing was then accomplished to show that selected inspection techniques could detect subject contaminants at levels found to be detrimental to critical bond systems of interest. Once feasibility of identified techniques was shown, selected techniques and instrumentation could then be incorporated into a multipurpose inspection head and integrated with a robot for critical surface inspection. Inspection techniques currently being evaluated include optically stimulated electron emission (OSEE); near infrared (NIR) spectroscopy utilizing fiber optics; Fourier transform infrared (FTIR) spectroscopy; and ultraviolet (UV) fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992 assuming appropriate funding levels are maintained. This paper gives an overview of work accomplished by the team and future plans

    Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    Get PDF
    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments

    NASA Rocket Propulsion Test Replacement Effort for Oxygen System Cleaner - Hydrochlorofluorocarbon (HCFC) 225

    Get PDF
    Gaseous and liquid oxygen are extremely reactive materials used in bipropellant propulsion systems. Both flight and ground oxygen systems require a high level of cleanliness to support engine performance, testing, and prevent mishaps. Solvents used to clean and verify the cleanliness of oxygen systems and supporting test hardware must be compatible with the system's materials of construction and effective at removing or reducing expected contaminants to an acceptable level. This paper will define the philosophy and test approach used for evaluating replacement solvents for the current Marshall Space Flight Center/Stennis Space Center baseline HCFC225 material that will no longer be available for purchase after 2014. MSFC/SSC applications in cleaning / sampling oxygen propulsion components, support equipment, and test system were reviewed then candidate replacement cleaners and test methods selected. All of these factors as well as testing results will be discussed

    Fused Traditional and Geometric Morphometrics Demonstrate Pinniped Whisker Diversity

    Get PDF
    Vibrissae (whiskers) are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length) were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics) was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC), which results in vibrotactile reception, but it is currently unclear how the diversity of shapes affects environmental signal modulation

    Quantum gravitational corrections for spinning particles

    Get PDF
    We calculate the quantum corrections to the gauge-invariant gravitational potentials of spinning particles in flat space, induced by loops of both massive and massless matter fields of various types. While the corrections to the Newtonian potential induced by massless conformal matter for spinless particles are well-known, and the same corrections due to massless minimally coupled scalars [Class. Quant. Grav. 27 (2010) 245008], massless non-conformal scalars [Phys. Rev. D 87 (2013) 104027] and massive scalars, fermions and vector bosons [Phys. Rev. D 91 (2015) 064047] have been recently derived, spinning particles receive additional corrections which are the subject of the present work. We give both fully analytic results valid for all distances from the particle, and present numerical results as well as asymptotic expansions. At large distances from the particle, the corrections due to massive fields are exponentially suppressed in comparison to the corrections from massless fields, as one would expect. However, a surprising result of our analysis is that close to the particle itself, on distances comparable to the Compton wavelength of the massive fields running in the loops, these corrections can be enhanced with respect to the massless case

    Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA)

    Get PDF
    The International Agency for Research on Cancer (IARC) Monographs Programme identifies chemicals, drugs, mixtures, occupational exposures, lifestyles and personal habits, and physical and biological agents that cause cancer in humans and has evaluated about 1000 agents since 1971. Monographs are written by ad hoc Working Groups (WGs) of international scientific experts over a period of about 12 months ending in an eight-day meeting. The WG evaluates all of the publicly available scientific information on each substance and, through a transparent and rigorous process,1 decides on the degree to which the scientific evidence supports that substance's potential to cause or not cause cancer in humans. For Monograph 112,2 17 expert scientists evaluated the carcinogenic hazard for four insecticides and the herbicide glyphosate.3 The WG concluded that the data for glyphosate meet the criteria for classification as a probable human carcinogen. The European Food Safety Authority (EFSA) is the primary agency of the European Union for risk assessments regarding food safety. In October 2015, EFSA reported4 on their evaluation of the Renewal Assessment Report5 (RAR) for glyphosate that was prepared by the Rapporteur Member State, the German Federal Institute for Risk Assessment (BfR). EFSA concluded that ?glyphosate is unlikely to pose a carcinogenic hazard to humans and the evidence does not support classification with regard to its carcinogenic potential?. Addendum 1 (the BfR Addendum) of the RAR5 discusses the scientific rationale for differing from the IARC WG conclusion. Serious flaws in the scientific evaluation in the RAR incorrectly characterise the potential for a carcinogenic hazard from exposure to glyphosate. Since the RAR is the basis for the European Food Safety Agency (EFSA) conclusion,4 it is critical that these shortcomings are corrected

    Amyloid Plaques Beyond Aβ: A Survey of the Diverse Modulators of Amyloid Aggregation

    Get PDF
    Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer’s disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration

    Customer emotions in service failure and recovery encounters

    Get PDF
    Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences
    corecore