250 research outputs found

    On the Accuracy of Finite Element Models Predicting Residual Stresses in Quenched Stainless Steel

    Get PDF
    Prediction of residual stress profiles after quenching is important for a range of industry applications. Finite element method (FEM) models have the capability of simulate the cooling and stress evolution during quenching; however, they are very dependent on the heat transfer coefficient (HTC) imposed on the surface. In this paper, an analysis of the HTC effect on the accuracy of the residual stress profile after quenching a 304L stainless steel Jominy sample was conducted. The FEM model was validated in its thermal accuracy using thermocouples and the residual stress profile was measured using the contour method. The results show that a thermally validated FEM model may yield results which overestimate the tensile residual stress and underestimates the compressive residual stress maxima while accurately calculating the maxima positions from the quenched edge. The FEM model accuracy was not improved by modifying the HTC or by using a different thermal expansion coefficient. The results are discussed in terms of the effect of plasticity due to twinning in the residual stresses calculated by the FEM model

    Quantification of Residual Stresses in Electron Beam Welded Fracture Mechanics Specimens

    Get PDF
    Residual stress measurements have been made in a range of electron beam welded samples to study how the weld induced residual stresses redistributed during fabrication of compact tension, C(T), specimens. The samples were manufactured from Type 316H stainless steel in the ex-service material condition and in material which had been preconditioned by inducing 8% plastic strain. Measurements made using neutron diffraction, slitting and the contour method were generally in good agreement and showed residual stress components of up to three times the base material's yield strength existed in the samples. When sectioning a sample to perform the contour method, large elastic deformations occurred at the cut tip due to the large residual stresses present. A correction was applied to the measured surface displacements to account for this deformation. Neutron diffraction measurements were made at various stages of the fabrication process, which showed significant stress redistribution occurred as the welded samples were machined into C(T) specimens. However the tensile stresses near the crack tip of the C(T) specimens remained large and could significantly influence subsequent crack growth tests

    Development of a fretting-fatigue mapping concept: The effect of material properties and surface treatments

    Get PDF
    Fretting-fatigue induced by combined localized cyclic contact motion and external bulk fatigue loadings may result in premature and dramatic failure of the contacting components. Depending on fretting and fatigue loading conditions, crack nucleation and possibly crack propagation can be activated. This paper proposes a procedure for estimating these two damage thresholds. The crack nucleation boundary is formalized by applying the Crossland high cycle fatigue criterion, taking into account the stress gradient and the ensuing #size##effect#. The prediction of the crack propagation condition is formalized using a short crack arrest description. Applied to an AISI 1034 steel, this methodology allows the development of an original material response fretting-fatigue map (FFM). The impact of material properties and surface treatments is investigated

    The incremental contour method using asymmetric stiffness cuts

    Get PDF
    An incremental Contour Method (iCM) of residual stress measurement is proposed where residual stresses in the body of interest are sequentially reduced by successive contour cuts and the risk of stress re-distribution plastic- ity is mitigated or eliminated. The cutting-induced plasticity is known to cause significant inaccuracies when try- ing to measure the near-yield residual stresses using a conventional single cut contour method. The iCM procedure implements a new displacement data processing approach for the general case of sectioning at an ar- bitrary plane where the cut parts do not possess mirror-symmetric elastic stiffness. The basis for the new asymmetric stiffness data analysis approach is presented and the accuracy of the new method demonstrated using both numerical and experimental case studies

    Methods of measuring residual stresses in components

    Get PDF
    Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components. Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments

    Towards good practice guidelines for the contour method of residual stress measurement

    Get PDF
    Accurate measurement of residual stress in metallic components using the contour method relies on the achievement of a good quality cut, on the appropriate measurement of the deformed cut surface and on the robust analysis of the measured data. There is currently no published standard or code of practice for the contour method. As a first step towards such a standard, this study draws on research investigations addressing the three main steps in the method: how best to cut the specimens; how to measure the deformation contour of the cut surface; and how to analyse the data. Good practice guidance is provided throughout the text accompanied by more detailed observations and advice tabulated in Appendi

    About the heat sources generated during fatigue crack growth: What consequences on the stress intensity factor?

    Get PDF
    During cyclic loading of a cracked metallic alloy at room temperature, heat sources are generated and produce a heterogeneous temperature field around the crack tip. Those heat sources are: (i) the thermo-elastic coupling source, (ii) the intrinsic dissipation due to microplasticity in the material, and (iii) the cyclic plasticity dissipated into heat in the reverse cyclic plastic zone (RCPZ) ahead of the crack tip. The thermoelastic source is computed by finite element analysis in agreement with classic linear thermoelasticity theory. The intrinsic dissipation due to microplasticity is experimentally estimated by carrying out self-heating fatigue tests on uncracked specimens, and then approximating its values in the cracked specimens by using self-heating curves. The cyclic plastic strain energy dissipated into heat in the RCPZ is also experimentally quantified by carrying out fatigue crack growth tests and using infrared measurements. The temperature fields, generated by the three types of heat sources, are separately computed by using the linearity of the heat diffusion equation. Afterward, the stress fields, associated with each thermal effect and induced by the material thermal expansion, are computed by considering the hypothesis of the linear elastic fracture mechanics (LEFM). Thus, the mode I stress intensity factor is calculated by taking into account the thermal effect associated with each heat source. The consequenceson K, DK and RK = Kmin/Kmax are discussed. It is shown that the heat sources do not modify significantly DK, but the modification of RK can be significant since the effects are proportionalto the loading frequency.Bourse Ecole Doctorale ENSA

    Un élément fini de poutre fissurée application à la dynamique des arbres tournants

    No full text
    International audienceDans ce travail on présente une méthode originale de construction d'un élément fini de poutre affectée de fissurations. La souplesse additionnelle due à la présence des fissures est identifiée à partir de calculs éléments finis tridimensionnels tenant compte des conditions de contact unilatéral entre les lèvres. Cette souplesse est répartie sur toute la longueur de l'élément dont on se propose de construire la matrice de rigidité. La démarche permet un gain considérable en temps de calcul par rapport à la représentation nodale de la section fissurée lors de l'intégration temporelle de systèmes différentiels en dynamique des structures
    corecore