21 research outputs found
Graphene‐based technologies for tackling COVID‐19 and future pandemics
The COVID-19 pandemic highlighted the need for rapid tools and technologies to combat highly infectious viruses. The excellent electrical, mechanical and other functional properties of graphene and graphene-like 2D materials (2DM) can be utilized to develop novel and innovative devices to tackle COVID-19 and future pandemics. Here, the authors outline how graphene and other 2DM-based technologies can be used for the detection, protection, and continuous monitoring of infectious diseases including COVID-19. The authors highlight the potential of 2DM-based biosensors in rapid testing and tracing of viruses to enable isolation of infected patients, and stop the spread of viruses. The possibilities of graphene-based wearable devices are discussed for continuous monitoring of COVID-19 symptoms. The authors also provide an overview of the personal protective equipment, and potential filtration mechanisms to separate, destroy or degrade highly infectious viruses, and the potential of graphene and other 2DM to increase their efficiency, and enhance functional and mechanical properties. Graphene and other 2DM could not only play a vital role for tackling the ongoing COVID-19 pandemic but also provide technology platforms and tools for the protection, detection and monitoring of future viral diseases
Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics
The celebrated electronic properties of graphene have opened way for
materials just one-atom-thick to be used in the post-silicon electronic era. An
important milestone was the creation of heterostructures based on graphene and
other two-dimensional (2D) crystals, which can be assembled in 3D stacks with
atomic layer precision. These layered structures have already led to a range of
fascinating physical phenomena, and also have been used in demonstrating a
prototype field effect tunnelling transistor - a candidate for post-CMOS
technology. The range of possible materials which could be incorporated into
such stacks is very large. Indeed, there are many other materials where layers
are linked by weak van der Waals forces, which can be exfoliated and combined
together to create novel highly-tailored heterostructures. Here we describe a
new generation of field effect vertical tunnelling transistors where 2D
tungsten disulphide serves as an atomically thin barrier between two layers of
either mechanically exfoliated or CVD-grown graphene. Our devices have
unprecedented current modulation exceeding one million at room temperature and
can also operate on transparent and flexible substrates
Atomically thin boron nitride: a tunnelling barrier for graphene devices
We investigate the electronic properties of heterostructures based on
ultrathin hexagonal boron nitride (h-BN) crystalline layers sandwiched between
two layers of graphene as well as other conducting materials (graphite, gold).
The tunnel conductance depends exponentially on the number of h-BN atomic
layers, down to a monolayer thickness. Exponential behaviour of I-V
characteristics for graphene/BN/graphene and graphite/BN/graphite devices is
determined mainly by the changes in the density of states with bias voltage in
the electrodes. Conductive atomic force microscopy scans across h-BN terraces
of different thickness reveal a high level of uniformity in the tunnel current.
Our results demonstrate that atomically thin h-BN acts as a defect-free
dielectric with a high breakdown field; it offers great potential for
applications in tunnel devices and in field-effect transistors with a high
carrier density in the conducting channel.Comment: 7 pages, 5 figure
Micrometer-scale ballistic transport in encapsulated graphene at room temperature
Devices made from graphene encapsulated in hexagonal boron-nitride exhibit
pronounced negative bend resistance and an anomalous Hall effect, which are a
direct consequence of room-temperature ballistic transport on a micrometer
scale for a wide range of carrier concentrations. The encapsulation makes
graphene practically insusceptible to the ambient atmosphere and,
simultaneously, allows the use of boron nitride as an ultrathin top gate
dielectric
Probing the Nature of Defects in Graphene by Raman Spectroscopy
Raman Spectroscopy is able to probe disorder in graphene through
defect-activated peaks. It is of great interest to link these features to the
nature of disorder. Here we present a detailed analysis of the Raman spectra of
graphene containing different type of defects. We found that the intensity
ratio of the D and D' peak is maximum (~ 13) for sp3-defects, it decreases for
vacancy-like defects (~ 7) and reaches a minimum for boundaries in graphite
(~3.5).Comment: 14 pages, 4 figure
Electron transfer kinetics on natural crystals of MoS2 and graphite
Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)63−/4−, Ru(NH3)63+/2+ and IrCl62−/3− are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications
Graphene-Based Technologies for Tackling COVID-19 and Future Pandemics
10.1002/adfm.202107407ADVANCED FUNCTIONAL MATERIALS315
Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics
One of the challenges associated with the development of next-generation electronics is to find alternatives to silicon oxide caused by the size-reduction constraints of the devices. The dielectric properties of two-dimensional (2D) crystals, added to their excellent chemical stability, mechanical and thermal properties, make them promising dielectrics. Here we show that liquid-phase exfoliation (LPE) in water by using low-cost commercial organic dyes as dispersant agents can efficiently produce defect-free 2D nanosheets, including mono-layers, in suspensions. We further show that these suspensions can be easily incorporated into current practical graphene-based devices. In particular, it is found that boron nitride thin films made by LPE are excellent dielectrics that are highly compatible with graphene-based electronics
Probing the Nature of Defects in Graphene by Raman Spectroscopy
Raman spectroscopy is able to probe disorder in graphene
through
defect-activated peaks. It is of great interest to link these features
to the nature of disorder. Here we present a detailed analysis of
the Raman spectra of graphene containing different type of defects.
We found that the intensity ratio of the D and D′ peak is maximum
(∼13) for sp<sup>3</sup>-defects, it decreases for vacancy-like
defects (∼7), and it reaches a minimum for boundaries in graphite
(∼3.5). This makes Raman Spectroscopy a powerful tool to fully
characterize graphene