147 research outputs found

    Seismogenic magma intrusion before the 2010 eruption of Eyjafjallajökull volcano, Iceland

    Get PDF
    We present relatively relocated earthquake hypocentres for >1000 microearthquakes (ML < 3) that occurred during the 2 weeks immediately prior to the 2010 March 20 fissure eruption at Fimmvörðuháls on the flank of Eyjafjallajökull volcano in Iceland. Our hypocentre locations lie predominantly in horizontally separated clusters spread over an area of 10 km2 and approximately 4 km below sea level (5 km below the surface). Seismic activity in the final 4 d preceding the eruption extended to shallower levels <2 km below sea level and propagated to the surface at the Fimmvörðuháls eruption site on the day the eruption started. We demonstrate using synthetic data that the observed apparent ∼1 km vertical elongation of seismic clusters is predominantly an artefact caused by only small errors (0.01–0.02 s) in arrival time data. Where the signal-to-noise ratio was sufficiently good to make subsample arrival time picks by cross-correlation of both P- and S-wave arrivals, the mean depth of 103 events in an individual cluster were constrained to 3.84 ± 0.06 km. Epicentral locations are significantly less vulnerable to arrival time errors than are depths for the seismic monitoring network we used. Within clusters of typically 100 recorded earthquakes, most of the arrivals exhibit similar waveforms and identical patterns of P-wave first-motion polarities across the entire monitoring network. The clusters of similar events comprise repetitive sources in the same location with the same orientations of failure, probably on the same rupture plane. The epicentral clustering and similarity of source mechanisms suggest that much of the seismicity was generated at approximately static constrictions to magma flow in an inflating sill complex. These constrictions may act as a form of valve in the country rock, which ruptures when the melt pressure exceeds a critical level, then reseals after a pulse of melt has passed through. This would generate recurring similar source mechanisms on the same weak fault plane as the connection between segments of the sill system is repeatedly refractured in the same location. We infer that the magmatic intrusion causing most of the seismicity was likely to be a laterally inflating complex of sills at about 4 km depth, with seismogenic pinch-points occurring between aseismic compartments of the sills, or between adjacent magma lobes as they inflated. During the final 4 d preceding the eruption onset between 22:30 and 23:30 UTC on 2010 March 20, the seismicity suggests that melt progressed upwards to a depth of ∼2 km. This seismicity was probably caused by fracturing of the country rock at the margins of the propagating dyke. Subsequently, on the morning of the eruption a dyke propagated eastward from the region of precursory seismic activity to the Fimmvörðuháls eruption site

    Using microearthquakes to track repeated magma intrusions beneath the Eyjafjallajökull stratovolcano, Iceland

    Get PDF
    We have mapped microearthquakes caused by magma migration preceding and during the flank and summit eruptions in March–May 2010 of Eyjafjallajökull stratovolcano in Iceland using a Coalescence Microseismic Mapping technique. Spatial and temporal clustering of >5,000 microearthquakes under the eastern flank of the volcano illuminates several northeast–southwest striking sub-vertical dikes at 2–6 km b.s.l., emplaced before the Fimmvörðuháls flank eruption in March. This intense precursory seismicity had a lateral extent of ∼6 km east-west and ∼3 km north-south. A sequence of 386 microearthquakes during the summit eruption, refined by double-difference relative relocation, defines a sub-linear trend inclined ∼5–10° from vertical extending from the upper mantle at ∼30 km depth to the summit crater. This sequence includes two major clusters at ∼19 km and ∼24 km b.s.l., each containing >100 earthquakes. All microearthquakes display characteristics of brittle fracture, with several subsets of events exhibiting closely similar waveforms within clusters. This suggests similar, repetitive source processes. The deeper clusters may be caused by fracturing solidified magma plugs that form constrictions in an otherwise aseismic melt conduit. Or they may occur at exit points from melt pockets, in which case they indicate positions of magma storage at depth. The seismicity deeper than 10 km only starts three weeks after the onset of the summit eruption, after which the largest clusters occur at progressively greater depths. This temporal pattern may result from pressure release at shallow levels in the magmatic plumbing system progressively feeding down to mobilize deeper melt pockets

    13 million years of seafloor spreading throughout the Red Sea Basin

    Get PDF
    The crustal and tectonic structure of the Red Sea and especially the maximum northward extent of the (ultra)slow Red Sea spreading centre has been debated—mainly due to a lack of detailed data. Here, we use a compilation of earthquake and vertical gravity gradient data together with high-resolution bathymetry to show that ocean spreading is occurring throughout the entire basin and is similar in style to that at other (ultra)slow spreading mid-ocean ridges globally, with only one first-order offset along the axis. Off-axis traces of axial volcanic highs, typical features of (ultra)slow-spreading ridges, are clearly visible in gravity data although buried under thick salt and sediments. This allows us to define a minimum off-axis extent of oceanic crust of <55 km off the coast along the complete basin. Hence, the Red Sea is a mature ocean basin in which spreading began along its entire length 13 Ma ago

    Seismic imaging of the shallow crust beneath the Krafla central volcano, NE Iceland

    Get PDF
    We studied the seismic velocity structure beneath the Krafla central volcano, NE Iceland, by performing 3-D tomographic inversions of 1453 earthquakes recorded by a temporary local seismic network between 2009 and 2012. The seismicity is concentrated primarily around the Leirhnjúkur geothermal field near the center of the Krafla caldera. To obtain robust velocity models, we incorporated active seismic data from previous surveys. The Krafla central volcano has a relatively complex velocity structure with higher P wave velocities (V_p) underneath regions of higher topographic relief and two distinct low-V_p anomalies beneath the Leirhnjúkur geothermal field. The latter match well with two attenuating bodies inferred from S wave shadows during the Krafla rifting episode of 1974–1985. Within the Leirhnjúkur geothermalreservoir, we resolved a shallow (−0.5 to 0.5 km below sea level; bsl) region with low-V_p/V_s values and a deeper (0.5–1.5 km bsl) high-V_p/V_s zone. We interpret the difference in the velocity ratios of the two zones to be caused by higher rock porosities and crack densities in the shallow region and lower porosities and crack densities in the deeper region. A strong low-V_p/V_s anomaly underlies these zones, where a superheated steam zone within felsic rock overlies rhyolitic melt

    Evolution of a lateral dike intrusion revealed by relatively-relocated dike-induced earthquakes: the 2014-15 Bárðarbunga-Holuhraun rifting event, Iceland

    Get PDF
    Understanding dikes is vital as they serve both as bodies that build the crust and as conduits that feed eruptions, and must be monitored to evaluate volcanic hazard. During the 2014–15 Bárðarbunga rifting event, Iceland, intense seismicity accompanied the intrusion of a ∼50 km lateral dike which culminated in a 6 month long eruption. We here present relocations of earthquakes induced by the lateral dike intrusion, using cross-correlated, sub-sample relative travel times. The ∼100 m spatial resolution achieved reveals the complexity of the dike propagation pathway and dynamics (jerky, segmented), and allows us to address the precise relationship between the dike and seismicity, with direct implications for hazard monitoring. The spatio-temporal characteristics of the induced seismicity can be directly linked in the first instance to propagation of the tip and opening of the dike, and following this – after dike opening – indicate a relationship with magma pressure changes (i.e. dike inflation/deflation), followed by a general ‘post-opening’ decay. Seismicity occurs only at the base of the dike, where dike-imposed stresses – combined with the background tectonic stress (from regional extension over >200 yr since last rifting) – are sufficient to induce failure of pre-existing weaknesses in the crust, while the greatest opening is at shallower depths. Emplacement oblique to the spreading ridge resulted in left-lateral shear motion along the distal dike section (studied here), and a prevalence of left-lateral shear failure. Fault plane strikes are predominately independent of the orientation of lineations delineated by the hypocenters, indicating that they are controlled by the underlying host rock fabric. This high-resolution study provides unprecedented opportunity for comparison with both geodetic and field (frozen dike) observations, and development and consolidation of analytical and analogue models, with implications for rifting processes and real-time monitoring of magma intrusion

    Closing crack earthquakes within the Krafla caldera, North Iceland

    Get PDF
    Moment tensor analysis with a Bayesian approach was used to analyse a non-double-couple (non-DC) earthquake (MwM_w ~ 1) with a high isotropic (implosive) component within the Krafla caldera, Iceland. We deduce that the earthquake was generated by a closing crack at depth. The event is well located, with high signal-to-noise ratio and shows dilatational PP-wave first arrivals at all stations where the first arrival can be picked with confidence. Coverage of the focal sphere is comprehensive and the source mechanism stable across the full range of uncertainties. The non-DC event lies within a cluster of microseismic activity including many DC events. Hence, we conclude that it is a true non-DC closing crack earthquake as a result of geothermal utilization and observed magma chamber deflation in the region at present.Natural Environment Research Council (Grant ID: NE/H025006/1

    Focal mechanisms and size distribution of earthquakes beneath the Krafla central volcano, NE Iceland

    Get PDF
    Seismicity was monitored beneath the Krafla central volcano, NE Iceland, between 2009 and 2012 during a period of volcanic quiescence, when most earthquakes occurred within the shallow geothermal field. The highest concentration of earthquakes is located close to the rock-melt transition zone as the Iceland Deep Drilling Project-1 (IDDP-1) wellbore suggests and decays quickly at greater depths. We recorded multiple swarms of microearthquakes, which coincide often with periods of changes in geothermal field operations, and found that about one third of the total number of earthquakes are repeating events. The event size distribution, evaluated within the central caldera, indicates average crustal values with b = 0.79 ± 0.04. No significant spatial b value contrasts are resolved within the geothermal field nor in the vicinity of the drilled melt. Besides the seismicity analysis, focal mechanisms are calculated for 342 events. Most of these short-period events have source radiation patterns consistent with double-couple (DC) mechanisms. A few events are attributed to non-shear-faulting mechanisms with geothermal fluids likely playing an important role in their source processes. Diverse faulting styles are inferred from DC events, but normal faulting prevails in the central caldera. The best fitting compressional and tensional axes of DC mechanisms are interpreted in terms of the principal stress or deformation rate orientations across the plate boundary rift. Maximum compressive stress directions are near-vertically aligned in different study volumes, as expected in an extensional tectonic setting. Beneath the natural geothermal fields, the least compressive stress axis is found to align with the regional spreading direction. In the main geothermal field both horizontal stresses appear to have similar magnitudes causing a diversity of focal mechanisms.We thank Julian Drew for the use of his CMM algorithm and Jon Tarasewicz for acquiring the bulk of the field data. Seismometers were borrowed from SEIS-UK under loan 891, with additional data from SIL network stations operated by the Icelandic Meteorological Office. The data will be stored at IRIS (www.iris.edu) and accessible from there. The Natural Environment Research Council UK funded the fieldwork. Landsvirkjun supported the field campaigns and provided borehole information. We thank two anonymous reviewers for critically reading this paper. J.S. also thanks Y. Kamer and S. Hiemer for discussing parts of their b value method. Data were mainly processed using the ObsPy package and visualized using Matplotlib and Generic Mapping Tools. Cambridge University Department of Earth Sciences contribution number ESC.3672. J.S. was supported by the Swiss National Science Foundation

    Reinterpretation of the RRISP-77 Iceland shear-wave profiles

    Get PDF
    Two shear-wave profiles, E and G, collected during the 1977 Reykjanes Ridge Iceland Seismic Experiment have played an important role in models of the Icelandic crust. They were originally interpreted as indicating very low shear-wave velocities and abnormally low shear-wave quality factors in the 10–15 km depth range. These attributes, which are indicative of near-solidus temperatures, were used to support the hypothesis that the crust of Iceland is relatively thin (10–15 km) and underlain by partially molten material. More recent seismic data, however, contradict this hypothesis and suggest that the crust is thicker (20–30 km) and cooler. A re-examination of the RRISP-77 data indicates that the low shear-wave velocities are artefacts arising from source static anomalies (in the case of profile G) and misidentification of a secondary shear phase, SmS, as S (in the case of profile E). Furthermore, the attenuation occurs at ranges when rays from the shots pass near the Askja (profile E) and Katla and Oraefajokull (profile G) volcanoes. It may therefore have a localized source, and not be diagnostic of Icelandic crust as a whole. This new interpretation of the RRISP-77 shear-wave data is consistent with models having a thick, cold crust.We thank 0. Flovenz, one of the principal investigators of the SIST experiment, G. Foulger and B. Julian, principal investigators of the Hengill experiment, and the Incorporated Research Institutions for Seismology for providing us with copies of the data. Lamont Doherty Contribution Number 5513Peer Reviewe
    corecore