33 research outputs found

    Energy Dependence of the Breit-Wheeler process in Heavy-Ion Collisions and its Application to Nuclear Charge Radius Measurements

    Full text link
    The energy dependence of the cross section and the transverse momentum distribution of dielectrons from the Breit-Wheeler process in heavy-ion collisions are computed in the lowest-order QED and found to be sensitive to the nuclear charge distribution and the infrared-divergence of the ultra-Lorentz boosted Coulomb field. Within a given experimental kinematic acceptance, the cross section is found to increase while the pair average transverse momentum decreases with increasing beam energy. We demonstrate that the transverse-momentum component of Weizs\"acker-Williams photons is due to the finite extent of the charge source and electric field component in the longitudinal direction. We further clarify the connection between the nuclear charge distribution and the kinematics of produced e+ee^+e^- from the Breit-Wheeler process, and propose a criterion for the validity of the Breit-Wheeler process in relativistic heavy-ion collisions. Following this approach we demonstrate that the experimental measurements of the Breit-Wheeler process in ultra-relativistic heavy-ion collisions can be used to quantitatively constrain the nuclear charge radius. The extracted parameters show potential centrality dependence, and can be used to study the initial charge fluctuation and final-state magnetic field effect in hadronic interactions.Comment: 3 figure

    Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chart

    Full text link
    A major goal of the hot QCD program, the extraction of the properties of the quark gluon plasma (QGP), is currently limited by our poor knowledge of the initial condition of the QGP, in particular how it is shaped from the colliding nuclei. To attack this limitation, we propose to exploit collisions of selected species to precisely assess how the initial condition changes under variations of the structure of the colliding ions. This knowledge, combined with event-by-event measures of particle correlations in the final state of heavy-ion collisions, will provide in turn a new way to probe the collective structure of nuclei, and to confront and exploit the predictions of state-of-the-art ab initio nuclear structure theories. The US nuclear community should capitalize on this interdisciplinary connection by pursuing collisions of well-motivated species at high-energy colliders.Comment: 23 pages, 6 figure

    Trapping \u3ci\u3ePhyllophaga \u3c/i\u3espp. (Coleoptera: Scarabaeidae: Melolonthinae) in the United States and Canada using sex attractants.

    Get PDF
    The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera: Scarabaeidae: Melolonthinae) were captured and identified. Three major findings included: (1) widespread use of the two compounds [of the 147 Phyllophaga (sensu stricto) species found in the United States and Canada, males of nearly 40% were captured]; (2) in most species intraspecific male response to the pheromone blends was stable between years and over geography; and (3) an unusual pheromone polymorphism was described from P. anxia. Populations at some locations were captured with L-valine methyl ester alone, whereas populations at other locations were captured with L-isoleucine methyl ester alone. At additional locations, the L-valine methyl ester-responding populations and the L-isoleucine methyl ester-responding populations were both present, producing a bimodal capture curve. In southeastern Massachusetts and in Rhode Island, in the United States, P. anxia males were captured with blends of L-valine methyl ester and L-isoleucine methyl ester

    Ammonia Production Technologies

    Get PDF

    Search for baryon junctions in photonuclear processes and isobar collisions at RHIC

    Full text link
    A puzzling feature of ultra-relativistic nucleus-nucleus collisions is the apparent substantial baryon excess in the midrapidity region. It was proposed that baryon number could be carried by a non-perturbative Y-shaped topology of gluon fields, called the baryon junction, rather than by the valence quarks. The stopping of baryon junctions is predicted to lead to a characteristic exponential distribution of net-baryon density with rapidity and could resolve the puzzle. In this context we point out that the rapidity density of net-baryons near midrapidity indeed follows an exponential distribution with a slope of 0.61±0.03-0.61\pm0.03 as a function of beam rapidity in the existing global data from A+A collisions at AGS, SPS and RHIC energies. To further test if quarks or gluon junction carry the baryon quantum number, we propose to study the absolute magnitude of the baryon vs. charge stopping in isobar collisions at RHIC. We also argue that semi-inclusive photon-induced processes (γ+p\gamma+p/A) at RHIC kinematics provide an ideal opportunity to search for the signatures of the baryon junction and to shed light onto the mechanisms of observed baryon excess in the mid-rapidity region in ultra-relativistic nucleus-nucleus collisions. Such measurements can be further validated in e+pe+p/A collisions at the EIC.Comment: 9 pages, 4 figur

    Radiation-driven winds from luminous accretion discs

    Get PDF
    The definitive version is available at www.blackwell-synergy.com. Copyright Blackwell Publishing DOI : 10.1046/j.1365-8711.1998.01337.xWe study the two-dimensional, time-dependent hydrodynamics of radiation-driven winds from luminous accretion disks in which the radiation force is mediated primar- ily by spectral lines. We assume the disk is flat, Keplerian, geometrically thin, and optically thick, radiating as an ensemble of blackbodies according to the -disk pre- scription. The effect of a radiant central star is included both in modifying the radial temperature profile of the disk, and in providing a contribution to the driving radi- ation field. Angle-adaptive integration techniques are needed to achieve an accurate representation of the driving force near the surface of the disk. Our hydrodynamic calculations use non-uniform grids to resolve both the subsonic acceleration zone near the disk, and the large-scale global structure of the supersonic wind. We find that line-driven disk winds are produced only when the effective luminos- ity of the disk (i.e. the luminosity of the disk times the maximum value of the force multiplier associated with the line-driving force) exceeds the Eddington limit. If the dominant contribution to the total radiation field comes from the disk, then we find the outflow is intrinsically unsteady and characterised by large amplitude velocity and density fluctuations. Both infall and outflow can occur in different regions of the wind at the same time. The cause of this behaviour is the difference in the variation with height of the vertical components of gravity and radiation force: the former increases while the latter is nearly constant. On the other hand, if the total luminosity of the system is dominated by the central star, then the outflow is steady. In either case, we find the two-dimensional structure of the wind consists of a dense, slow outflow, typi- cally confined to angles within 45 degrees of the equatorial plane, that is bounded on the polar side by a high-velocity, lower density stream. The flow geometry is controlled largely by the geometry of the radiation field – a brighter disk/star produces a more polar/equatorial wind. Global properties such as the total mass loss rate and terminal velocity depend more on the system luminosity and are insensitive to geometry. The mass loss rate is a strong function of the effective Eddington luminosity; less than one there is virtually no wind at all, whereas above one the mass loss rate in the wind scales with the effective Eddington luminosity as a power law with index 1.5. Matter is fed into the fast wind from within a few stellar radii of the central star. Our solutions agree qualitatively with the kinematics of outflows in CV systems inferred from spectroscopic observations. We predict that low luminosity systems may display unsteady behavior in wind-formed spectral lines. Our study also has applica- tion to winds from active galactic nuclei and from high mass YSOs.Peer reviewe

    Outcomes of an inpatient refeeding protocol in youth with Anorexia Nervosa and atypical Anorexia Nervosa at Children's Hospitals and Clinics of Minnesota.

    No full text
    BackgroundHistorically, inpatient protocols have adopted relatively conservative approaches to refeeding in Anorexia Nervosa (AN) in order to reduce the risk of refeeding syndrome, a potentially fatal constellation of symptoms. However, increasing evidence suggests that patients with AN can tolerate higher caloric prescriptions during treatment, which may result in prevention of initial weight loss, shorter hospital stays, and less exposure to the effects of severe malnutrition. Therefore the present study sought to examine the effectiveness of a more accelerated refeeding protocol in an inpatient AN and atypical AN sample.MethodsParticipants were youth (ages 10-22) with AN (n = 113) and atypical AN (n = 16) who were hospitalized for medical stabilization. A retrospective chart review was conducted to assess changes in calories, weight status (percentage of median BMI, %mBMI), and indicators of refeeding syndrome, specifically hypophosphatemia, during hospitalization. Weight was assessed again approximately 4 weeks after discharge.ResultsNo cases of refeeding syndrome were observed, though 47.3 % of participants evidenced hypophosphatemia during treatment. Phosphorous levels were monitored in all participants, and 77.5 % were prescribed supplemental phosphorous at the time of discharge. Higher rates of caloric changes were predictive of greater changes in %mBMI during hospitalization. Rates of caloric and weight change were not related to an increased likelihood of re-admission.ConclusionsResults suggest that a more accelerated approach to inpatient refeeding in youth with AN and atypical AN can be safely implemented and is not associated with refeeding syndrome, provided there is close monitoring and correction of electrolytes. These findings suggest that this approach has the potential to decrease length of stay and burden associated with inpatient hospitalization, while supporting continued progress after hospitalization
    corecore