66 research outputs found

    A Sample of [CII] Clouds Tracing Dense Clouds in Weak FUV Fields observed by Herschel

    Full text link
    The [CII] fine--structure line at 158um is an excellent tracer of the warm diffuse gas in the ISM and the interfaces between molecular clouds and their surrounding atomic and ionized envelopes. Here we present the initial results from Galactic Observations of Terahertz C+ (GOTC+), a Herschel Key Project devoted to study the [CII] fine structure emission in the galactic plane using the HIFI instrument. We use the [CII] emission together with observations of CO as a probe to understand the effects of newly--formed stars on their interstellar environment and characterize the physical and chemical state of the star-forming gas. We collected data along 16 lines--of--sight passing near star forming regions in the inner Galaxy near longitudes 330 degrees and 20 degrees. We identify fifty-eight [CII] components that are associated with high--column density molecular clouds as traced by 13CO emission. We combine [CII], 12CO, and 13CO observations to derive the physical conditions of the [CII]--emitting regions in our sample of high--column density clouds based on comparison with results from a grid of Photon Dominated Region (PDR) models. From this unbiased sample, our results suggest that most of [CII] emission originates from clouds with H2 volume densities between 10e3.5 and 10e5.5 cm^-3 and weak FUV strength (CHI_0=1-10). We find two regions where our analysis suggests high densities >10e5 cm^-3 and strong FUV fields (CHI=10e4-10e6), likely associated with massive star formation. We suggest that [CII] emission in conjunction with CO isotopes is a good tool to differentiate between regions of massive star formation (high densities/strong FUV fields) and regions that are distant from massive stars (lower densities/weaker FUV fields) along the line--of--sightComment: To be published in A&A HIFI Special Editio

    C+^+ detection of warm dark gas in diffuse clouds

    Full text link
    We present the first results of the Herschel open time key program, Galactic Observations of Terahertz C+^+ (GOT C+) survey of the [CII] fine-structure line at 1.9 THz (158 microns) using the HIFI instrument on Herschel. We detected 146 interstellar clouds along sixteen lines-of-sight towards the inner Galaxy. We also acquired HI and CO isotopologue data along each line-of-sight for analysis of the physical conditions in these clouds. Here we analyze 29 diffuse clouds (AV_{V} < 1.3 mag.) in this sample characterized by having [CII] and HI emission, but no detectable CO. We find that [CII] emission is generally stronger than expected for diffuse atomic clouds, and in a number of sources is much stronger than anticipated based on their HI column density. We show that excess [CII] emission in these clouds is best explained by the presence of a significant diffuse warm H2_2, dark gas, component. This first [CII] 158 micron detection of warm dark gas demonstrates the value of this tracer for mapping this gas throughout the Milky Way and in galaxies.Comment: To be published in A&A HIFI Special Editio

    Mid-J CO emission from the Orion BN/KL explosive outflow

    Full text link
    High spatial resolution low-J 12CO observations have shown that the wide-angle outflow seen in the Orion BN/KL region correlates with the famous H2 fingers. Recently, high-resolution large-scale mappings of mid- and higher-J CO emissions have been reported toward the Orion molecular cloud 1 core region using the APEX telescope. Therefore, it is of interest to investigate this outflow in the higher-J 12CO emission, which is likely excited by shocks. The observations were carried out using the dual-color heterodyne array CHAMP+ on the APEX telescope. The images of the Orion BN/KL region were obtained in the 12CO J=6-5 and J=7-6 transitions with angular resolutions of 8.6 and 7.4 arcsec, respectively. The results show a good agreement between our higher-J 12CO emission and SMA low-J 12CO data, which indicates that this wide-angle outflow in Orion BN/KL is likely the result of an explosive event that is related to the runaway objects from a dynamically decayed multiple system. From our observations, we estimate that the kinetic energy of this explosive outflow is about 1-2x10^47 erg. In addition, a scenario has been proposed where part of the outflow is decelerated and absorbed in the cloud to explain the lack of CO bullets in the southern part of BN/KL, which in turn induces the methanol masers seen in this region.Comment: 5 pages, 4 figure

    First observations with CONDOR, a 1.5 THz heterodyne receiver

    Get PDF
    The THz atmospheric windows centered at roughly 1.3 and 1.5~THz, contain numerous spectral lines of astronomical importance, including three high-J CO lines, the N+ line at 205 microns, and the ground transition of para-H2D+. The CO lines are tracers of hot (several 100K), dense gas; N+ is a cooling line of diffuse, ionized gas; the H2D+ line is a non-depleting tracer of cold (~20K), dense gas. As the THz lines benefit the study of diverse phenomena (from high-mass star-forming regions to the WIM to cold prestellar cores), we have built the CO N+ Deuterium Observations Receiver (CONDOR) to further explore the THz windows by ground-based observations. CONDOR was designed to be used at the Atacama Pathfinder EXperiment (APEX) and Stratospheric Observatory For Infrared Astronomy (SOFIA). CONDOR was installed at the APEX telescope and test observations were made to characterize the instrument. The combination of CONDOR on APEX successfully detected THz radiation from astronomical sources. CONDOR operated with typical Trec=1600K and spectral Allan variance times of 30s. CONDOR's first light observations of CO 13-12 emission from the hot core Orion FIR4 (= OMC1 South) revealed a narrow line with T(MB) = 210K and delta(V)=5.4km/s. A search for N+ emission from the ionization front of the Orion Bar resulted in a non-detection. The successful deployment of CONDOR at APEX demonstrates the potential for making observations at THz frequencies from ground-based facilities.Comment: 4 pages + list of objects, 3 figures, to be published in A&A special APEX issu

    The APEX-CHAMP+ view of the Orion Molecular Cloud 1 core - Constraining the excitation with submillimeter CO multi-line observations

    Full text link
    A high density portion of the Orion Molecular Cloud 1 (OMC-1) contains the prominent, warm Kleinmann-Low (KL) nebula that is internally powered by an energetic event plus a farther region in which intermediate to high mass stars are forming. Its outside is affected by ultraviolet radiation from the neighboring Orion Nebula Cluster and forms the archetypical photon-dominated region (PDR) with the prominent bar feature. Its nearness makes the OMC-1 core region a touchstone for research on the dense molecular interstellar medium and PDRs. Using the Atacama Pathfinder Experiment telescope (APEX), we have imaged the line emission from the multiple transitions of several carbon monoxide (CO) isotopologues over the OMC-1 core region. Our observations employed the 2x7 pixel submillimeter CHAMP+ array to produce maps (~ 300 arcsec x 350 arcsec) of 12CO, 13CO, and C18O from mid-J transitions (J=6-5 to 8-7). We also obtained the 13CO and C18O J=3-2 images toward this region. The 12CO line emission shows a well-defined structure which is shaped and excited by a variety of phenomena, including the energetic photons from hot, massive stars in the nearby Orion Nebula's central Trapezium cluster, active high- and intermediate-mass star formation, and a past energetic event that excites the KL nebula. Radiative transfer modeling of the various isotopologic CO lines implies typical H2 densities in the OMC-1 core region of ~10^4-10^6 cm^-3 and generally elevated temperatures (~ 50-250 K). We estimate a warm gas mass in the OMC-1 core region of 86-285 solar masses.Comment: 11 pages, 9 figures, accepted by A&

    Muon capture by 3He nuclei followed by proton and deuteron production

    Full text link
    The paper describes an experiment aimed at studying muon capture by 3He{}^{3}\mathrm{He} nuclei in pure 3He{}^{3}\mathrm{He} and D2+3He\mathrm{D}_2 + {}^{3}\mathrm{He} mixtures at various densities. Energy distributions of protons and deuterons produced via μ+3Hep+n+n+νμ\mu^-+{}^{3}\mathrm{He}\to p+n+n + \nu_{\mu } and μ+3Hed+n+νμ\mu^-+{}^{3} \mathrm{He} \to d+n + \nu_{\mu} are measured for the energy intervals 104910 - 49 MeV and 133113 - 31 MeV, respectively. Muon capture rates, λcapp(ΔEp)\lambda_\mathrm{cap}^p (\Delta E_p) and λcapd(ΔEd)\lambda_\mathrm{cap}^d (\Delta E_d) are obtained using two different analysis methods. The least--squares methods gives λcapp=(36.7±1.2)s1\lambda_\mathrm{cap}^p = (36.7\pm 1.2) {s}^{- 1}, λcapd=(21.3±1.6)s1\lambda_\mathrm{cap}^d = (21.3 \pm 1.6) {s}^{- 1}. The Bayes theorem gives λcapp=(36.8±0.8)s1\lambda_\mathrm{cap}^p = (36.8 \pm 0.8) {s}^{- 1}, λcapd=(21.9±0.6)s1\lambda_\mathrm{cap}^d = (21.9 \pm 0.6) {s}^{- 1}. The experimental differential capture rates, dλcapp(Ep)/dEpd\lambda_\mathrm{cap}^p (E_p) / dE_p and dλcapd(Ed)/dEd d\lambda_\mathrm{cap}^d (E_d) / dE_d, are compared with theoretical calculations performed using the plane--wave impulse approximation (PWIA) with the realistic NN interaction Bonn B potential. Extrapolation to the full energy range yields total proton and deuteron capture rates in good agreement with former results.Comment: 17 pages, 13 figures, accepted for publication in PR

    Comparison of 13CO Line and Far-Infrared Continuum Emission as a Diagnostic of Dust and Molecular Gas Physical Conditions: III. Systematic Effects and Scientific Implications

    Full text link
    Far-infrared continuum data from the {\it COBE}/{\it DIRBE} instrument were combined with Nagoya 4-m \cOone spectral line data to infer the multiparsec-scale physical conditions in the Orion A and B molecular clouds, using 140\um/240\um dust color temperatures and the 240\um/\cOone intensity ratios. In theory, the ratio of far-IR, submillimeter, or millimeter continuum to that of a \cO (or \Co) rotational line can place reliable upper limits on the temperature of the dust and molecular gas on multi-parsec scales; on such scales, both the line and continuum emission are optically thin, resulting in a continuum-to-line ratio that suffers no loss of temperature sensitivity in the high-temperature limit as occurs for ratios of CO rotational lines or ratios of continuum emission in different wavelength bands. Two-component models fit the Orion data best, where one has a fixed-temperature and the other has a spatially varying temperature. The former represents gas and dust towards the surface of the clouds that are heated primarily by a very large-scale (i.e. 1\sim 1 kpc) interstellar radiation field. The latter represents gas and dust at greater depths into the clouds and are shielded from this interstellar radiation field and heated by local stars. The inferred physical conditions are consistent with those determined from previously observed maps of \COone and \Jtwo that cover the entire Orion A and B molecular clouds. The models require that the dust-gas temperature difference is 0±2\pm 2 K. If this surprising result applies to much of the Galactic ISM, except in unusual regions such as the Galactic Center, then there are a number implications.Comment: The work of Schnee et al. 2006 is relevant here. This is now mentioned in the Discussion and in the Conclusions. In the third version, I've corrected a few typos and slightly changed the emphasis on the cold gas/dust. In the version of March 2007, I've fixed a few typos and updated a few reference

    The origin of the [C II] emission in the S140 PDRs - new insights from HIFI

    Get PDF
    Using Herschel's HIFI instrument we have observed [C II] along a cut through S140 and high-J transitions of CO and HCO+ at two positions on the cut, corresponding to the externally irradiated ionization front and the embedded massive star forming core IRS1. The HIFI data were combined with available ground-based observations and modeled using the KOSMA-tau model for photon dominated regions. Here we derive the physical conditions in S140 and in particular the origin of [C II] emission around IRS1. We identify three distinct regions of [C II] emission from the cut, one close to the embedded source IRS1, one associated with the ionization front and one further into the cloud. The line emission can be understood in terms of a clumpy model of photon-dominated regions. At the position of IRS1, we identify at least two distinct components contributing to the [C II] emission, one of them a small, hot component, which can possibly be identified with the irradiated outflow walls. This is consistent with the fact that the [C II] peak at IRS1 coincides with shocked H2 emission at the edges of the outflow cavity. We note that previously available observations of IRS1 can be well reproduced by a single-component KOSMA-tau model. Thus it is HIFI's unprecedented spatial and spectral resolution, as well as its sensitivity which has allowed us to uncover an additional hot gas component in the S140 region.Comment: accepted for publication in Astronomy and Astrophysics (HIFI special issue

    Search for NN-decoupled dibaryons using the process ppγγXpp \to \gamma \gamma X below the pion production threshold

    Full text link
    The energy spectrum for high energy γ\gamma-rays (Eγ10E_\gamma \geq 10 MeV) from the process ppγγXpp \to \gamma \gamma X emitted at 90090^0 in the laboratory frame has been measured at an energy below the pion production threshold, namely, at 216 MeV. The resulting photon energy spectrum extracted from γγ\gamma-\gamma coincidence events consists of a narrow peak at a photon energy of about 24 MeV and a relatively broad peak in the energy range of (50 - 70) MeV. The statistical significances for the narrow and broad peaks are 5.3σ\sigma and 3.5σ\sigma, respectively. This behavior of the photon energy spectrum is interpreted as a signature of the exotic dibaryon resonance d1d^\star_1 with a mass of about 1956 MeV which is assumed to be formed in the radiative process ppγd1pp \to \gamma d^\star_1 followed by its electromagnetic decay via the d1ppγd^\star_1 \to pp \gamma mode. The experimental spectrum is compared with those obtained by means of Monte Carlo simulations.Comment: 14 pages, LaTex, 6 eps-figures, accepted for publication in Phys.Rev.
    corecore