304 research outputs found

    Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    Get PDF
    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed

    Off-nadir antenna bias correction using Amazon rain sigma(0) data

    Get PDF
    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Oceanic Satellite System (NOSS). Backscattering observations made by the SEASAT Scatterometer System (SASS) showed the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which was insensitive to polarization. The variation with angle of incidence was adequately modeled as scattering coefficient (dB) = a theta b with typical values for the incidence-angle coefficient from 0.07 to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum-likelihood estimation algorithms presented here permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed

    Off-nadir antenna bias correction using Amazon rain forest sigma deg data

    Get PDF
    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Ocean Satellite System (NOSS). Backscattering observations made by the SEASAT-1 scatterometer system show the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which is insensitive to polarization. The variation with angle of incidence may be adequately modeled as sigma deg (dB) = alpha theta + beta with typical values for the incidence-angle coefficient from 0.07 dB deg to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum likelihood estimation algorithms are presented which permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed

    The Hubble Constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae

    Full text link
    Context. The precise determination of the present-day expansion rate of the Universe, expressed through the Hubble constant H0H_0, is one of the most pressing challenges in modern cosmology. Assuming flat Λ\LambdaCDM, H0H_0 inference at high redshift using cosmic-microwave-background data from Planck disagrees at the 4.4σ\sigma level with measurements based on the local distance ladder made up of parallaxes, Cepheids and Type Ia supernovae (SNe Ia), often referred to as "Hubble tension". Independent, cosmological-model-insensitive ways to infer H0H_0 are of critical importance. Aims. We apply an inverse-distance-ladder approach, combining strong-lensing time-delay-distance measurements with SN Ia data. By themselves, SNe Ia are merely good relative distance indicators, but by anchoring them to strong gravitational lenses one can obtain an H0H_0 measurement that is relatively insensitive to other cosmological parameters. Methods. A cosmological parameter estimate is performed for different cosmological background models, both for strong-lensing data alone and for the combined lensing + SNe Ia data sets. Results. The cosmological-model dependence of strong-lensing H0H_0 measurements is significantly mitigated through the inverse distance ladder. In combination with SN Ia data, the inferred H0H_0 consistently lies around 73-74 km s1^{-1} Mpc1^{-1}, regardless of the assumed cosmological background model. Our results agree nicely with those from the local distance ladder, but there is a >2σ\sigma tension with Planck results, and a ~1.5σ\sigma discrepancy with results from an inverse distance ladder including Planck, Baryon Acoustic Oscillations and SNe Ia. Future strong-lensing distance measurements will reduce the uncertainties in H0H_0 from our inverse distance ladder.Comment: 5 pages, 3 figures, A&A letters accepted versio

    Assessing the efficacy and impact of a personalised smoking cessation intervention among type 2 diabetic smokers: study protocol for an open-label randomised controlled trial (DISCGO-RCT).

    Get PDF
    Few studies have assessed the efficacy of smoking cessation interventions in individuals with type 2 diabetes, but interventions adapted to the specific needs of this population are warranted. The aim of this study is to assess the efficacy of a smoking cessation intervention in a population of smokers with type 2 diabetes and to measure the metabolic impact of smoking cessation. The study is an open-label, randomised control trial. Participants recruited from a sanitary region of Switzerland will be randomly allocated to either the intervention or the control arm. The intervention group will have four individual counselling sessions over 12 weeks. Trained research nurses will conduct the behavioural intervention, using motivational interviews and addressing diabetes and gender specificities. The control group will have one short counselling session at baseline and will be given written information on smoking cessation. Both groups will have a follow-up visit at 26 and 52 weeks. Demographic and medical data will be collected at baseline and follow-up, along with blood and urine samples. The primary study outcome is continuous smoking abstinence validated by expired-air carbon monoxide from week 12 to week 52. Secondary study outcomes are continuous and 7-day point prevalence smoking abstinence at 12 and 26 weeks; change in motivation to quit and cigarette consumption; and change in glycosylated haemoglobin levels, body weight, waist circumference and renal function after smoking cessation. In a subsample of 80 participants, change in stool microbiota from baseline will be measured at 3, 8 and 26 weeks after smoking cessation. Ethical approval has been obtained by the competent ethics committee (Commission cantonale d'éthique de la recherche sur l'être humain, CER-VD 2017-00812). The results of the study will be disseminated through publications in peer-reviewed journals and conference presentations. ClinicalTrials.gov NCT03426423 and SNCTP000002762; Pre-results

    CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential

    Get PDF
    Although early stage ovarian cancer can be effectively treated with surgery and chemotherapy, the majority of cases present with advanced disease, which remains essentially incurable. Unfortunately, little is known about the genes important for the development and progression of this disease. In this study, the expression of 68 phosphatases was determined in immortalized ovarian epithelial cells (IOSE) and compared to ovarian cancer cell lines. CL100, a dual specificity phosphatase, displayed 10-25-fold higher expression in normal compared to malignant ovarian cell lines. Immunohistochemical staining of normal ovaries and 68 ovarian cancer specimens confirmed this differential expression. Re-expression of CL100 in ovarian cancer cells decreased adherent and non-adherent cell growth and induced phenotypic changes including loss of filopodia and lamellipodia with an associated decrease in cell motility. Induced expression of CL100 in ovarian cancer cells suppressed intraperitoneal tumor growth in nude mice. These results show for the first time that CL100 expression is altered in human ovarian cancer, that CL100 expression changes cell morphology and motility, and that it suppresses intraperitoneal growth of human ovarian epithelial cancer. These data suggest that down-regulation of CL100 may play a role in the progression of human ovarian cancer

    SkyPy: A package for modelling the Universe

    Get PDF
    SkyPy is an open-source Python package for simulating the astrophysical sky. It comprises a library of physical and empirical models across a range of observables and a command line script to run end-to-end simulations. The library provides functions that sample realisations of sources and their associated properties from probability distributions. Simulation pipelines are constructed from these models using a YAML-based configuration syntax, while task scheduling and data dependencies are handled internally and the modular design allows users to interface with external software. SkyPy is developed and maintained by a diverse community of domain experts with a focus on software sustainability and interoperability. By fostering co-development, it provides a framework for correlated simulations of a range of cosmological probes including galaxy populations, large scale structure, the cosmic microwave background, supernovae and gravitational waves. Version 0.4 implements functions that model various properties of galaxies including luminosity functions, redshift distributions and optical photometry from spectral energy distribution templates. Future releases will provide additional modules, for example to simulate populations of dark matter halos and model the galaxy-halo connection, making use of existing software packages from the astrophysics community where appropriate
    corecore