General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA Contractor Report 165921

```
(NASA-CR-165921) OFF-NADIF ANIENNA BIAS N83-20004
CORFECTION USING AMAZON RAIN SIGMA(C) DATA
(Kansas Univ. Center for Research. Inc.)
83 FHC AO5/MF AO1 CSCL 09E
G3/33 10566
```

OFF-NADIR ANTENNA BIAS CORRECTION USING AMAZON RAIN FOREST σ^{0} DATA

I. J. Birrer
University of Kansas Center for Research Inc, Lawrence, Kansas 66045

G. J. Dome

Bell Laboratories
Holmdel, New Jersey
J. Sweet

Kentron Technical Center
Hampton, Virginia 23665
G. Berthold
R. K, Moore

Uíiversity of Kansas Center for Research inc. Lawrence, Kansas 66045

MAY 1982
Grant NSG 1397
HBNARY RTPY
114Y 2:1982

Langley Ressarch Center
Hampton, Virginia 23665

TABLE OF CONTENTS

ORIGINAL PACE IS OF PODR QUALTY

LIST OF TABLES ii
LIST OF FIGURES. III
ABSTRACT I
1.0 INTRODUCTION. 2
2.0 BACKGROUND. 3
3.0 DEVELOPMENT OF MAPS USHD TO CLASSIFY BRAZIL TARGETS 5
3.1 Land-Water Map 5
3.2 Vegetation Map 7
4.0 CHARACTERIZATION OF σ° SIGNATURE USING SEASAT SCATTEROMETER DATA. 8
4.1 The SEASAT-A Scatterometer System (SASS) 8
4.2 Target Stability of the Amazon Rain Forest 13
4.3 Incidence Angle Dependence and Diurnal Variation 18
4.4 SEASAT Summary 25
5.0 DEVELOPMENT OF OFF-NADIR ANTENNA BIAS CORRECTIONS FOR NOSS 26
5.1 Description of NOSS Scatterometer System 26
5.2 Development of Maximum Likelihood (ML) Algorithm to Estimate Off-Nadir Bias Parameters 26
5.2.1 Relative Bias and Pointing Angle Estimation 28
5.2.2 Long-Term Monitoring of Relative Bias 32
5.3. Implementation of Off-Nadir Bias Algorithm for NOSS SCATT. 34
5.3.1 Co-Location of SCATT and LAMMR 34
5.3.2 Flagging Rain Cells 37
5.3.3 Data Base Creation. 39
5.3.4 Standard Target Creation. 39
5.3.5 Relative Bias and Pointing Angle Estimation 40
6.0 CONCLUSIONS AND FUTURE RESEARCH 40
REFERENCES 41
APPENDIX A 42
A-1 Program Listing for Digitized Land/Water and Vegetation Maps 43
A-2 Land/Water Tables. 46
A-3 Vegetation Tables. 55
APPENDIX B: Plots of Incidence Angle Variations for Beam $1,2,3$ 58
APPENDIX C: NOSS Algorithm Specification Sheets 64
3 LIST OF TABLES
TABLE 1: Codes Used in Vegetation Map 8
TADLE 2: Regression Parameters for the Incidence Angle Response of SASS Data Over Brazll 21
TABLE 3: Summary of Dlurnal Effect at 40° Incidence Angle Vertical Polarization, 25

FIGUBE 1: Extent of Brazilian Rain Forest 4
FIGURE 2: Sample SKYLAB TIme History over Amazon Rain Forest. 6
FIGURE 3: SEASAT Scatterometer Swath Coverage 9
FIGURE 4: Calculation of siss Received Power. 11
FIGURE 5: Doppler Cell Area Determined by Antenna Pattern and Filter Response 12

FIGURE 6: σ^{0} Time History for Rev 952; V-polarization; Cells 1,2,3. , 15
FIGURE 7: σ° Time History for Rev 952; V-polarization; Cells 4,5,7, , 16
FIGURE 8: Target Stability During SEASAT Mission. 17
FIGURE 9: Mean σ° vs Incidence Angle; Beam 4; V-polarization. 19
FIGURE 10: Estimated σ^{0} From Regression Fit. 23

FIGURE 12: Proposed NOSS Footprint 27
FIGURE 13: Proposed Processing of NOSS Scatterometer (SCATT)

$$
\text { Data to obtain } 0^{\circ} \text {. } 35
$$

FIGURE 14: Frocessing Required for Off-Nadir Blas Correction 36
FIGURE 15: Nature of Expected Ámazon T_{B} Distribution 38

The radar response from the Amazon ralin forest has been studied to determine the suitabillty of this region for use as a standard target to callbrate a scatterometer like that proposed for the National Oceanic Satellite System (NOSS). Backscattering observations made by the SEASAT-1 Scatterometer System (SASS) show the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which is insensitive to polarization. The varlation with angle of incidence may be adequately modeled as $\sigma_{(d B)}^{0}=a \theta+b$ with typical values for the incidence-angle coefficient, a, from $0.07-0.15 \mathrm{~dB} / \mathrm{deg}$. Variation of the intercept, b, was from -0.6 to $=4.4 \mathrm{~dB}$. A small diurnal effect occurs, with measurements at sunrise being $0.5 \mathrm{~dB}-1 \mathrm{~dB}$ higher than the rest of the day.

Maximum-likelihood estimation algorithms presented here permit determination of relative bias and true pointing angle for each bearn. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

Much of the information in this report can be found in the paper by I.J. Birrer, E.M. Bracalente, G.J. Dome, J. Sweet and G. Berthold, "oo Signature of the Amazon Rain Forest Obtained from the Seasat Scatterometer," IEEE Transactions on Geoscience and Remote Sensing, vol. GE-20, no. 1, January 1982, pp. 11-17.

1.0 INTRODUCTION

The Natlonal Oceanic Satellite System Scatterometer (NOSS SCATT) was designed to determine wind vectors on the ocean's surface by measuring radar backscatter from the surface. The SCATT was to be a fan-beam scatteiometer utilizing six dual-polarized (V and H) antennas.

To achieve maximum wind-vector accuracy. careful cross-calitration between antennas must be performed. This report discusses the development of a callbration technique utilizing measurements of the scattering coefficient σ^{0} from the Amazon rain forest. A brief discussion is presented of the method used to discriminate raln-forest signals from others. Maps (used to screen Brazil data) generated for this purpose are on a $0.25^{\circ} \times 0.25^{\circ}$ grid for locating rivers and a $0.5^{\circ} \times 0.5^{\circ}$ grid for identifying vegetation types..

The suitabillty of the Amazon rain forest for use as a callbration target is shown in Section 4.0. From July to October 1978 numerous backscatter measurements were made by the SEASAT-1 Scatterometer System (SASS). These measurements show the rain forest to be as homogeneous, azimuthallyisotropic radar target which is insensitive to polarization. Variation of σ^{0} with respect to incidence angle may be adequately modeled with a straight line fit of the form: $\sigma^{0}(d B)=a \theta+b$, where θ is the angle of incidence (deg.). Measured values for the incidence anglie coefficient, ars mange from: $0.07-0.15 \mathrm{~dB} / \mathrm{deg}$ depending on beam and time of day. Values for the intercept, b; range from -0.6 to -4.4 dB . A small diurnal effect was observed with measurements made at sunriser (0500-0630) being consistently $0.5-1.0 \mathrm{~dB}$ higher than the rest of the day.

To cross-calibrate the beams on a multibeam scatterometer, two parameters, a relative bias and the true antenna, pointing angle, must be determined for each beam. Development of two masimum-likelihood-estimation
algorithms to determine those parameters using Amazon rain forest data is discussed in Section 5.0. The first algorithm is used to determine both relative blas and true pointing angle. A second and considerably simpler version is then developed to monitor long-term changes in relative bias due to drift in the instrument gain and transmitter power. Specific processing required to implement these algorithms for the SCATT is also discussed in Section 5.0.

2.0 BACKGROUND

During the SEASAT program, the need for in-flight crossmcalibration for antennas from a multibeam scatterometer became apparent. The originally proposed procedure using alrcraft underflights proved Inadequate. Based on the consistency of σ° data over the rain forest obtained during SKYLAB, R.K. Moore of The University of Kansas suggested using the Amazon rain forest data as a means of calibration.

The accompanying map (Figure 1) shows the vast extent of the Amazon rain forest. It includes an area of more than $3,000,000 \mathrm{~km}^{2}$. Because of its equatorial location, seasonal effects are minimized and vegetation is always present. The region is very flat and uniformly forested except for breaks in the canopy over the Amazon River and its principal tributaries. The predominant climate is hot and humid, with annual precipitation as high as 3000 mm . A slight decrease in rainfall is observed in the large central part of the rain forest during the months of October to December. A similar decrease takes place in the northern part during the months of June to September. In the northwest a more significant decrease in ralnfall occurs during May and June with the lowest rainfall in July and August.

FIGURE 1: Extent of Brazilian Rain Forest

During the SKYLAB SL- 2 mission vertical-polarization measurements were made over the Amazon raln forest at incidence angles of 32° to 36°. Figure 2 shows a sample time history taken during one of the SKYLAB passes over the eastern part of the forest. The scattering coefficient was stable with a maximum deviation of about 0.2 dB . For the comblned set of SKYLAB measurements the mean value of σ° was reported as $\approx-5.9 \mathrm{~dB}$ with a standard deviation of $1 \mathrm{~dB}[1,2]$. This observed consistency prompted the further investigation using the SEASAT scatterometer.

3.0 DEVELOPMENT OF MAPS USED TO CLASSIFY BRAZIL TARGETS

3.1 Land-Water Map

For the early analysis of SEASAT observations of Brazil, discrimination was achleved by using vegetation maps developed during the SKYLAB program [2]. The $1^{\circ} \times 1^{\circ}$ grid avallable was thought to be adequate. However, as noted In Section 4.2, the presence in the SASS footprint of the Anazon River or one of its principal tributaries markedly lowered the radar cross-section. Since the SCATT wes planned to operate with an even smaller footprint, a finer map grid was needed to screen out data contaminated by the presence of rivers.

For NOSS a digitized map was created with a $0.25^{\circ} \times 0.25^{\circ}$ grid. The source map was produced by the Department of Cartography of the Brazilian Institute of Geography in 1971. This map of the entire Amazon basin is scaled at approximately 3 inches per degree. The digitized map was created by overlaying grids to subdivide the source map into 0.25° boxes. Codes were then assigned to each box using the following conventions:

FIGURE 2: Sample SKyLAB Time History over Amazon Rain Forest

0 - flatland only (no significant rivers)
1 - some small rivers but mostly land
2 - large rlvers through box
3-rough terrain
The results of this procedure were then encoded into a computer algorithm. For a given latitude and longltude the algorithm will fetch the code of the box containing the location. This map was tested during the extensive analysis of SEASAT dâta discussed in Section 4.0.

For NOSS it was envisioned to use the computed location of the center of the Doppler cell for classification. A more careful screening could be performed by using the lefitudes and longitudes of the corner points for a particular Doppler cell. Testing to be sure that all four corners showed a "land-only" condition wouid be a check sgainst overlapping part of a river-filled box.

3.2 Vegetation Map

To further classify Brazilian data a vegetation map for the Amazon basin was produced with a $0.5^{\circ} \times 0.5^{\circ}$ grid. Codes were assigned to each box according to the conventions listed in Table l. Six distinct types of vegetation are found in the Amazon basin. Types 1 and 2 are the forests which are suitable for use as a standard target. Combinations of types were only designated If the dominant vegetation was either type 1 or type 2. Otherwise, they were cuded with a $3,4,5$, or 6 , depending on the dominant type.

This map was incorporated into an algorithm similar to the land-water algorithm. For a particular latitude and longitude the code is retrieved for the box containing that location. This algorithm was used during the

TABLE 1
Codes Used In Vegetation Ma/;

Type (Code)	Description
0	Cutside of Brazill Raln Forest
1	Humid Upper Amazon
2	Humid Firm Land
3	Humid Floodiands
4	Humid Plains
5	Mountalnous Region
6	Savannah
7	Combination Types 1,4
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

SASS analysis to remove all data from vegetation types 3,4,5, and 6. A similar approach is recommended for a NOSS-type of system.

4.0 CHARACTERIZATION OF 0° SIGNATURE USING SEASAT SCATTEROMETER DATA

4.1 The SEASAT-A Scatterometer System (SASS).

The SASS operated using four dual-polarized (V and H) $0.5^{\circ} \times 25^{\circ}$ fanbeam antennas. The antennas were pointed 45° from the satellite subtrack to give a "star-like" illumination pattern on the surface [3]. (seef Figure 3). This configuration provided for pairs of nearly orthogonal measurements of.. the earth's surface. The SASS instrument transmitted a 100 -watt $14.6-\mathrm{GHz}$ signal. The backscattered signal was spread out in frequency due to the Doppler effect. Using 15 parallel channels (each consisting of a Doppler filter, a square-law detector, and a gated integrator), the reflected power

FIGURE 3: SEASAT Scatterometer Swath Coverage
from one antenna was sampled 61 times during a $1.89-5 e c$ measurement period. The mean values of the 61 integrated voltage levels of signal plus noise and noise alone from each of the 15 chanmels were transmitted to the ground. The power reflected from the earth's surface was determined from these vol. tage pairs, the calibrated gain of the receiver, and the known integration time, as indicated in Figure 4.

Figure 5 shows an enlarged view of one of the 15 Doppler cells synthesized along the beam. As lllustrated, the Doppler-cell area is determined by the $0.5^{\circ} 3-d B$ beamwidth in the narrow-beam plane and the Doppler filter along the beam. Due to the $1.89-\sec$ measurement time the Doppler cell is smeared in the alongtrack direction to give the resultant cell shown in the lower inset. The integrated Doppler cells are between $16-20 \mathrm{~km}$ wide and $50-70 \mathrm{~km}$ long.

The frequencles selected for the Doppler filters result in three nearnadir resolution cells $\left(0^{\circ}-13^{\circ}\right.$ incidence angle) and twelve off-nadir cells $\left(20^{\circ}-65^{\circ}\right.$ incidence angle). Only the off-nadir measurements were used in this analysis since the near-nadir returna were outside the main antenna beam.

The value of σ^{0} can be determined by solving the radar equation in the following form:

$$
\begin{equation*}
P_{R}=\frac{P_{T} \lambda^{2} L^{G} S_{0}^{2}}{(4 \pi)^{3}} \int_{A} \frac{\left(\frac{G}{G_{0}}\right)^{2} \sigma^{0} h(f)}{R^{4}} d A \tag{1}
\end{equation*}
$$

Where:

$$
\begin{aligned}
P_{R} & =\text { received power } \\
P_{T} & =\text { transmitted power } \\
\lambda & =\text { transmitted wavelength } \\
L_{S} & =\text { miscellaneous losses }
\end{aligned}
$$

-11-

FIGURE 4: Calculation of SASS Received Power

ORIGINAL PAGE IS OF POOR QUALTTY

FIGURE 5: Doppler Cell Area Determined by Antenna Pattern and Filter Response

$$
\begin{aligned}
G_{0} & =\text { peak antenna gain } \\
\frac{G}{G_{0}} & =\text { relative gain at center of cell } \\
h(f) & =\text { frequency response of Doppler filter } \\
R & =\text { range to cell center }
\end{aligned}
$$

Equation (1) may be solved for σ° as:

$$
\begin{equation*}
\sigma^{0}=\frac{(4 \pi)^{3} P_{R} R^{4}}{P_{T} T^{2} L_{S} G_{0}{ }^{2}\left(\frac{G}{G_{0}}\right)^{2} A} \tag{2}
\end{equation*}
$$

assuming:

$$
h(f)=\left\{\begin{array}{l}
1 f_{\ell}<f<f_{u} \\
0 \text { otherwise }
\end{array}\right.
$$

where:

$$
\begin{aligned}
A & =L R \phi_{A}, \text { wicre } L \text { is the distance on carth's surface from } f_{\ell} \text { to } f_{u} \\
f_{0} & =\text { center frequency } \\
B_{n} & =\text { noise bandwidth (Doppler filter) } \\
f_{\ell} f_{u} & =\text { upper and lower Doppler"filter cutoff frequencies } \\
\phi_{A} & =\text { narrow dimelsion antenna beanwidth (radians) } \\
f_{\ell} & =f_{o}-\frac{B_{n}}{2} \\
f_{u} & =f_{o}+\frac{B_{n}}{2}
\end{aligned}
$$

A particular σ° is calcuiated by evaluating equation (2) using measured values for P_{R} and P_{T}, values for G_{0} and $\frac{G}{G_{0}}$ obtained from a lookup table, and computed values for R and A [4].

4.2 Target Stabllity of the Amazon Rain Forest

Initially the SASS data were processed by scientists at NASA Langley Research Center to produce time histories of σ° over Brazil [4]. Figures
P) $1=5$
6^{\prime} and ${ }^{\prime \prime}$ show sample time histories of Bema 1 vertical-polarization measurements made during an orbit identified as Rev 952. The radar-cross-section stability over the Amazon rain forest was similar to that observed during the SKYLAB mission. When the rain forest results are compared with the observations over the ocean, three striking differences are noted: (1) 0° is consistently higher over the rain forest (except at the smallest incidence angle), (2) σ° is much more stable over the rain forest, and (3) the variaton in σ° with incidence angle is much less. As can be seen in both figures 6 and 7, SASS cells whish included part of the Amazon or one of its major tributaries were easily identified by the sudden $1-3 \mathrm{~dB}$ drop in σ°.

Since the goal of the research was to determine the Amazon rain forest's suitability as a standard target, tests were made for both temporal and regional stability. Comparing data taken at the same time of day over the same flight line throughout the mission provided a useful test for seasonal effects. Figure 8 shows the results of one of these comparisons. Approxim mately 10 measurements were averaged at each incidence angle to estimate the mean σ°. The deviation of the mean σ° is negligible near the peak antenna gain $\left(\theta, 44^{\circ}\right)$ except for the September 18 measurements at 40°. This discrepancy may be due to atmospheric attenuation. At the extremes of the incl-dence-angle range the deviation is less than 0.5 dB . However, due to the short lifetime of SEASAT (99 days, July-October), further research is needed: to determine if any seasonal effects exist. The values of the mean σ^{0} for as particular time of day were compared over numerous flight I ines to test for regional effects. No consistent discrepancies were observed over the rain forest. As a result of these tests, the entire SEASAT nain-forest data set was analyzed as a unit.
ORIGINAL PAGE IS OF POOR QUA:ATH

FIGURE 6: σ° Time History for Rev 952; V-polarization; Cells 1,2,3

ORIGINAL PAGE II OF POOR QUALTY

4.3 Incidence Angle Dependence and Diurnal Varlation

The SASS made measurements over the Amazon rain forest twice daily. During the early part of the mission, the Brazil crossings were between 0500 and 0630 (local time at center of area) and between 1630 and 1830. During the last month of the SEASAT mission, the crossings took place between 0900 and 1200 and between 2100 and 2400 . For the subsequent analyses the data were binned by polarization, beam, incidence angle and time of day. Mean values and standard deviations of σ° were computed for each of these bins.

Plots and regressions of mean σ° versus incidence angle were made for each beam to dessribe the small incidence-angle dependence observed in the time histories. The sample sizes for estimation of the means varied approximately from 10 to 100 measurements. Figure 9 shows the ;esultis for Beam 4, vertical polarization. The late-morning and nighttime data agree well. The results from Beams 1 and 2 indicate that the late-afternoon measurements were also consistent with the late-morning and nighttime data. On the other hand, the early-morning measurements were from 0.5 to 1.0 dB higher than data at the other times of day.

As can be clearly seen from Figure 9, the basic angular trend is adequately modeled by the equation

$$
\begin{equation*}
\sigma_{(d B)}^{0}=a \theta+b \tag{3}
\end{equation*}
$$

where θ is the incidence angle. Typical values for the incidence angle coefficient a, as determined from regression analysis, ranged from 0.077 to $0.159 \mathrm{~dB} / \mathrm{deg}$ depending on beam and time of day.
origiival pagie is OF POOR QUALITY

FIGURE 9: Mean σ° ys Incidence Angle; Beam 4; V-polarization

Equation (3) may be rewritten as

$$
\begin{equation*}
\sigma_{(r e a l)}^{0} k e^{-\theta / \theta_{0}} \tag{4}
\end{equation*}
$$

where:

$$
\begin{aligned}
& K=e^{\frac{b}{10} \ln 10} \\
& \theta_{0}=-\frac{10}{a \ln 10}
\end{aligned}
$$

Table 2 gives a complete summary of the values of a, b, k, θ_{0} determined by regression using (3) ${ }^{\text {t }}$. From the summary in Table 2 some obvlous differences are observed between beams. The data appear to be most consistent in the Incldence angle range of $30^{\circ}-50^{\circ}$. The four SASS antennas had been crosscalibrated using t̂to eleven brāzil passes avallable to NASA tangiey sctentists soon after the SEASAT mission [4]. Good agreement was achieved in the mid-angular range. The remaining differences highlight the need for the more sophisticated cross-calibration algorithm (using all of the SEASAT passes) developed here.

The value of σ° estimated from the regression fit agrees well with the reported SKYLAB results. The SASS, however, shows much less deviation abcut the mean. Bars have been drawn on Flgure 9 to show the scatter in the measurements. At incidence angles near the nominal pointing angle of 44°, the standard devlations ranged from 0.1 to 0.2 dB . At the extremes of the incidence angle range the standard deviations ranged from 0.3 to 0.6 dB . This

[^0]TABLE 2
Regrassion Parameters for the
Incidence Angle Response of SASS Data over Brazll

Model: $\sigma_{(d B)}^{0}-a \theta+b$
$\sigma^{\circ}($ real $)=k e^{-\theta / \theta_{0}}$, where K, θ_{0} are determined from a, b,

Beam \#	Time of day*	a	. b	$\mathrm{R}^{2} \times 100^{\%}$	K	${ }_{0}$	Data points per regression
1	1	-0.129	-1.75	98	0.669	33.67	72
	2	-0.158	-1.71	99	0.764	27.41	246
	3	-0.112	-2.85	96	0.519	38.68	543
	4	-0.096	-3.69	94	0.428	45.30	551
2	1	-0.077	-3.62	96	0.435	56.31	166.
	2	-0.089	-4.08	92	0.391	49.00	518
	3	-0.135	-1.98	98	0.663	32.17	442
	4	-0.155	-1.11	97	0.774	$28 . \overline{0} 9$	437
3	1		-0.58	93	0.874	29.30	103
	2	-0.156	-1.15	96	0.767	27.91	603
	$3+$	-------	-	--	--.---	------	---
	4	-0.078	-4.37	96	0.366	55.61	836
4	1	-0.103	-2.35	97	0.582	42.29	140
	2	-0.112	-2.93	97	0.510	38.65	589
	$3+$	-------	-----	--	--m-m	-----	--9
	4	-0.132	-2.26	99	0.595	32.95	538

*Time Code: $\quad 1=0500-0630$
$2=0900-1200$
$3=1630-1830$
$4=2100-2400$
+iNo data available
${ }^{\text {\% Squared multiple correlation coefficient }}$

Increase in the standard deviation is probably due to a decrease in measurement precision caused by weaker signals at angles well away from the peak antenna gain, and also may be caused by small beam-pointing-angle errors that have more importance where the antenna galn varles more rapldy with angle.

The regression equations determined from the data were used to estimate values of 0° at 40° Incidence angle which are plotted in Figure 10 as a function of time of day for Beam 2. The early morning return is 0.6 - 0.9 dB higher than at the other times of day. Table 3 summarizes these estimates for all of the beams. When this effect was first noted in the orlginal analysis of the first 11 passes, all of the data had been screened using GOES imagery to eliminate cases containing significant cloud cover. In the prosent analysis the data were not sereened. Hówever, since this was the dry season few of the measurements should have been corrupted.

Initially it was belleved that, because of the random orientation of the scatterers in the uniformly vegetated rain forest, the values of σ° would be insensitive to polarization. While most of the measurements were vertically polarized, enough horizontal polarization data were taken to allow a comparison. On Figure 11 ahe plots af both V-pol and H-pol data for Beam 1. As expected the results appear to be insensitive to polarization.

No noticeable azimuthal-angle variation was observed in the rain-forest data: This isotropy can be demoristrated by comparing the 0900-1200 V-pol data from Beam 2 and Beam 4. Whlle the beams differ $180^{\circ} \mathrm{in}$ azimuth, the measurements show agreement within $0.1-0.2 \mathrm{~dB}$. This may be seen by overlaying Figures 9 and 11.

FIGURE 10; Estimated σ° From Regression Fit:

table 3
Sunmary of Dlurnal Effact at 40° Incidence Angle
Vertical Polarization

	ESTIMATED SCATTERING COEFFICIENT (dB)		Average for		
	Bear, 1	Beam 2	Beam 3	Beam 4	All Beams

4.4 SEASAT Sumnary

The data obtalned from SEASAT-1 have shown the potentlal of the Amazon rain forest for use as a standard target. Since the diurnal effects appear to be limited to early morning, data from other times of day could all be used together to build a data base for calibration. The small scatter (0.1 0.6 (B) in the mean values of σ° indicates the remarkable stability of chis region and hence its usefulness as a standard target. A basic characterization of the incidencerangle dependence can be made using a simple straightline model of $\sigma_{(d B)}^{0}$ vs θ.

The differences between the regression coefficients shown in Table 2 for the different beams cannot be due to actual σ° differences because Beams 1 and 2 covered the same area, as did Beams 3 and 4. Hence these differences must be in antenna patterns or in pointing-angle differences. This points out the need for use of such a "standard target" in future multibeam scatterometers.

5.0 DEVELOPMENT OF OFF-NADIR ANTENNA BIAS CORRECTIONS FOR NOSS

5.1 Description of NOSS Scatterometer System

The NOSS Scatterometer System (SCATT) design is for a second generation fan-beam scatterometer using experience gained from SEASAT (Section 4.1). Figure 12 shows the proposed SCATT ground-track coverage. Besides the four beams used in SASS, two antennas are pointed at 65° from the satellite orblt plane to aid in wind-direction allas removal. All of the antennas are dual-polarized (V and H). The SCATT instrument transmits a 100-watt 14.0GHz signal. The backscattered signal is Doppler filtered into 60 resolution cells with each cell approximately $10 \mathrm{~km} \times 10 \mathrm{~km}$. The off-nadir bias correction algorithm is to be applied to the outermost 50 Doppler cells of each beam.

$5.2 \frac{\text { Development of Maximum Likelihood (ML) Algorithms }}{\text { to Estimate Off-Nadir Blas Parameters }}$

During SEASAT analysis, Brazilian rain-forest data were first used to correct for antenna blases in the off-nadir cells. Estimates for relative bias and pointing angle were determined by comparing data from a limited number of passes. For NOSS a formalized algorithm was desired to allow automation of the estimation of these parameters by using all availahle SCATT rain-forest data. The next subsection (5.2.1) describes in detail the derivation of a maximum likelthood (ML) approach to estimate relative bias and pointing angle.* Once polinting angle is determined, a ML technique may be used periodically to re-estimate relative bias. This algorithmis described in Section 5.2.2.

[^1]

FIGURE 12: Proposed NOSS Footprint

5.2.1 Relative Bias and Pointing Angle Estimation

For an operational system the radar parameters, P_{T} and a_{0} in equations (1) and (2) are specified in the design and careftlly measured prior to launch. The relative antenna gain, $\frac{G}{G_{0}}$, is determined from pre-launch antenna pattern measurements and the specifled pointing angle, θ_{p}. Although P_{T} is monitored during operation, only relative changes in P_{T} can be measured. The true absolute value of P_{T} depends on pre-launch calibrations. However, as was observed with the SASS, the actual values for P_{T}, G_{0} and θ_{p} after launch can differ irom the design values due to errors in the pre-launch calibrations [4].

Effects of these differences at each Doppler cell can be seen by writing equation (1) for both the designed and actual values of P_{T}, G_{0}, θ_{p} and the corresponding σ° inferred from equation (2). For a given Doppler cell (incidénce angle):

$$
P_{R}=\frac{P_{D} T^{\lambda^{2}}{ }^{2}{ }_{D_{D}}^{2}\left[G / G G_{0}\left(\theta_{D^{P}}\right)\right]^{2} \sigma_{D}^{0} A}{(4 \pi)^{3} R^{4}}
$$

where the subscript D refers to the designed values.

$$
P_{R}=\frac{P A^{T}{ }^{\lambda^{2} G} A_{A} O^{2}\left[G / G_{0}\left(\theta_{A}\right)\right]^{2} \sigma_{A}^{0} A}{(4 \pi)^{3} R^{4}}
$$

where the subscript A refers to actual values.
Equating the above expressions and solving for σ_{D}^{0} in terms of σ_{A}^{0} yields

$$
\begin{equation*}
\sigma_{D}^{0}=\frac{\alpha\left[G / G_{0}\left(\theta_{A}\right)\right]^{2} \sigma_{A}^{0}}{\left[G / G_{0}\left(\theta_{D}{ }^{p}\right)\right]^{2}} \tag{5}
\end{equation*}
$$

- where $\alpha \triangleq$ relative bias $=\frac{P_{A}^{T} G_{A} O^{2}}{P_{D} T G_{D} O^{2}}$

By substituting a standard reference target, σ_{S}^{0} at the dell incidence angle, for the value of σ_{A}^{0}, the relationship in equation (5) can be used to estimate the relative bias, α, and the actual pointing angle $\theta_{A} p^{*}$. Since the measurements, σ_{D}^{0}, are noisy, maximum-likelihood estimation is used to determine α and $\theta_{A} p^{\prime}$

Formulation of the maximum-likellhood estimation may be given as: a vector of noisy observations, $\underset{\sim}{z}$, exists which depends probabilistically on a parameter of interest, B. The M.L. estimate of B is then given by the condition

$$
\begin{align*}
f_{z / B}(\underset{\sim}{z} / B) & =\text { maximum } \\
B & =\hat{b}_{M L}(z) \tag{6}
\end{align*}
$$

where:
$f_{\underset{\sim}{z} / B}$ is the joint conditional probability density function.
$\hat{b}_{M L}(z)$ is the maximum-likelihood estimate of B.

This approach can be applied to estimate α and $\theta_{A} p$ with the following assumptions:
(I) Radar measurements are independent and may be described as a Gaussian process
(2) The noisy observations, $\underset{\sim}{z}$, are the parameter σ_{D}^{O}
(3) The parameter of interest, B, is given by the relation:
$\alpha \frac{\left[G / G_{0}\left(\theta_{A} P\right)\right]^{2}}{\left[G / G_{0}\left(\theta_{D} P\right)\right]^{2}} \quad \sigma_{S}^{0}=B\left(\alpha \theta_{A}\right)$
(4) $G / G_{0}\left(\theta_{p}\right)$ is known from pre-launch measurements.

Applylng the above conditions, the conditional probability in expression (6) may be re-written as:

$$
\begin{align*}
& l=1 \tag{7}\\
& n
\end{align*}
$$

where:

$$
\begin{aligned}
n & =\prod_{\ell=1}^{N} \sqrt{2 \pi\left(\Delta \sigma_{D}^{O}\right)^{2}} \\
N & =\text { number of measurements } \\
\Delta \sigma_{D}^{O} & =\text { standard deviation of the measurements. }
\end{aligned}
$$

Since the purpose is to select values of $\hat{\alpha}_{,} \hat{\theta}_{A^{p}}$ that maximize expression (7); several simplifications can be made. The quantity, n, may be ignored since it is not a function of the parameters $\alpha,{ }_{A}{ }_{A} p^{\text {. }}$ The quantity $\Delta \sigma_{D}^{0}$ is assumed to be constant since any changes in the standard deviation of the backscatter measurement as a function of ground track over the rain forest appear to be small: Lastly; the logarithm of the likel/hood function may be maximized, since the same values $\hat{\alpha}_{\alpha} \hat{\hat{\theta}}_{\mathrm{p}}$ will maximize both the $l i k e l l$ hood furiction and the logilikelitiood function. Therefore, the condition to satisfy is:

$$
\begin{equation*}
=1 / 2 \sum_{l=1}^{N}\left(\sigma_{l}^{0}-B\right)^{2}=\text { mäx } \tag{8}
\end{equation*}
$$

where $B=B\left(\alpha ; \theta_{A}{ }^{p}\right)$:
Since the function $G / G_{0}\left(\theta_{p}\right)$ is stored as a look-up table and very diffibult to express analytically, the log-likelihood expresslon in (8) is maximized in two steps. First a migrating search is performed to approximately center a 3×3 matrix about the solution. Then the maximuin of a bivariate interpolating polynomial fit to points on this matrix is found to obtain $\hat{\alpha}_{;} \hat{\theta}_{p}$.

The search is done by defining a log-likelihood matriz, $g_{i, j}$, as follows:

$$
\begin{equation*}
g_{i, j}=-1 / 2 \sum_{\ell=1}^{N}\left[\sigma_{\ell}^{0} D^{\left.-B\left(\alpha_{i}, \theta_{j p}\right)\right]^{2}}\right. \tag{9}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \alpha_{1}=\alpha_{0}+i \Delta \alpha ; i=-1,0,1 \\
& \theta_{j p}=\theta_{o p}+j \Delta \theta_{p} ; j=-1,0,1
\end{aligned}
$$

Since the actual values for P_{T} and G_{O} should be reasonably close to the design specifications, initially α_{0} is chosen to he l.0. Similarly, the design-specified pointing angle, $\theta_{D} p$, is chosen for the initial value of $\theta_{o p}$. Reasonable values for $\Delta \alpha, \Delta \theta_{p}$ appear to be 0.2 and 1.0 respectively. The values for $g_{i, j}$ are then compared to find the maximum, If the center point, $g_{0,0}$, is not the maximum, a new matrix is formed as follows:

$$
\begin{aligned}
\alpha_{i} & =\alpha_{\text {max }}+i \Delta \alpha ; i=-1,0,1 \\
\theta_{j p} & =\theta_{p_{\max }}+j \Delta \theta_{p} ; j=-1,0,1
\end{aligned}
$$

where:
$\alpha_{\text {max }}, \theta_{p_{\text {max }}}$ are the $\alpha_{i}, \theta_{j p}$ corresponding to the maximum of the previous matrix.

Searching continues until a matrix is formed which has the maximum at the center.

Estimates for relative bias, $\hat{\alpha}$, and actual pointing angle, $\hat{\theta}_{\mathrm{p}}$, are found by fitting a bi-variate, quadratic interpolating polynomial to the values of $g_{i, j}$. Values of $\hat{\alpha}$ and $\hat{\theta}_{p}$ which maximize the polynomial are then determined analytically. The interpolating polynomial is of the form:

$$
\begin{equation*}
g\left(\hat{\alpha}_{\alpha}, \hat{\theta}_{p}\right)=a \beta^{2}+b \beta+c \gamma^{2}+d \gamma+e \beta \gamma+f \tag{10}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \beta=\left(\omega-\alpha_{0}\right) / \Delta \alpha \\
& \gamma=\left(\hat{\theta}_{p}-\theta_{p}\right) / \Delta \theta_{p}
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{g_{1}, 0}{2}-g_{0,0}+\frac{g_{1,0}}{2} \\
& b=\frac{-g_{-1,0}}{2}+\frac{g_{1,0}}{2} \\
& c=\frac{g_{0,-1}}{2}-g_{0,0}+\frac{g_{0,1}}{2} \\
& d=\frac{-g_{0,-1}}{2}+\frac{g_{0,1}}{2} \\
& e=g_{0,0}-g_{1,0}-g_{0,1}+g_{1,1} \\
& f=g_{0,0}
\end{aligned}
$$

where $g_{i, j}$ are the values of the likelihood matrix.
The maximum is found by taking the partial derivatives of the interpolating polynomial and setting them equal to zero. When the resultant equations are solved for $\hat{\alpha}$ añd $\hat{\theta}_{p}$ we get

$$
\begin{align*}
& \hat{\alpha}_{M L}=\alpha_{0}+\frac{\Delta \alpha(e d-2 b c)}{4 a c-e^{2}} \tag{11a}\\
& \hat{\theta}_{P_{M L}}=\theta_{p}+\frac{\Delta \theta_{p}(b e-2 a d)}{4 a c-e^{2}} \tag{1lb}
\end{align*}
$$

where a, b, c, d, e are defined as above.
Final estimates for $\hat{\alpha}^{\text {a }}$ and $\hat{\theta}_{p}$ are made by averaging the values of $\hat{\alpha}_{M L}$ and $\hat{\theta}_{P_{\text {ML }}}$ obtained for each Doppler cell.

5.2.2 Long-Term Honitoring of Relative Bias

Periodic estimates of the relative bias diving the mission will provide a means to correct for long-term drists in transmitter power. If the pointing angle is not expected to change once $\hat{\theta}_{p}$ is determined, a simplified version of the algorithm in Section 5.2 .1 may be used to estimate relative bias.

In this case the parameter of interest contains only one unknown, the relative blas α. The same procedure followed In Section 5.2.1 Is used to solve this one-parameter case with a likellhood vector, 9 , replacing the matrix $g_{1, j}$. The vector is defined as:

$$
\begin{equation*}
g_{1}=-\frac{1}{2} \sum_{\ell=1}^{N}\left[\sigma_{\ell}^{0}-\alpha_{1} \sigma_{5}^{0}\right]^{2} ; 1=-1,0,1 \tag{12}
\end{equation*}
$$

where:
$\sigma_{\ell}^{0}=$ the NOSS SCATT measurement
$\sigma_{S}^{\circ}=$ the standard target
$\alpha_{1}=\alpha_{0}+i \Delta \alpha$
$\alpha_{0} \quad$ = previously determined relative bias
Vector g_{i} is then fitted with a quadratic interpolating polynomial of the form:

$$
\begin{equation*}
g(\hat{\alpha})=r \beta^{2}+s \beta+t \tag{13}
\end{equation*}
$$

where:
$\beta=\frac{\left(\hat{\alpha}-\alpha_{0}\right)}{\Delta \alpha}$
$r=\frac{g_{-1}}{2}-g_{0}+\frac{g_{1}}{2}$
$s=-\frac{g_{-1}}{2}+\frac{g_{1}}{2}$
$\mathrm{t}=\mathrm{g}_{0}$
$g_{1}=$ the values of the vector calculated in equation (12).
By differentiating equation (13) and setting the result equal to zero, the maximum likelihood value of $\hat{\alpha}$ is found as:

$$
\hat{a}_{M L}=\alpha_{0}-\frac{s \Delta \alpha}{2 r}=\alpha_{0}-\Delta \alpha\left(\frac{g_{1}-g_{-1}}{g_{-1}-2 g_{0}+g_{1}}\right)
$$

A final estimate of $\hat{\alpha}$ may be determined by averaging the estimates of $\hat{\alpha}_{M L}$ obtalned for each Doppler cell.

5.3 Implementation of Off-Nadir Bias Algorithm for NOSS SCATT

The flow chart in Figure 13 shows the relationship between the offnadir blas algorithm and SCATT data processing. Earth-located σ° data are screened to locate data over the Amazon raln forest. Then the Amazon map described In Section 3.0 is used to remove measurements that include either the Amazon river or one of its principal tributaries. Remalning raln-forest data are then supplled to the off-nadir blas algorithm.

Actual estimates of the relative blas and pointing angle are performed off-line from the main SCATT processing, This is necessary for two reasons: first, Brazil passes for several days are needed to create a sufficlent data base for estimation; second, considerable human interaction and evaluation is needed to interpret the results.

Figure 14 shows a flow chart of the processing required in the offnadir bias algorithm. Inputs to the algorithms are the SCATT σ° data from the rain forest and the corresponding brightness temperatures T_{B} measured by the Large Antenna Multichannel Microwave Radiometer (LAMMR). Co-located LAMMR data are used to fleg and remove potential rain-corrupted SCATT measurements. A data base is then created for use with the maximum-lakelihood procedure described in Section 5.2. Estimates for relative bias and antenna polnting angle are computed for every combination of beam, cell and polarization. Approximate error bounds are determined using the results of several estimations. The following subsections describe in more detail the processing required.

FIGURE 13: Proposed Processing of NOSS Scatterometer (SCATT) Data to Obtain ${ }^{\circ}$

FIGURE 14: Processing Required for Off-Nadir Bias Correction

5.3.1 Co-Location of SCATT and GMMAR

To use LAMMR 37 GHz data to flag raln-corrupted SCATT measurements, T_{B} measurements must be comlocated with individual sCATT σ° measurements. The input data streams for both SCATT and LAMMR are assumed to be gridded into 50 km blocks and assigned a set of coordinates (i, $)$. Co-location is accomplished by: first, sorting both LAMMR T_{B} 's and SCATT o° 's independently by grid coordinates; second, for each coordinate pair (i,j) containing SCATT data the corresponding LAMMR grld point is located. Within the 50 km grid each SCATT cell is matched with the closest LAMMR cell.

5.3.2 Flagging Rain Cells

Co-located LAMMR $37 \mathrm{GHz} T_{B}$'s are used to flag potential rain-corruptad SCATT cells. The brightness temperature of the Brazilian rain forest is very high due to high emissivity and surface temperature. However, in the presence of rain only the top portion of the rain cloud and not the forest is seen. Hence it is believed that the temperature measured should be lower when rain occurs than in clear sky conditions. Rain flags will be set whenever the measured temperature falls below a fixed cut-off temperature, ${ }^{\text {cut }}$.

Figure 15 shows the form of the 37 GHz brightness temperature histogram expected from the Amazon rain forest. The lobe at the lower brightness temperature corresponds to measurements made in rain conditions, while the lobe at higher brightness temperature corresponds to clear-sky conditions. A preliminary value for $T_{\text {cut }}$ may possible be made from SEASAT radiometer measurements. However, it will be Important to make a number of histograms with LAMMR data to confirm the assumed distribution shown in Figure 15 and to properly set $\mathrm{T}_{\text {cut }}$.

Figure 15; Nature of Expected Amazon T_{B} Distribution

Abstract

5.3.3 Data Base Creaticn

Due to the large volume of data produced by the SCATT, estimation of relative blas and pointing angle is performed by using mean σ° values computed for each pass over Brazil. Individual clear-sky SCATT measurements are grouped by beam, cell number and polarization. At the end of each Brazil pass the mean value, standard deviation, and average incidence angle is computed for each group contalning more than twenty measurements. These estimates are also binned by beam, cell number and polarization. Estimation of relative blas and pointing angle takes place when each mean value biti has data from at least 10 passes. Since the bins will fill at different rates depending on the location of the satellite subtrack, provision is made to store up to 20 values in each.

5.3.4 Standard Target Creation

The maximum likelthood procedure described in Section 5.2 requires a standard target, $\sigma_{S}^{0}(\theta)$, deffined over the entife off-nadir incidence angle range. Determination of σ_{S}^{0} will require consistent human evaluation and decision.

Initially plots and regressions of the mean value of σ° versus incidence angle will be made from the data base described above. These plots and regressions will be compared with SEASAT results described in Section 4.0 and Appendix B. If there is good comparison in trend, the SEASAT model, $\sigma_{d B}^{0}=a \theta+b$, will be adopted with an appropriate level shift. If the trend of the SCATT data is significantly different, a new model determined from the analysis of several passes may be used. The final procedure used in creating the standard target will be determined once the initial comparisons are made.

5.3.5 Relative Bias and Pointing. Angle Estimation

Early in a future mission with the NOSS design will be the implementation of the ML technique to determine both relative blas and polnting angle described in Section 5.2.2. Once a sultable value for pointing angle is determined for each beam, the simplified aigorithm described in Section 5.2.3 may be used to monitor long-range transmitter drift. Both of these algorithms can be implemented using the same inputs so switching between algorithms should be trivial.

In this implementation the noisy data, σ_{ℓ}° in equations (8) and (12) are the mean values stored in the data base (Section 5.3.3). Separate estimates will be made for each combination of bean, cell and polarization. Repeated estimates should be made using subsequent data. Final estinates and bounds may be calculated by computing the means and standard deviations.

6.0 CONCLUSIONS AND FUTURE RESEARCH

Detalled analysis of SEASAT scatterometer data has confirmed the suitability of the Amazon raln forest for use as a standard calibration target. A simple straight fíne model for incidence angle variation appears to be quitee adequate. Useful approximations for the model parameters may be determined from the SASS data. The accuracy of these approximations is limited by remaining biases between SASS antennas and the lack of independent rain-forest measurements for absolute calibration.

Maximum-likelitiood estimation algorithms have been developed to correct off-nadir antenna blases for spatceborne scaterometers by utilizing rain forest data. Application of those algorithms for the proposed Noss scaterometer was straight-forward. Plesumbly these techniques could be adapted easily for calibrating other future systems.

Three important areas of research need to be undertaken to extend the usefulness of Amazon raln forest data to correct off-nadir antenna blases. First, measurements must be made throughout the year to determine the existence of any seasonal effects. The SEASAT measurements were made during only the dry season. Second, research needs to be done to confirm the proposed algorithm to screen out data corrupted by thick clouds and raln. The multifrequency radiometer measurements made with the NIMBUS 7 satellite could potentially contribute valuable information in both of these areas. Third, a calibration program using aircraft overflights is needed to better determine the absolute value of σ°.

REFERENCES

[1] Sobti, A., R.K. Moore and S.T. Ulaby, "Backscatter Response at 13.9 GHz for Major Terrain Types As Seen From Orbit," Remote Sensing Laboratory Technical Report 243-4, August 1975. University of Kansas Center for Research, Inc., Lawrence, Kansas 66045.
[2] Sobti, A. and E.C. Davidson, "Microwave Scattering Measurements Over Brazil at 13.9 GHz ," Remote Sensing Laboratory Technical Report 243-11, September 1975. University of Kansas Center for Research, Inc., Lawrence, Kansas 66045.
[3] Grantham, W.L., E.M. Bracalente, W.L. Jones, J.H. Shrader, L.C. Schroeder and J.L. Mitchell, "An Operational Satellite Scatterometer for Wind Vector Measurements over the Oceans," NASA TMX 72672, March 1975.
[4] Bracaiente, E.M., D.H. Boggs, W.L. Grantham and J.L. Sweet, "The SASS Scattering Coefficient σ° Algorithm," IEEE Journal of Oceanic Engineering, vol. OE-5, no. 2, April 1980, pp. 145-149.

APPENDIX A

A-1: Program Listing for Digitized Land/Water and Vegetation Maps 43
A-2: Land/Water Tables. 46
A-3: Vegetation Tables. 55

SUBROUTINE LDVEG
00000560
PURPOSE
THIS ROUTINE LOADS THE VEGETATION MAP
INTEGER VEGTBL(5,3,64),VGCODA
REAL LAT,ING
REAL VLAT(3)/2.0,-2.0,-6.0/
REAL VING(5)/74.0,70.0,66.0,62.0,58.0/
READ VEGETATION MAP
DO $10 \mathrm{I}=1,5$
D0 $10 \mathrm{~J}=1,3$
$\operatorname{READ}(02,900)(\operatorname{VEGTBL}(I, J, K), K=1,64)$
10
CONTINUE
FORMET(4X,8I5)
RETURN
VVEGCD COMPUTE CORRECT VEGETATION CODE
ENTRY VEGCD (TLAT, TLNG, VGCODE)
PURPOSE
THIS ROUTINE INPUTS A LATITUDE AND A LONGITUDE. WITH THESE A VEGETAION CODE IS DETERMINED

INPUT ARGUMENTS

TLAT	$*$	LATITUDE (DEG)
TLONG	$*$	EAST LONGITUDE $(D E G)$

OUTPUT ARGUMENT
VGCODE * VEGETATION CODE
LAT = TLAT
LNG = TLNG
CONVERT TO WEST LONGITUDE
ING $=360.0-$ LNG
DETERMINE VEGETATION CODE
$\operatorname{ILAT}=\operatorname{IFIX}((2.0-\operatorname{IAT}) / 4.0)+1$
$\operatorname{ILNG}=\operatorname{IFIX}((74.0-\operatorname{ING}) / 4.0)+1$
INDEXX $=\operatorname{IFIX}((\operatorname{VLAT}(\operatorname{ILAT})-\operatorname{LAT}) / 0.5)$
INDEXY $=\operatorname{IFIX}((V L N G(I L N G)-\operatorname{LNG}) / 0.5)+1$

00000570
00000580
00000590
00000600 .
00000610
00000620
00000630 .
00000640
00000650
00000660
00000670
00000680
00000690
00000700
00000710
00000720
00000730
00000740 00000750 00000760 00000770 00000780 00000790 00000800 00000810 00000820 00000830 00000840 00000850 00000860 00000870 00000880 00000890 00000900 00000910 00000920 00000930 00000940 00000950 00000960 00000970 00000980 00000990 00001000 00001010 00001020 00001030 00001040° 00001050 00001060 00001070 00001080 00001090 00001100

C	INDEXZ $=$ INDEXX * $8+$ INDEXX	$\begin{aligned} & 00001110 \\ & 00001120 \end{aligned}$
	VGCODE $=$ VEGTBL (ILNG, ILAT, INDEXZ)	00001130
${ }^{\circ} \mathrm{C}$		00001140
	REIURN	00001150
	END	00001160

00000010 00000020 00000030 00000040 00000050 00000060 00000070 00000080 00000090 00000100 00000110 00000120 00000130 00000140 00000150 00000160 00000170 00000180 00000190 00000200 00000210 00000220 00000230 00000240 00000250 00000260 00000270 00000880 00000290 00000300 00000310 00000320 00000330 00000340 00000350 00000360 00000370 00000380 00000390 00000400 00000410 00000420 . 00000430 00000440 00000450 00000460 00000470 00000480 00000490 00000500 00000510 00000520 00000530 00000540 00000550
00000560 00000570 00000580 00000590 00000600 00000610 00000620 00500630 00000640 00000650 00000660 00000670 00000680 00000690 00000700 00000710 00000720 000007×1 00000740 00000750 00000760 00000770 00000780 00000790 00000800 00000810 00000820 00000830 00000840 00000850 00000860 00000870 00000880 00000890 00000900 00000910 00000920 00000930 00000940 00000950 00000960 00000970 00000980 00000990 00001000 00001010 00001020 00001030 00001040 00001050 00001060 00001070 00001080 00001090 00001100
NOONOOO-NNNNONNON-NNNNNNNNOOO-OO-OOOONNONOOOOOONNNOONTO
NOONOOONNNONNONONTO-NNNNNNOOO-OONNOOOONONOOOOOMOONOONNN
-NONOOOOONNNNNNTNTNNNT-NNNOOOOOMONOOONNONOOOOOMOONOOOON
ONON-OOOONNNNNT-NTONNTFOFNOONNOMOROOONNONNOOOMOOOONNOO-
ONONNOOOOONNNNW-N-OONNOO-OOOONOOOONNNNNNONOOOMMOCNONOOO
-NONOOOOOOOF-NNTNNOOONOOROOOOONNNNOOOOONONOOOMMMOOONOOO
NOONOOOOO-ORNNNNNNONN-OOOOOOOOOOONOONOONNNOOOOOMNONOOO
NWNWOONO-TOR-NNXNNONOOOOOONNNNOOOONNNNNNNNOOODOMMMONOOO

00001110 00001120 00001130 00001140 00001150 00001160 * 00001170 00001180 00001190^{*} 00001200 00001210 00001220 00001230 00001240 00001250 00001260 00001270 00001280 00001290 00001300 00001310 00001320 00001330 00001340 00001350 00001360 00001370 00001380 00001390 00001400 00001410 00001420 00001430 00001440 00001450 00001460 00001470 00001480 00001490 00001500 00001510 00001520 00001530 00001540 00001550 00001560 00001570 00001580 00001590 00001600° 00001610 00001620 00001630 00001640 00001650
OOONNOONNNOOONNOOOOOOONNNONNNNNNOOOR-ONNONNNOORONONOOOO
OOOONNNNNNO-NNN-O———OOOOONNNNNOONNOONOOONNOOONNNOONNOOO
NNONNNNNNOONNNN-O- $\rightarrow-O O O$ ONNNNONNNNNNONNNONOOONNOOOONOOON
NOOONOOOONNOOONONNNONNNNNNONNNNOOOO-TO-NNNNOONNNNNNONN
NNNNNOOOONNOOONNNNOONNNOOOONNNNNOOO--ONONNNNNNNNNNNNON
NNNNNOOOOONOOONNN-OONNOOOOO-NNNNNNO-TONNNNONNNNNNONN-O
NMOONNOOONNOOONNNNONNNOOOOO-NNNNNNOF-TNNNNONNNNNNNON-N
NOOONNOOONNOOONNNNNNNNOOONNDENNNNNONOT-TONNOONNNNNNNNNG
NOOOONOOONNOOOONNNONNNONMMO-TOONNNNNO-FONNOOONNNONNNN
00001660 00001670 00001680 00001690 00001700 00001710 00001720 00001730 00001740 00001750 00001760 00001770 00001780 00001790 00001800 00001810 00001820 00001830 00001840 00001850 00001860 00001870 00001880 00001890 00001900 00001910 00001920 00001930 00001940 00001950 00001960 00001970 00001980 00001990 00002.000 00002010 00002020 00002030 00002040 00002050 00002060 00002070 00002080 00002090 00002100 00002110 00002120 00002130 00002140 00002150 00002160 00002170 00002180 00002190 00002200
NNELNO-NWNNNNNOOOOOOOOONNNOONOOOOOOOONNOOOOOONOOOOONNOOO
NOONNOOOOOOOOOLOONNOOOOOOOOOOOONNOONNOOONNNNNNNNNNONNNN
NNNN-NNNNNNNNNNONNNONNNOOOOOOOOOOOOONO-TOOOOOOOONOFOOOO

NNNNNNNNNNOONNNOOOOOODOOOOOONNOOOOOOOOOOOOOOONNOOOOOOOO

N-ONNNOOOOOONNNOOOODOOOOOOOONNOOOOOOOOOOOOOOOOOOOOOO-6O
00002210 00002220 00002230 00002240 00002250 $00002260 *$ 00002270 00002280 00002290 * 00002300 00002310 00002320 00002330 00002340 00002350 00002360 00002370 00002380 00002390 00002400 00002410 00002420 00002430 00002440 00002450 00002460 00002470 00002480 00002490 00002500 00002510 00002520 00002530 00002540 00002550 00002560 00002570 00002580 00002590 00002600 00002610 00002620 00002630 00002640 00002650 . 00002660 00002670 00002680 00002690 00002700 00002710 00002720 00002730 00002740 00002750

OOOOOOOOOOWWWOOOONNOOOOONNNNNNATNONOO-OONNNNOOOMNNOOOO
OOOOONNOOOONNNOOONONNNNNNNOONOOOOOONNOOOOOOOOOOOOOOOOOO
OOOOONNOOONNT-OOONONFNNNNOOONOOOOOONNOOOOOOOOOOOO-OOOOO
OOOONN-ONNNNO-O-NNNNONNNOOOOOOOOONNNOOOOOOOOOOOOO-OO-OO
OOONNN-ON-OOONNNNNNOONNOOOOOOOONNNOOOOOONNOOOOOOOROR-OO
OOONNNNNNNOOONNNNNNNNNNODOOOOONNNNOOOOONNNNNNOOOO-OOOO
NOONONNNOOCOOONNNNOONNNODOOOOONNONNOOOONOOONNOOOO-OOOOO
0002760 00002770 00002780 00002790 00002800 00002810 00002820 00002830 00002840 00002850 00002860 00002870 00002880 00002890 00002900 00002910 00002920 00002930 00002940 00002950 00002960 00002970 00002980 00002990 00003000 00003010 00003020 00003030 00003040 00003050 00003060 00003070 00003080 00003090 00003100 00003110 00003120 00003130 00003140 00003150 00003160 00003170 00003180 00003190 00003200 00003210 00003220 00003230 00003240 00003250 00003260 00003270 00003280 00003290 00003300
00003310 00003320 00003330 00003340 00003356 00003350 00003370 00003380 00003390 00.003400 $0000341 \cap$ 00003426 00003430 00003440 C0003450 00003460 00003470 00003480 00003490 00003500 00003510 00003520 00003530 00003540 00003550 00003560 00003570 00003580 00003590 00003600 00003610 00003620 00003630 00003640 00003650 00003660 00003670 00003680 00003690 00003700 00003710 00003720 00003730 00003740 00003750 00003760 00003770 00003780 00003790 00003800 00003810 00003820 00003830 00003840 00003850
 -

000mmnmommmmmmer---000000-0000000NN-0NN-000--00mmminminmm

00000 mm mommommoo0000000000-0000000N000-00NN000mmmmmmmm
000MMOMmmmmmoopo00000000000N--T00-NN000-00NOOOOMMMMEMME
00003860 00003870 00003880 00007890 00003900 00003910 00003920 00003930 00003940 00003950 00003960 00003970 00003980 00003990 00004000 00004010 00004020 00004030 00004040 00004050 00004060 00004070 00004080 00004090 00004100 00004110 00004120 00004130 00004140 00004150 00004160 00004170 00004180 00004190 00004200 00004210 00004220 00004230 00004240 00004250 00004260 00004270 00004280 00004290 00004300 00004310 00004320 00004330 00004340 00004350 00004360 00004370 00004380 00004390 00004400
WWWWWWWWWWWWM"HWWOOOOOONNWWWWWWWWWWWWWWWW

MMMMMMMMMMMN:MMMMONOO-TOOMMMMMMMMMMMMMMMM
WWWWWWWWWWWWWWWWOOOO- NNOWWWWWMWWWWWWWWMG
MMMMMMMAMMMMMMMMOOOOOOOOMMMMMMMMMMMMMMMM
GMMMMMMMMMMMMMMMOODO0000MMMMMMMMMMMMMMMM
MMAMMXMMMMMMMMMMOOONNNOOMMMMMMMMMMMMMMMM

GMMMMMMMMMMMMMMMNOOOOONNMMMMMMMMMMMMMMMM

00004410 00004420 00004430 00004440 00004450 00004460 00004470 00004480 00004490 00004500 00004510〇0004520 00004530 00004540 00004550 00004560 00004570 00004580 00004590 00004600 00004610 00004620 00004630 00004640 00004650 00004660 00004670 00004680 00004690 00004700 00004710 00004720 00004730 00004740 00004750 00004760 00004770 00004780 00004790 00004800

00000010 00000020 00000030 00000040 00000050 00000060 00000070 00000080 00000090 00000100 00000110 00000120 00000130 00000140 00000150 00000160 00000170 00000180 00000190 00000200 00000210 00000220 00000230 00000240 00000250 00000260 00000270 00000280 00000290 00000300 00000310 00000320 00000330 00000340 00000350 00000360 00000370 00000380 00000390 00000400 00000410 00000420 00000430 00000440 00000450 00000460 00000470 00000480 00000490 00000500 00000510 00000520 00000530 00000540 00000550

11	2	2	2	2	2	2	2	00001110
2	2	2	2	2	2	2	2	00001120
2	2	2	2	2	2	2	2	00001130
2	2	2	2	2	2	2	2	00001140
2	2	2	2	2	2	2	2	00001150
11	11	11	11	2	2	2	2	00001160
11	11	11	11	11	11	11	2	00001170
2	2	19	20	20	11	2	2	00001180
2	11	11	19	19	19	19	2	00001190
2	11	2	2	19	19	19	2	00001200

ÁPPENDIX B

PLOTS OF INC! \ddagger DENCE ANGLE VARIATIONS

 FOR BEAM 1, 2, 3

$$
\operatorname{lif}_{4}
$$

APPENDIX C

NOSS ALGORITHM SPECIFICATION SHEETS

SUBMODULE

1.12 .1
1.12 .2
1.12 .3
1.12 .4
1.12 .5
1.12 .6
1.12 .7
1.12 .8

Co-location of SCATT with LAMMR T_{B} 's Over the Amazon Rain Flags

Data Base Creation
Relative Target Creation
Relative Antenna Gain Interpolation
Standard σ° Interpolation
Relative Gain Table and Antenna Polnting Angle Corrections Long Range Monltoring of Relative Blases

1. Submodule reference no. 1.12.1
II. SENSOR; SCATT
III. ORIGINATOR/PHONE: E.M. BRACALENTE, I.J. BIRRER/804-827-3631, 913-864-4836
IV. SUBMODULE TITLE: SCATT-LAMMR 37 gHz Colocation over the Amazon
V. SUBMODULE FUNCTION: This algorithm colocates the LAMMR brightness temperatures at 37 GHz with the SCATT data over the Amazon.
VI., IHPUTS:
(1) SCATT data over the Amazon (50 km data blocks)
(2) LAMMR brightness temperatures at 37 GHz over the Amazon (50 km data blocks)
VII. : OUTPUTS: SCATT data vector with colocated LAMMR T_{B} 's appended to data vector.
VIII. AUXILIARY DATA: TBD
IX. EXCEPTIONS: TBD
X. PROCESSING REQUIRED: TBD
XI. COMMENTS: Since the calculation of brightness temperatures is a level 11 computation and this is a LEVEL I SCATT algorithm, provision must be made to feed back the LAMMR T_{B} 's to this algorithm on a non-real time basis. The input data stream for both the SCATT and the LAMMR is assumed to be in 50 km data blocks and will be assigned subgrid coordinates (i, j). For these coordinates the following procedure could be used for colocation:
(a) Sort the LAMMR and SCATT independently by grid coordinates into two row ordered lists as follows:
$\begin{array}{rlllllllll}\text { LAMMRLIST }= & T_{b}, & T_{b}, & T_{b} & \ldots & T_{b}, & T_{b}, & T_{b} & \ldots & T_{b} \\ & 1,1 & 1,2 & 1,3 & & 1, N & 2,1 & 3,2 & & M, N\end{array}$
SCATT LIST = SCATT, SCATT, SC̣ATT, SCATT, SCATT ... SCATT
$1,1 \quad 1,2 \quad 1, Q \quad 2,1 \quad 2,2 \quad P, Q$
where T_{b} is the 37 GHz brightness temperature of grid coordinate i,j
i, j
SCATT is the scatterometer data vector at grid coordinate
$i, j \quad i, j$

$$
1.12 .1(2)
$$

(b) Colocate SCATT and LAMMR data by simply moving down the lists in parallel. For each SCATT append the corresponding ${\underset{i}{b}, j}^{j}$. If more than one brightness temperature exists, choose the closest.

1. Submodule reference no: 1.12.2
II. SENSOR: SCATT
III. ORIGINATOR/PHONE: E.M. Bracalente, I.J. Birrer/804-827-3631, 913-864-4836
IV. SUBMODULE TITLE: RAIN FLAG
V. SUBMODULE FUNCTION: Set a rain flag if the LAMMR brightness temperature at 37 GHz is below a critical value, $\mathrm{T}_{\text {cut }}$, to indicate the possibillty of rain.
VI. INPUTS:

LAMMR T_{B} 's at 37 GHz colocated with SCATT cells (Submodule 1.12.1)
VII. OUTPUTS:

Rainflag (RFLAG)
VIII. AUXILIARY DATA: TBD
IX. EXCEEPTIONS: TBD
X. PROCESSING REQUIRED:
(a) If $T_{B 37}$ is less than $T_{\text {cut }}$, then RFLAG $=1$ (true), otherwise RFLAG $=\varnothing$ (false).
XI. COMMENTS:
(a) This procedure may be designed to handle a cell at a time or all of the cells for a particular beam.
(b) The value of $T_{\text {cut }}$ must be determined experimentally from l.AMHR data. This could be done by plotting a histogram of LAMMR data over the Amazon taken on the first several passes. An initial guess for $T_{\text {cut }}$ will be provided based on SeaSat-SMMR data.

1. Submodule reference no: 1.12.3
2. SENSOR: SCATT
III. ORIGINATOR/PHONE: E.M. Bracalente, I.J. Birrer/804-827-3631, 913-864-4836
IV. SUBMODULE TITLE: DATA BASE CREATION
V. SUBMODULE FUNCTIONS: This module creates a data base of SCATT data over the Amazon rain forest. Data that is not flagged for rain (Submodule 1.12.2) is sorted by beam, polarization, cell no. At the end of each pass over Brazil, the mean NRCS, standard deviation of NRCS, average incidence angle, and average antenna broadbeam angle for each combination of beam, cell, and polarization are computed. These results along with the number of points in each bin are stored in a semi-permanent fashion (tape, disk) for later processing.
Plots of mean NRCS ($\overline{\sigma^{\circ}}$) versus cell no. are made for any combination of beam, polarization, etc. for which data exists.
VI. INPUTS:

SCATT data over Amazon.
Rain Flag. (Submodule 1.12.2)
VII. OUTPUTS:

Key Parameters	No. of Parameters
Mean NRCS ($\left.\bar{\sigma}^{\circ}\right)$	600%
Standard Deviation $\triangle \sigma^{\circ}$	600%
Count (N)	600%
Average Incidence Angle $\bar{\theta}$	600%
Average Broadbeam Antenna Angle $\bar{\varepsilon}$	600%
Pointer (P)	600

*Temporary data storage must be sufficient to store results from up to 20 passes or approximately 60,600 parameters.
VIII. AUXILIARY DATA: None
IX. EXCEPTIONS: If there are less than $\simeq 20$ points within a bin, no processing is performed.
X. PROCESSING REQUIRED:
(a) Sort data by beam (i), cell(j), polarization(k) (see note l).
(b) At the end of each pass, for each combination of i, j, k where there are more than 20 values, compute

$$
\begin{aligned}
& \ell=P_{i, j, k} \\
& \overline{\sigma_{i, j, k, l}^{0}}=\frac{1}{N_{i, j, k}} \sum_{n=1}^{N_{i, j, k}} \sigma_{i, j, k, n}^{0} \\
& \Delta \sigma_{i, j, k, l}^{0}=\left(\frac{\sum_{n=1}^{N_{i, j, k}}\left(\sigma_{i, j, k}^{0}\right)^{2}-N_{i, j, k} \overline{\sigma_{i, j, k, l}^{0}}}{N_{i, j, k}^{-1}}\right) \\
& \bar{\theta}_{i, j, k, l}=\frac{1}{N_{i, j, k}} \sum_{n=1}^{N_{i, j, k}} \theta_{i, j, k, n}^{1 / 2} \\
& \bar{\varepsilon}_{i, j, k, l}=\frac{1}{N_{i, j, k}} \sum_{n=1}^{N_{i, j, k}} \varepsilon_{i, j, k} \\
& P_{i, j, k}=P_{i, j, k}+1
\end{aligned}
$$

where $N_{i, j, k}$ is the number of points in each i, j, k bin.
(c) Plot $\overline{\sigma^{0}}$ versus cell number (j) for diffarent combinations of beam (i) and polarization (k)
X. COMMENTS:
(1) Semi-permanent storage should be provided for all of the input SCATT and LAMMR data over the Amazon.
(2) σ^{0} are assumed to be in ratio form.
(3) Well-written computer code should only heed to store running sums during each pass and not all of the data values.

Note 1: Other sorting parameters may be required.

1. Submodule reference no. 1.12.4
II. SENSOR: SCATT
2. ORIGINATOR/PHONE: E.M. Bracalente, I.J. Birrer/804-827-3631, 913-864-4836
IV. SUBMODULE TITLE: Relative target creation
V. SUBMODULE FUNCTION: This submodule takes the summary Amazon data (Means and Standard deviations) and creates a table of $\sigma^{\circ}(\theta)$ at 1° incidence angle steps for the off-nadir incidence angle data of the SCATT. This submodule will require considerable human interaction off-line.
VI. INPUTS:

Mean, Standard deviations, average incidence angles from submodule 1.12.3. Plots of σ^{0} versus cell no. from submodule 1.12.3.
VII. OUTPUT:

Table of NRCS in one degree steps.over the off-nadir incidence.angle range for both H and V polarizations.
VIII. AUXILIARY DATA: TBD
IX. EXCEPTIONS: TBD
X. PROCESSING REQUIRED: Since this task will require consistent human evaluation and decision, it will not be possible initially to fully automate this procedure. The following steps are envisioned at this point:
(a) Compare data from each polarization and beam with SeaSat Brazil model (or other models of Brazil if available). This will be done by:
(1) Examining the plots from Submodule 1.12.3.
(2) Regressing Mean NRCS $\left(\sigma^{\circ}\right)$ against the general model $\sigma^{\circ}=F(\theta)$ determined from SeaSat.
(b) If the results from (a) show a good fit with SeaSat model (except for a level shift), the SeaSat model will be adopted as the standard target. (Level shifted, if necessary). The beam which best fits the SeaSat model for each polarization will be used to determine the level shift.
(c) If the data from the SCATT is best modeled by a different function than was used with the SeaSat, this model may be chosen to generate the standard table.
XI. COMMENTS:
(1) The exact approach taken will probably be determined from a preliminary analysis of a few passes.
(2) If there is good agreement with the SASS model or a satisfactory new model developed, it may be possible to automate the procedure.

1. Submodule reference no: 1.12.5
2. SENSOR: SCATT

1II. ORIGINATOR/PHONE: E.M. Bracalente, I.J. Birrer/804-827-3631, 913-864-4836
IV. SUBMODULE TITLE: Relative Antenna Gain Interpolation
V. SUBMODULE FUNCTIONS: Use a three-point interpolation to determine the relative antenna gain at the input incidence angle.
VI. INPUTS:

Mean incidence angle ($\bar{\theta}$) and mean antenna broadbeam antenna angle ($\bar{\varepsilon}$) corresponding to each θ and value of pointing angle $\theta_{n} p$
VII. OUTPUT:

Relative antenna gain $G / G_{o}(\bar{\theta})$
VIII. AUXILIARY DATA:
to table of relative gain values in Module 1.6
IX. EXCEPTIONS: TBD
X. PROCESSING REQUIRED:
(a.) $\varepsilon=\bar{\varepsilon}+\left(\theta_{p}-\theta_{n}{ }^{p}\right)$
(b) Find ε_{j}, the integer smaller than ε $Z=\theta$
(c) $P=\varepsilon-\varepsilon_{1}$
(d) $G / G_{0}(z)=\frac{P(P-1)}{2} G\left(\varepsilon_{1}-1\right)+\left(1-P^{2}\right) G\left(\varepsilon_{1}\right)+\frac{P(P+1)}{2} G\left(\varepsilon_{1}+1\right)$ where $G / G O(Z)$ is the relative gain at ancidence angle of Z degrees.
XI. COMMENTS: TBD

1. SUBMODULE REFERENCE NO: 1.12.6
II. SENSOR: SCATT

1II. ORIGINATOR/PHONE: E.M. Bracalente, I.J. Birrer/804-827-3631, 913-864-4836
IV. TITLE: Standard σ° Interpolation
V. SUBMODULE FUNCTIONS: Use a three-point interpolation to determine the standard NRCS of the Amazon rain forest at the input incidence angle.
VI. INPUT: incidence angle (θ)
VII. OUTPUT: Standard NRCS σ_{A}°

VIII, AUXILIARY DATA:
Tabular form of standard radar target
or
Tabular form of relative target from Submodule i.12.4.
IX. EXCEPTIONS: TBD
X. PROCESSING REQUIRED;
(a) Find θ_{ρ} the largest integer smaller than θ
(b) $P=\theta-\theta_{1}$
(c) $\sigma_{A}^{0}(\theta)=\frac{P(P-1)}{2} \sigma^{0}\left(\theta_{1}-1\right)+\left(1-P^{2}\right) \sigma^{0}\left(\theta_{1}\right)+\frac{P(P+1)}{2} \sigma^{0}\left(\theta_{1}+1\right)$
where $\sigma^{\circ}(Z)$ is the NRCS of the Amazon rain forest at an incidence angle of Z degrees.
XI. COMMENTS: TBD

1. SUBMODULE REFERENCE: 1.12.7
2. SENSOR: SCATT
III. ORIGINATOR/PHONE: E.M. Bracalente, I.J. Birrer/804-827-3631, 913-864-4836
IV. SUBMODULE TITLE: Relative Gain and Antenna Polnting Angle Corrections
V. SUBMODULE FUNCTIONS: This submodule is designed to provide an output to be used to verify and locate possible errors in the relative gain table (Module 1.6) and In the antenna polnting angle estimates. A maximum likelihood process will be applied using the means and standard deviations determined in Submodule l.12.3 to estimate values for the antenna gain blas and pointing angle for each combination of beam, cell, and polarization. Average biases and pointing angle for each beam and polarization are also computed.
VI. INPUTS:
(1) Mean σ°, standard deviation of σ°, and average incidence angle for the Amazon rain forest passes (Submodule 1.12 .3 outputs),
VII., OUTPUTS:

Key Parameters	No. of parameters
Antenna biases $(\hat{\alpha})$	600
Pointing angles $\left(\hat{\theta}_{p}\right)$	600
Average biases $(\bar{\alpha})$	12
Average Pointing angles $\left(\bar{\theta}_{p}\right)$	12

VIII. AUXILIARY DATA: Nominal Pointing Angle, $\left(\theta_{p}\right) \Delta \alpha, \Delta \theta_{p}$
IX. EXCEPTIONS: TBD
X. PROCESSING REQUIRED:

For each combination of beam (i), cell (j), and polarization (k) perform the following algorithm (i $\times \mathbf{j} \times k=600$ times).
(a) $\alpha_{0}=1.0, \theta_{0} p=\theta p$ (the nominal pointing angle)
(b) Determine a 3×3 matrix, $g_{m, n}$ as follows:

$$
\begin{gathered}
\alpha_{m}=\alpha_{0}+m \Delta \alpha ; m=1,0,1 \\
\theta_{n} p=\theta_{0} p+n \Delta \theta_{p ; n}=-1,0,1 \\
g_{m, n}=\frac{-1}{2} \sum_{\ell=1}^{10} \quad\left\{\overline{\sigma_{i, j, k, 2}^{0}}-\alpha_{m} \frac{\left[G / G\left(\theta_{n} p\right)\right]^{2}}{\left[G / G Q\left(\theta_{p}\right)\right]^{2}} \sigma_{A}^{0}\right\}^{2}
\end{gathered}
$$

where
$G / G \emptyset()$ is the output of Submodule 1.12 .5 at $\bar{\theta}_{i, j, k, \ell}$
$\overline{\sigma_{A}^{0}}()$ is the output of Submodule 1.12 .6 at $\bar{\theta}_{i, j, k, \ell}$
σ^{0} and $\bar{\theta}$ are the output of Submodule 1.12 .3
(c) Search the matrix $g_{m, n}$ for the maximum value $g_{m m a x}$, n max

$$
\text { If } \operatorname{mmax}=n \max =0 \text { go to (d); }
$$

$$
\text { otherwise } \begin{aligned}
\alpha_{0} & =\alpha_{\text {max }} \\
\theta_{0} p & =\theta_{n \max }
\end{aligned}
$$

repeat (b)
(d) Compute the constants of a bivariate interpolating polynomial for g.

$$
\begin{aligned}
& a=\frac{g_{1,0}}{2}-g_{0,0}+\frac{g_{1,0}}{2} \\
& b=\frac{-g_{-1,0}}{2}+\frac{g_{1,0}}{2} \\
& c=\frac{g_{0,-1}}{2}-g_{0,0}+\frac{g_{0,1}}{2} \\
& d=\frac{-g_{0,-1}}{2}+\frac{g_{0,1}}{2} \\
& e=g_{0,0}-g_{1,0}-g_{0,1}+g_{1,1} \\
& f=g_{0,0}
\end{aligned}
$$

where $g_{m, n}$ are the points of the 3×3 matrix
(e) Solve for antenna bias; pointing angle

$$
\begin{aligned}
& \hat{\alpha}_{i, j, k}=\alpha_{0}+\frac{\Delta \alpha(e d-2 b c)}{4 a c-e^{2}} \\
& \hat{\theta}_{p, j, k}=\theta_{0^{p}}+\frac{\Delta \theta_{p}(b e-2 a d)}{4 a c-e^{2}}
\end{aligned}
$$

(f) Compute average parameter over each beam and polarization

$$
\bar{\alpha}_{i, k}=1 / 50 \sum_{j=1}^{50} \hat{\alpha}_{i, j, k}
$$

$$
\bar{\theta}_{p}=\frac{1}{50} \sum_{j=1}^{50} \hat{\theta}_{p_{i, j, k}}
$$

XI. COMMENTS:
(1) It is assumed that this processing must take place only for the outer 50 cells.
(2) Initlal values for $\Delta \alpha, \Delta \theta$ p are 0.2 and 1.0 respectively.
(3) A test should be made to tell If there are at least ≈ 10 elements in each beam, cell, polarization bin of the input data before this submodule is called. The bins are set to handle up to 20 elements to allow for the varying rates of fllling. (On the long term average the bins will flll at the same rate). After the first 10 levels are processed by this submodule, further data from 1.12.3 may be stored over this data. This test can be performed by interrogating $P_{i, j, k}$ of Submodule 1.12.3.
(4) Mean σ° and standard deviation of σ° should be in ratio form.

1. SUBMODULE REFERENCE NO: 1.12 .8
2. SENSOR: SCATT
III. ORIGINATOR/PHONE: E.M. Bracalente, I.J. Birrer/804-827-3631, 913-864-4836
IV. SUBMODULE TITLE: Long-Term Monitoring of Relative Blases
V. SUBMODULE FUNCTION: Given the value of the polnting angle for each beam and polarization, compute the relative blas for each of the cells in that beam; also, provide long term checks for both blases and antenna patterns.
VI, INPUTS:
(1) Mean NRCS $\left(\overline{\sigma^{\circ}}\right)$ and average incidence angles for the Amazon rain forest passes (SUBMODULE 1.12.3 outputs)
(2) Previously determined average pointing angles ($\bar{\theta}_{p}$) for each beam (i) and polarization (k) (Submodule 1.12.7 outputs).
(3) Initial guess for relative biases - outputs from either submodule $1.12 .7(\alpha)$ or some first guess (e.g., 1.0).
VII. OUTPUTS

Key Parameter
Antenna bias (α)
$\frac{\text { No. of Parametors }}{600}$

Average biases $(\bar{\alpha}) \quad 12$
VIII. AUXILIARY DATA: Standard radar target, or output from Submodule 1.12.4, $\Delta \alpha$
IX. EXCEPTIONS: TBD
X. PROCESSING REQUIRED:

For each combination of beam (i), cell (j) and polarization (k)
perform the following algorithm (i $\times j \times k=600$ times).
(a) $\alpha_{0}=\hat{\alpha}_{i, j, k}$ if available; otherwise $\alpha_{0}=1.0$.
(b) Determine a 3 element vector, g_{m}, as follows:
$a_{m}=\alpha_{0}+m \Delta \alpha ; m=1,0,1$
$\left.g_{m}=-\frac{1}{2} \sum_{\ell=1}^{10}\left(\overline{\sigma_{i, j, k, \ell}^{0}}-\alpha_{m} \sigma_{A}^{0}\right]\right)^{2}$
where $\sigma_{A}^{0}()$ is the output of submodule 1.12 .6 at $\bar{\theta}_{i, j, k, \ell}$ $\overline{\sigma^{0}}$ and $\bar{\theta}$ are the output of sumbodule 1.12 .3
(c) $\hat{\alpha}_{1, j, k}=\alpha_{0}-\Delta \alpha\left(\frac{g_{1}-g_{-1}}{g_{-1}-2 g_{0}+g_{1}}\right)$
(d)

$$
\bar{\alpha}_{1, k}=\frac{1}{50} \sum_{j=1}^{50} \hat{\alpha}_{1, j, k}
$$

XI. COMMENTS:
(1) It is assumed that this processing will take place only for the outer 50 cells of the Scatt Beams.
(2) Initlal value for $\Delta \alpha$ is 0.2
(3) As in Submodule 1.12.7, a test must be made to be sure that there are 10 elements in each bin. (For further detalls see Submodule 1.12 .7 see XI 3).
(4) Mean σ° and standard deviation of σ° must be in ratio form.

[^0]: *Both unwelghted regressions and regressions weighted by number of cases were tried. Weighted regression results are reported here because they take into account the higher density of measurements in the angular region of greatest measurement accuracy. In most cases the differences in the "a" coefficients between the weighted and unweighted regression were within the errors of the estimated coefficients.

[^1]: *This ML approach is an adaptation of the approach used in the SEASAT Wind Vector Algorithm developed by F.J. Wentz (Remote Sensing Systems, Inc.).

