50 research outputs found
SuperpixelGridCut, SuperpixelGridMean and SuperpixelGridMix Data Augmentation
A novel approach of data augmentation based on irregular superpixel
decomposition is proposed. This approach called SuperpixelGridMasks permits to
extend original image datasets that are required by training stages of machine
learning-related analysis architectures towards increasing their performances.
Three variants named SuperpixelGridCut, SuperpixelGridMean and
SuperpixelGridMix are presented. These grid-based methods produce a new style
of image transformations using the dropping and fusing of information.
Extensive experiments using various image classification models and datasets
show that baseline performances can be significantly outperformed using our
methods. The comparative study also shows that our methods can overpass the
performances of other data augmentations. Experimental results obtained over
image recognition datasets of varied natures show the efficiency of these new
methods. SuperpixelGridCut, SuperpixelGridMean and SuperpixelGridMix codes are
publicly available at https://github.com/hammoudiproject/SuperpixelGridMasksComment: The project is available at
https://github.com/hammoudiproject/SuperpixelGridMask
A vision transformer-based framework for knowledge transfer from multi-modal to mono-modal lymphoma subtyping models
Determining lymphoma subtypes is a crucial step for better patients treatment
targeting to potentially increase their survival chances. In this context, the
existing gold standard diagnosis method, which is based on gene expression
technology, is highly expensive and time-consuming making difficult its
accessibility. Although alternative diagnosis methods based on IHC
(immunohistochemistry) technologies exist (recommended by the WHO), they still
suffer from similar limitations and are less accurate. WSI (Whole Slide Image)
analysis by deep learning models showed promising new directions for cancer
diagnosis that would be cheaper and faster than existing alternative methods.
In this work, we propose a vision transformer-based framework for
distinguishing DLBCL (Diffuse Large B-Cell Lymphoma) cancer subtypes from
high-resolution WSIs. To this end, we propose a multi-modal architecture to
train a classifier model from various WSI modalities. We then exploit this
model through a knowledge distillation mechanism for efficiently driving the
learning of a mono-modal classifier. Our experimental study conducted on a
dataset of 157 patients shows the promising performance of our mono-modal
classification model, outperforming six recent methods from the
state-of-the-art dedicated for cancer classification. Moreover, the power-law
curve, estimated on our experimental data, shows that our classification model
requires a reasonable number of additional patients for its training to
potentially reach identical diagnosis accuracy as IHC technologies
Learning Boundary Edges for 3D-Mesh Segmentation
International audienceThis paper presents a 3D-mesh segmentation algorithm based on a learning approach. A large database of manually segmented 3D-meshes is used to learn a boundary edge function. The function is learned using a classifier which automatically selects from a pool of geometric features the most relevant ones to detect candidate boundary edges. We propose a processing pipeline that produces smooth closed boundaries using this edge function. This pipeline successively selects a set of candidate boundary contours, closes them and optimizes them using a snake movement. Our algorithm was evaluated quantitatively using two different segmentation benchmarks and was shown to outperform most recent algorithms from the state-of-the-art
Analyse et gestion de l’occupation de places de stationnement par vision artificielle
Cet article présente un système de surveillance basé sur la vision pour le développement de services de gestion de places de parking. Le système présenté est un système adaptable pour l'analyse de places de stationnement dans des parkings de différentes configurations. Dans ce but, des expérimentations ont été menées sous différentes prises de vue en utilisant une caméra connectée à une station de travail mobile. Les résultats obtenus montrent la faisabilité du système dans l'analyse et dans la gestion des emplacements de parking avec des véhicules
SHREC2020 track:Multi-domain protein shape retrieval challenge
Proteins are natural modular objects usually composed of several domains, each domain bearing a specific function that is mediated through its surface, which is accessible to vicinal molecules. This draws attention to an understudied characteristic of protein structures: surface, that is mostly unexploited by protein structure comparison methods. In the present work, we evaluated the performance of six shape comparison methods, among which three are based on machine learning, to distinguish between 588 multi-domain proteins and to recreate the evolutionary relationships at the proteinand species levels of the SCOPe database.
The six groups that participated in the challenge submitted a total of 15 sets of results. We observed that the performance of all the methods significantly decreases at the species level, suggesting that shape-only protein comparison is challenging for closely related proteins. Even if the dataset is limited in size (only 588 proteins are considered whereas more than 160,000 protein structures are experimentally solved), we think that this work provides useful insights into the current shape comparison methods performance, and highlights possible limitations to large-scale applications due to the computational cost
Surface-based protein domains retrieval methods from a SHREC2021 challenge
publication dans une revue suite à la communication hal-03467479 (SHREC 2021: surface-based protein domains retrieval)International audienceProteins are essential to nearly all cellular mechanism and the effectors of the cells activities. As such, they often interact through their surface with other proteins or other cellular ligands such as ions or organic molecules. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions hence similar 3D surface properties (shape, physico-chemical properties, …). The protein surfaces are therefore of primary importance for their activity. In the present work, we assess the ability of different methods to detect such similarities based on the geometry of the protein surfaces (described as 3D meshes), using either their shape only, or their shape and the electrostatic potential (a biologically relevant property of proteins surface). Five different groups participated in this contest using the shape-only dataset, and one group extended its pre-existing method to handle the electrostatic potential. Our comparative study reveals both the ability of the methods to detect related proteins and their difficulties to distinguish between highly related proteins. Our study allows also to analyze the putative influence of electrostatic information in addition to the one of protein shapes alone. Finally, the discussion permits to expose the results with respect to ones obtained in the previous contests for the extended method. The source codes of each presented method have been made available online
Segmentation de maillages 3D : évaluation automatique et une nouvelle méthode par apprentissage
In this thesis, we address two main problems namely the quantitative evaluation of mesh segmentation algorithms and learning mesh segmentation by exploiting the human factor. We propose the following contributions: - A benchmark dedicated to the evaluation of mesh segmentation algorithms. The benchmark includes a human-made ground-truth segmentation corpus and a relevant similarity metric that quantifies the consistency between these ground-truth segmentations and automatic ones produced by a given algorithm on the same models. Additionally, we conduct extensive experiments including subjective ones to respectively demonstrate and validate the relevance of our benchmark. - A new learning mesh segmentation algorithm. A boundary edge function is learned, using multiple geometric criteria, from a set of human segmented training meshes and then used, through a processing pipeline, to segment any input mesh. We show, through a set of experiments using different benchmarks, the performance superiority of our algorithm over the state-of-the-art. We present also an application of our segmentation algorithm for kinematic skeleton extraction of dynamic 3D-meshes.Dans cette thèse, nous abordons deux problèmes principaux, à savoir l'évaluation quantitative des algorithmes de segmentation de maillages ainsi que la segmentation de maillages par apprentissage en exploitant le facteur humain. Nous proposons les contributions suivantes : - Un benchmark dédié à l'évaluation des algorithmes de segmentation de maillages 3D. Le benchmark inclut un corpus de segmentations vérités-terrains réalisées par des volontaires ainsi qu'une nouvelle métrique de similarité pertinente qui quantifie la cohérence entre ces segmentations vérités-terrains et celles produites automatique- ment par un algorithme donné sur les mêmes modèles. De plus, nous menons un ensemble d'expérimentations, y compris une expérimentation subjective, pour respectivement démontrer et valider la pertinence de notre benchmark. - Un algorithme de segmentation par apprentissage. Pour cela, l'apprentissage d'une fonction d'arête frontière est effectué, en utilisant plusieurs critères géométriques, à partir d'un ensemble de segmentations vérités-terrains. Cette fonction est ensuite utilisée, à travers une chaîne de traitement, pour segmenter un nouveau maillage 3D. Nous montrons, à travers une série d'expérimentations s'appuyant sur différents benchmarks, les excellentes performances de notre algorithme par rapport à ceux de l'état de l'art. Nous présentons également une application de notre algorithme de segmentation pour l'extraction de squelettes cinématiques pour les maillages 3D dynamiques
Segmentation de maillages 3D : évaluation automatique et une nouvelle méthode par apprentissage
In this thesis, we address two main problems namely the quantitative evaluation of mesh segmentation algorithms and learning mesh segmentation by exploiting the human factor. We propose the following contributions: - A benchmark dedicated to the evaluation of mesh segmentation algorithms. The benchmark includes a human-made ground-truth segmentation corpus and a relevant similarity metric that quantifies the consistency between these ground-truth segmentations and automatic ones produced by a given algorithm on the same models. Additionally, we conduct extensive experiments including subjective ones to respectively demonstrate and validate the relevance of our benchmark. - A new learning mesh segmentation algorithm. A boundary edge function is learned, using multiple geometric criteria, from a set of human segmented training meshes and then used, through a processing pipeline, to segment any input mesh. We show, through a set of experiments using different benchmarks, the performance superiority of our algorithm over the state-of-the-art. We present also an application of our segmentation algorithm for kinematic skeleton extraction of dynamic 3D-meshes.Dans cette thèse, nous abordons deux problèmes principaux, à savoir l'évaluation quantitative des algorithmes de segmentation de maillages ainsi que la segmentation de maillages par apprentissage en exploitant le facteur humain. Nous proposons les contributions suivantes : - Un benchmark dédié à l'évaluation des algorithmes de segmentation de maillages 3D. Le benchmark inclut un corpus de segmentations vérités-terrains réalisées par des volontaires ainsi qu'une nouvelle métrique de similarité pertinente qui quantifie la cohérence entre ces segmentations vérités-terrains et celles produites automatique- ment par un algorithme donné sur les mêmes modèles. De plus, nous menons un ensemble d'expérimentations, y compris une expérimentation subjective, pour respectivement démontrer et valider la pertinence de notre benchmark. - Un algorithme de segmentation par apprentissage. Pour cela, l'apprentissage d'une fonction d'arête frontière est effectué, en utilisant plusieurs critères géométriques, à partir d'un ensemble de segmentations vérités-terrains. Cette fonction est ensuite utilisée, à travers une chaîne de traitement, pour segmenter un nouveau maillage 3D. Nous montrons, à travers une série d'expérimentations s'appuyant sur différents benchmarks, les excellentes performances de notre algorithme par rapport à ceux de l'état de l'art. Nous présentons également une application de notre algorithme de segmentation pour l'extraction de squelettes cinématiques pour les maillages 3D dynamiques
Convolutional neural network for pottery retrieval
International audienceThe effectiveness of the convolutional neural network (CNN) has already been demonstrated in many challenging tasks of computer vision, such as image retrieval, action recognition, and object classification. This paper specifically exploits CNN to design local descriptors for content-based retrieval of complete or nearly complete three-dimensional (3-D) vessel replicas. Based on vector quantization, the designed descriptors are clustered to form a shape vocabulary. Then, each 3-D object is associated to a set of clusters (words) in that vocabulary. Finally, a weighted vector counting the occurrences of every word is computed. The reported experimental results on the 3-D pottery benchmark show the superior performance of the proposed method
Fast simplification with sharp feature preserving for 3D point clouds
International audienc