In this thesis, we address two main problems namely the quantitative evaluation of mesh segmentation algorithms and learning mesh segmentation by exploiting the human factor. We propose the following contributions: - A benchmark dedicated to the evaluation of mesh segmentation algorithms. The benchmark includes a human-made ground-truth segmentation corpus and a relevant similarity metric that quantifies the consistency between these ground-truth segmentations and automatic ones produced by a given algorithm on the same models. Additionally, we conduct extensive experiments including subjective ones to respectively demonstrate and validate the relevance of our benchmark. - A new learning mesh segmentation algorithm. A boundary edge function is learned, using multiple geometric criteria, from a set of human segmented training meshes and then used, through a processing pipeline, to segment any input mesh. We show, through a set of experiments using different benchmarks, the performance superiority of our algorithm over the state-of-the-art. We present also an application of our segmentation algorithm for kinematic skeleton extraction of dynamic 3D-meshes.Dans cette thèse, nous abordons deux problèmes principaux, à savoir l'évaluation quantitative des algorithmes de segmentation de maillages ainsi que la segmentation de maillages par apprentissage en exploitant le facteur humain. Nous proposons les contributions suivantes : - Un benchmark dédié à l'évaluation des algorithmes de segmentation de maillages 3D. Le benchmark inclut un corpus de segmentations vérités-terrains réalisées par des volontaires ainsi qu'une nouvelle métrique de similarité pertinente qui quantifie la cohérence entre ces segmentations vérités-terrains et celles produites automatique- ment par un algorithme donné sur les mêmes modèles. De plus, nous menons un ensemble d'expérimentations, y compris une expérimentation subjective, pour respectivement démontrer et valider la pertinence de notre benchmark. - Un algorithme de segmentation par apprentissage. Pour cela, l'apprentissage d'une fonction d'arête frontière est effectué, en utilisant plusieurs critères géométriques, à partir d'un ensemble de segmentations vérités-terrains. Cette fonction est ensuite utilisée, à travers une chaîne de traitement, pour segmenter un nouveau maillage 3D. Nous montrons, à travers une série d'expérimentations s'appuyant sur différents benchmarks, les excellentes performances de notre algorithme par rapport à ceux de l'état de l'art. Nous présentons également une application de notre algorithme de segmentation pour l'extraction de squelettes cinématiques pour les maillages 3D dynamiques