90 research outputs found

    Dynamic Expression of Broad-Complex Isoforms Mediates Temporal Control of an Ecdysteroid Target Gene at the Onset of Drosophila Metamorphosis

    Get PDF
    AbstractMetamorphosis in Drosophila melanogaster is orchestrated by the steroid hormone ecdysone, which triggers a cascade of primary-response transcriptional regulators and secondary effector genes during the third larval instar and prepupal periods of development. The early ecdysone-response Broad-Complex (BR-C) gene, a key regulator of this cascade, is defined by three complementing functions (rbp, br, and 2Bc) and encodes several distinct zinc-finger-containing isoforms (Z1 to Z4). Using isoform-specific polyclonal antibodies we observe in the fat body a switch in BR-C isoform expression from the Z2 to the other three isoforms during the third instar. We show that the 2Bc+ function that corresponds presumably to the Z3 isoform is required for the larval fat body-specific expression of a transgenic construct (AE) in which the lacZ gene is under the control of the ecdysone-regulated enhancer and minimal promoter of the fat body protein 1 (Fbp1) gene. Using hs(BR-C) transgenes, we demonstrate that overexpression of Z1, Z3, or Z4, but not Z2, is able to rescue AE activity with faithful tissue specificity in a BR-C null (npr1) genetic context, demonstrating a partial functional redundancy between Z1, Z3, and Z4 isoforms. We also show that continuous overexpression of Z2 during the third instar represses AE, while conversely, expression of Z3 earlier than its normal onset induces precocious expression of the construct. This finding establishes a tight correlation between the dynamic pattern of expression of the BR-C isoforms and their individual repressive or inductive roles in AE regulation. Altogether our results demonstrate that the balance between BR-C protein isoforms in the fat body mediates, in part, the precise timing of the ecdysone activation of the AE construct but does not modulate its tissue specificity

    Ramucirumab in elderly patients with hepatocellular carcinoma and elevated alpha-fetoprotein after sorafenib in REACH and REACH-2

    Get PDF
    Background & Aims: Limited data on treatment of elderly patients with hepatocellular carcinoma (HCC) increase the unmet need. REACH and REACH‐2 were global phase III studies of ramucirumab in patients with HCC after prior sorafenib, where patients with alpha‐fetoprotein (AFP) ≄400 ng/mL showed an overall ssurvival (OS) benefit for ramucirumab. These post‐hoc analyses examined efficacy and safety of ramucirumab in patients with HCC and baseline AFP ≄ 400 ng/mL by three prespecified age subgroups (<65, ≄65 to <75 and ≄75 years). Methods: Individual patient data were pooled from REACH (baseline AFP ≄400 ng/mL) and REACH‐2. Kaplan‐Meier and Cox proportional hazards regression methods (stratified by study) assessed OS, progression‐free survival (PFS), time to progression (TTP) and patient‐reported outcomes (Functional Hepatobiliary System Index‐8 [FHSI‐8] score). Results: A total of 542 patients (<65 years: n = 302; ≄65 to <75 years: n = 160; ≄75 years: n = 80) showed similar baseline characteristics between ramucirumab and placebo. Older subgroups had higher hepatitis C and steatohepatitis incidences, and lower AFP levels, than the <65 years subgroup. Ramucirumab prolonged OS in patients <65 years (hazard ratio [HR], 0.753; 95% CI 0.581‐0.975), ≄65 to <75 years (0.602; 0.419‐0.866) and ≄75 years (0.709; 0.420‐1.199), PFS and TTP irrespective of age. Ramucirumab showed similar overall safety profiles across subgroups, with a consistent median relative dose intensity ≄97.8%. A trend towards a delay in symptom deterioration in FHSI‐8 with ramucirumab was observed in all subgroups. Conclusions: In this post‐hoc analysis, ramucirumab showed a survival benefit across age subgroups with a tolerable safety profile, supporting its use in advanced HCC with elevated AFP, irrespective of age, including ≄75 years

    Global Description of EUSO-Balloon Instrument

    Get PDF
    For the JEM-EUSO CollaborationThe EUSO-Balloon is a pathfinder of the JEM-EUSO mission, designed to be installed on-board the International Space Station before the end of this decade. The EUSO-Balloon instrument, conceived as a scaleddown version of the main mission, is currently developed as a payload of a stratospheric balloon operated by CNES, and will, most likely, be launched during the CNES flight campaign in 2014. Several key elements of JEM-EUSO have been implemented in the EUSO-Balloon. The instrument consists of an UV telescope, made of three Fresnel lenses, designed to focus the signal of the UV tracks, generated by highly energetic cosmic rays propagating in the earth's atmosphere, onto a finely pixelized UV camera. In this contribution, we review the main stages of the signal processing of the EUSO-Balloon instrument: the photodetection, the analog electronics, the trigger stages, which select events while rejecting random background, the acquisition system performing data storage and the monitoring, which allows the instrument control during operation

    Circadian Preference Modulates the Neural Substrate of Conflict Processing across the Day

    Get PDF
    Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that these preferences are not a simple by-product of socio-professional timing constraints, but can be driven by inter-individual differences in the expression of circadian and homeostatic sleep-wake promoting signals. Chronotypes thus constitute a unique tool to access the interplay between those processes under normally entrained day-night conditions, and to investigate how they impinge onto higher cognitive control processes. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on conflict processing-related cerebral activity throughout a normal waking day. Sixteen morning and 15 evening types were recorded at two individually adapted time points (1.5 versus 10.5 hours spent awake) while performing the Stroop paradigm. Results show that interference-related hemodynamic responses are maintained or even increased in evening types from the subjective morning to the subjective evening in a set of brain areas playing a pivotal role in successful inhibitory functioning, whereas they decreased in morning types under the same conditions. Furthermore, during the evening hours, activity in a posterior hypothalamic region putatively involved in sleep-wake regulation correlated in a chronotype-specific manner with slow wave activity at the beginning of the night, an index of accumulated homeostatic sleep pressure. These results shed light into the cerebral mechanisms underlying inter-individual differences of higher-order cognitive state maintenance under normally entrained day-night conditions

    Interdependency of subsurface carbon distribution and graphene-catalyst interaction.

    Get PDF
    The dynamics of the graphene-catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene-catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10(-6)-10(-3) mbar). A further hydrocarbon pressure increase (to ∌10(-1) mbar) leads to weakening of the graphene-Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature.R.S.W. acknowledges a Research Fellowship from St. John’s College, Cambridge. S.H. acknowledges funding from ERC grant InsituNANO (No. 279342) and EPSRC under grant GRAPHTED (Ref. EP/K016636/1). We acknowledge the Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for provision of synchrotron radiation at the ISISS beamline and we thank the BESSY staff for continuous support of our experiments. This research was partially supported by the EU FP7 Work Programme under grant Graphene Flagship (No. 604391). PRK acknowledges funding the Cambridge Commonwealth Trust. H.A. and C.B. acknowledge J.-Y. Raty and B. Legrand for fruitful discussions.This is the final published version. It's also available from ACS at http://pubs.acs.org/doi/abs/10.1021/ja505454v

    First-line latanoprost therapy in ocular hypertension or open-angle glaucoma patients: a 3-month efficacy analysis stratified by initial intraocular pressure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prospective, multicenter, randomized, double-masked trials have shown latanoprost instilled once daily to be at least as effective as and generally superior to timolol administered twice daily and to be as effective as other frequently prescribed prostaglandin analogues. This study prospectively assessed the efficacy of latanoprost monotherapy in a large cohort of treatment-naive patients with a broad range of baseline intraocular pressure (IOP) levels treated in actual clinical practice settings.</p> <p>Methods</p> <p>This prospective, open-label, multicenter, uncontrolled, phase IV study included treatment-naive ocular hypertension or open-angle glaucoma subjects initiating latanoprost once daily (evening). IOP levels were measured at baseline and after 1 and 3 months. The primary efficacy outcome was mean change in IOP from baseline to month 3. Analyses were stratified by baseline IOP: ≄ 20 and <24 mmHg <it>vs </it>≄ 24 mmHg.</p> <p>Results</p> <p>Efficacy analyses (intent to treat) included 572 subjects: 20 to <24 mmHg group, N = 252; ≄ 24 mmHg group, N = 320. Mean baseline IOP levels were 22.2 ± 0.9 mmHg and 26.7 ± 2.8 mmHg, respectively. At month 3, significant IOP reductions were seen in both groups (p < 0.0001, within-group differences); reductions were smaller in the 20 to <24 mmHg group (-6.3 ± 2.4 <it>vs </it>-9.2 ± 3.7 mmHg, respectively; -28.0 ± 10.6% <it>vs </it>-34.1 ± 11.9%, respectively). An IOP reduction of ≄ 30% from baseline to month 3 was noted in 48.4% and 65.6% of subjects, respectively (p < 0.0001). At month 3, targets IOPs of ≀ 18 mmHg were achieved by ≄ 70% of subjects in both groups. Latanoprost was well tolerated with an adverse event profile similar to that reported in the literature.</p> <p>Conclusions</p> <p>This "real world" study found once-daily latanoprost to be effective and safe in treatment-naive ocular hypertension or open-angle glaucoma patients. Patients with baseline IOP levels of 20 to <24 mmHg as well as ≄ 24 mmHg benefitted from initial latanoprost therapy.</p> <p>Trial Registration</p> <p>Trial Registration Number: NCT00647101</p

    The receptor kinase SRF3 coordinates iron- level and flagellin dependent defense and growth responses in plants

    Get PDF
    Iron is critical for host–pathogen interactions. While pathogens seek to scavenge iron to spread, the host aims at decreasing iron availability to reduce pathogen virulence. Thus, iron sensing and homeostasis are of particular importance to prevent host infection and part of nutritional immunity. While the link between iron homeostasis and immunity pathways is well established in plants, how iron levels are sensed and integrated with immune response pathways remains unknown. Here we report a receptor kinase SRF3, with a role in coordinating root growth, iron homeostasis and immunity pathways via regulation of callose synthases. These processes are modulated by iron levels and rely on SRF3 extracellular and kinase domains which tune its accumulation and partitioning at the cell surface. Mimicking bacterial elicitation with the flagellin peptide flg22 phenocopies SRF3 regulation upon low iron levels and subsequent SRF3-dependent responses. We propose that SRF3 is part of nutritional immunity responses involved in sensing external iron levels

    Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease

    Get PDF
    During the last decade, the epidemiology of WNV in humans has changed in the southern regions of Europe, with high incidence of West Nile fever (WNF) cases, but also of West Nile neuroinvasive disease (WNND). The lack of human vaccine or specific treatment against WNV infection imparts a pressing need to characterize indicators associated with neurological involvement. By its intimacy with central nervous system (CNS) structures, modifications in the cerebrospinal fluid (CSF) composition could accurately reflect CNS pathological process. Until now, few studies investigated the association between imbalance of CSF elements and severity of WNV infection. The aim of the present study was to apply the iTRAQ technology in order to identify the CSF proteins whose abundances are modified in patients with WNND. Forty-seven proteins were found modified in the CSF of WNND patients as compared to control groups, and most of them are reported for the first time in the context of WNND. On the basis of their known biological functions, several of these proteins were associated with inflammatory response. Among them, Defensin-1 alpha (DEFA1), a protein reported with anti-viral effects, presente

    A Novel Ecdysone Receptor Mediates Steroid-Regulated Developmental Events during the Mid-Third Instar of Drosophila

    Get PDF
    The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E—signaling through a nuclear receptor heterodimer consisting of EcR and USP—induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component

    Convergent genetic and expression data implicate immunity in Alzheimer's disease

    Get PDF
    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics
    • 

    corecore