336 research outputs found

    The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation.

    Get PDF
    Hop/Stip1/Sti1 is thought to be essential as a co-chaperone to facilitate substrate transfer between the Hsp70 and Hsp90 molecular chaperones. Despite this proposed key function for protein folding and maturation, it is not essential in a number of eukaryotes and bacteria lack an ortholog. We set out to identify and to characterize its eukaryote-specific function. Human cell lines and the budding yeast with deletions of the Hop/Sti1 gene display reduced proteasome activity due to inefficient capping of the core particle with regulatory particles. Unexpectedly, knock-out cells are more proficient at preventing protein aggregation and at promoting protein refolding. Without the restraint by Hop, a more efficient folding activity of the prokaryote-like Hsp70-Hsp90 complex, which can also be demonstrated in vitro, compensates for the proteasomal defect and ensures the proteostatic equilibrium. Thus, cells may act on the level and/or activity of Hop to shift the proteostatic balance between folding and degradation

    Assessing Cervical Dislocation as a Humane Euthanasia Method in Mice

    Get PDF
    Research investigators often choose to euthanize mice by cervical dislocation (CD) when other methods would interfere with the aims of a research project. Others choose CD to assure death in mice treated with injected or inhaled euthanasia agents. CD was first approved for mouse euthanasia in 1972 by the AVMA Panel on Euthanasia, although scientific assessment of its humaneness has been sparse. Here we compared 4 methods of spinal dislocation–3 targeting the cervical area (CD) and one the thoracic region–in regard to time to respiratory arrest in anesthetized mice. Of the 81 mice that underwent CD by 1 of the 3 methods tested, 17 (21%) continued to breathe, and euthanasia was scored as unsuccessful. Postmortem radiography revealed cervical spinal lesions in 5 of the 17 cases of unsuccessful CD euthanasia. In addition, 63 of the 64 successfully euthanized mice had radiographically visible lesions in the high cervical or atlantooccipital region. In addition, 50 of 64 (78%) mice euthanized successfully had radiographically visible thoracic or lumbar lesions or both. Intentionally creating a midthoracic dislocation in anesthetized mice failed to induce respiratory arrest and death in any of the 18 mice subjected to that procedure. We conclude that CD of mice holds the potential for unsuccessful euthanasia, that anesthesia could be valuable for CD skills training and assessment, and that postmortem radiography has minimal promise in quality-control assessments

    A versatile synthesis method of dendrites-free segmented nanowires with a precise size control

    Get PDF
    We report an innovative strategy to obtain cylindrical nanowires combining well established and low-cost bottom-up methods such as template-assisted nanowires synthesis and electrodeposition process. This approach allows the growth of single-layer or multi-segmented nanowires with precise control over their length (from few nanometers to several micrometers). The employed techniques give rise to branched pores at the bottom of the templates and consequently dendrites at the end of the nanowires. With our method, these undesired features are easily removed from the nanowires by a selective chemical etching. This is crucial for magnetic characterizations where such non-homogeneous branches may introduce undesired features into the final magnetic response. The obtained structures show extremely narrow distributions in diameter and length, improved robustness and high-yield, making this versatile approach strongly compatible with large scale production at an industrial level. Finally, we show the possibility to tune accurately the size of the nanostructures and consequently provide an easy control over the magnetic properties of these nanostructures

    Antibody Targeting of Cathepsin S Inhibits Angiogenesis and Synergistically Enhances Anti-VEGF

    Get PDF
    Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development. where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis

    Correlations, Causes and the Logic of Obscuration: Donor Shaping of Dominant Narratives in Indonesia's Irrigation Development

    Get PDF
    This article analyses policy trends in Indonesian irrigation, particularly during the last five decades, from the perspective of dominant narratives, as authored, suggested and pushed by international donors. It argues that international donors' adherence to ‘deferred maintenance’ as the core element of irrigation policy problem framing does not match with farmers' and the irrigation agency staff perceptions and practices. The logic of obscuration and the discursive manoeuvers that maintain it are analysed. The article concludes that there is space for more profound conceptual contestation and for alternative actions pathways even within the ‘dominant paradigm’ to address management problems more effectively

    Glycosaminoglycans and Sialylated Glycans Sequentially Facilitate Merkel Cell Polyomavirus Infectious Entry

    Get PDF
    Merkel cell polyomavirus (MCV or MCPyV) appears to be a causal factor in the development of Merkel cell carcinoma, a rare but highly lethal form of skin cancer. Although recent reports indicate that MCV virions are commonly shed from apparently healthy human skin, the precise cellular tropism of the virus in healthy subjects remains unclear. To begin to explore this question, we set out to identify the cellular receptors or co-receptors required for the infectious entry of MCV. Although several previously studied polyomavirus species have been shown to bind to cell surface sialic acid residues associated with glycolipids or glycoproteins, we found that sialylated glycans are not required for initial attachment of MCV virions to cultured human cell lines. Instead, glycosaminoglycans (GAGs), such as heparan sulfate (HS) and chondroitin sulfate (CS), serve as initial attachment receptors during the MCV infectious entry process. Using cell lines deficient in GAG biosynthesis, we found that N-sulfated and/or 6-O-sulfated forms of HS mediate infectious entry of MCV reporter vectors, while CS appears to be dispensable. Intriguingly, although cell lines deficient in sialylated glycans readily bind MCV capsids, the cells are highly resistant to MCV reporter vector-mediated gene transduction. This suggests that sialylated glycans play a post-attachment role in the infectious entry process. Results observed using MCV reporter vectors were confirmed using a novel system for infectious propagation of native MCV virions. Taken together, the findings suggest a model in which MCV infectious entry occurs via initial cell binding mediated primarily by HS, followed by secondary interactions with a sialylated entry co-factor. The study should facilitate the development of inhibitors of MCV infection and help shed light on the infectious entry pathways and cellular tropism of the virus

    Demand-side approaches for limiting global warming to 1.5 °C

    Get PDF
    The Paris Climate Agreement defined an ambition of limiting global warming to 1.5 °C above preindustrial levels. This has triggered research on stringent emission reduction targets and corresponding mitigation pathways across energy economy and societal systems. Driven by methodological considerations, supply side and carbon dioxide removal options feature prominently in the emerging pathway literature, while much less attention has been given to the role of demand-side approaches. This special issue addresses this gap, and aims to broaden and strengthen the knowledge base in this key research and policy area. This editorial paper synthesizes the special issue’s contributions horizontally through three shared themes we identify: policy interventions, demand-side measures, and methodological approaches. The review of articles is supplemented by insights from other relevant literature. Overall, our paper underlines that stringent demand-side policy portfolios are required to drive the pace and direction of deep decarbonization pathways and keep the 1.5 °C target within reach. It confirms that insufficient attention has been paid to demand-side measures, which are found to be inextricably linked to supply-side decarbonization and able to complement supply-side measures. The paper also shows that there is an abundance of demand-side measures to limit warming to 1.5 °C, but it warns that not all of these options are “seen” or captured by current quantitative tools or progress indicators, and some remain insufficiently represented in the current policy discourse. Based on the set of papers presented in the special issue, we conclude that demand-side mitigation in line with the 1.5 °C goal is possible; however, it remains enormously challenging and dependent on both innovative technologies and policies, and behavioral change. Limiting warming to 1.5 °C requires, more than ever, a plurality of methods and integrated behavioral and technology approaches to better support policymaking and resulting policy interventions

    Association of nutritional status and serum albumin levels with development of toxicity in patients with advanced non-small cell lung cancer treated with paclitaxel-cisplatin chemotherapy: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A frequent manifestation of advanced NSCLC is malnutrition, even though there are many studies which relate it with a poor survival, its relation with toxicity has not yet been consistently reported. The aim of this study was to associate malnutrition and albumin serum levels with the occurrence of chemotherapy-induced toxicity in cisplatin plus paclitaxel chemotherapy-treated NSCLC.</p> <p>Methods</p> <p>We prospectively evaluated 100 stage IV NSCLC patients treated with paclitaxel (175 mg/m<sup>2</sup>) and cisplatin (80 mg/m<sup>2</sup>). Malnutrition was assessed using SGA prior treatment. Neutrophil Lymphocyte Ratio (NLR) and the Platelet Lymphocyte Ratio (PLR) were used to determine the presence of systemic inflammatory response (SIR) and were related to the development of toxicity. Toxicity was graded according to NCI CTCAE version 3.0 after two chemotherapy cycles.</p> <p>Results</p> <p>Median age was 58 ± 10 years, 51% of patients were malnourished, 50% had albumin ≤3.0 mg/mL. NLR ≥ 5 was associated with basal hypoalbuminemia (mean ranks, 55.7 vs. 39 p = 0.006), ECOG = 2 (47.2 vs. 55.4 p = 0.026) and PLR ≥ 150 were significantly related with a basal body mass index ≤20 (56.6 vs. 43.5; p = 0.02) and hypoalbuminemia (58.9 vs. 41.3; p = 0.02). Main toxicities observed after 2 cycles of chemotherapy were alopecia (84%), nausea (49%), neuropathy (46%), anemia (33%), lymphopenia (31%), and leukopenia (30%). Patients malnourished and with hypoalbuminemia developed more chemotherapy-induced toxicity overall when compared with those without malnutrition (31 vs 22; <it>p </it>= 0.02) and normal albumin (mean ranks, 62 vs 43; <it>p </it>= 0.002), respectively. Hypoalbuminemia was associated with anemia (56 vs 47; <it>p </it>= 0.05), fatigue (58 vs 46; <it>p </it>= 0.01), and appetite loss (57.1 vs 46.7; <it>p </it>= 0.004) compared with normal albumin. PLR ≥ 150 was related with the development of toxicity grade III/IV (59.27 vs. 47.03 p = 0.008) and anemia (37.9 vs 53.8 p = 0.004).</p> <p>Conclusion</p> <p>SIR parameters were associated with malnutrition, weight loss and hypoalbuminemia. Chemotherapy-induced toxicity in NSCLC patients treated with paclitaxel and cisplatin was associated with malnutrition and hypoalbuminemia. Early nutritional assessment and support might confer beneficial effects.</p

    Genome Sequencing Reveals Widespread Virulence Gene Exchange among Human Neisseria Species

    Get PDF
    Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange
    corecore