35 research outputs found

    Inserting a His Tag on GFP

    Get PDF
    The abstract for this presentation can be downloaded by clicking on the blue download button

    A New Family of DNA Viruses Causing Disease in Crustaceans from Diverse Aquatic Biomes

    Get PDF
    Recent genomic and metagenomic studies have led to a dramatic expansion of the known diversity of nucleocytoplasmic large DNA viruses (NCLDVs) of eukaryotes, which include giant viruses of protists and important pathogens of vertebrates, such as poxviruses. However, the characterization of viruses from nonmodel hosts still lags behind. We sequenced the complete genomes of three viruses infecting crustaceans, the Caribbean spiny lobster, demon shrimp, and European shore crab. These viruses have the smallest genomes among the known NCLDVs, with losses of many core genes, some of which are shared with iridoviruses. The deterioration of the transcription apparatus is compatible with microscopic and ultrastructural observations indicating that these viruses replicate in the nucleus of infected cells rather than in the cytoplasm. Phylogenomic analysis indicates that these viruses are sufficiently distinct from all other NCLDVs to justify the creation of a separate family, for which we propose the name “Mininucleoviridae” (i.e., small viruses reproducing in the cell nucleus).Panulirus argus virus 1 (PaV1) is the only known virus infecting the Caribbean spiny lobster (Panulirus argus) from the Caribbean Sea. Recently, related viruses, Dikerogammarus haemobaphes virus 1 (DhV1) and Carcinus maenas virus 1 (CmV1), have been detected in the demon shrimp (Dikerogammarus haemobaphes) and the European shore crab (Carcinus maenas), respectively, from sites in the United Kingdom. The virion morphology of these crustacean viruses is similar to that of iridoviruses. However, unlike iridoviruses and other nucleocytoplasmic large DNA viruses (NCLDVs), these viruses complete their morphogenesis in the host cell nucleus rather than in the cytoplasm. To date, these crustacean viruses have remained unclassified due to a lack of genomic data. Using an Illumina MiSeq sequencer, we sequenced the complete genomes of PaV1, CmV1, and DhV1. Comparative genome analysis shows that these crustacean virus genomes encode the 10 hallmark proteins previously described for the NCLDVs of eukaryotes, strongly suggesting that they are members of this group. With a size range of 70 to 74 kb, these are the smallest NCLDV genomes identified to date. Extensive gene loss, divergence of gene sequences, and the accumulation of low-complexity sequences reflect the extreme degradation of the genomes of these “minimal” NCLDVs rather than any direct relationship with the NCLDV ancestor. Phylogenomic analysis supports the classification of these crustacean viruses as a distinct family, “Mininucleoviridae,” within the pitho-irido-Marseille branch of the NCLDVs

    Evaluating Four Inosine-Uridine Preferring Nucleoside Hydrolases in Bacillus Anthracis for Decontamination Strategies

    Get PDF
    Andrew Roser­ is a doctoral student in the School of Biological Sciences at Louisiana Tech University. Abigail Bass, Sophie Bott, Madison Brewton, Adam Broussard, Taylor Clement, Makenzie Cude, Hunter Currie, Claire Herke, Mary Hickman, Lauren James, Hailey Johnson, Madeline Lechtenberg, Sarah Murchison, Alex Plaisance, Wil Plants, Alex Sullivan, Sara Vandenberg, and Kaitlynn Willis are undergraduate students in the School of Biological Sciences at Louisiana Tech University. Rebecca Giorno is an Associate Professor in the School of Biological Sciences at Louisiana Tech University

    Conserved Secondary Structures in Aspergillus

    Get PDF
    Background: Recent evidence suggests that the number and variety of functional RNAs (ncRNAs as well as cis-acting RNA elements within mRNAs) is much higher than previously thought; thus, the ability to computationally predict and analyze RNAs has taken on new importance. We have computationally studied the secondary structures in an alignment of six Aspergillus genomes. Little is known about the RNAs present in this set of fungi, and this diverse set of genomes has an optimal level of sequence conservation for observing the correlated evolution of base-pairs seen in RNAs. Methodology/Principal Findings: We report the results of a whole-genome search for evolutionarily conserved secondary structures, as well as the results of clustering these predicted secondary structures by structural similarity. We find a total of 7450 predicted secondary structures, including a new predicted,60 bp long hairpin motif found primarily inside introns. We find no evidence for microRNAs. Different types of genomic regions are over-represented in different classes of predicted secondary structures. Exons contain the longest motifs (primarily long, branched hairpins), 59 UTRs primarily contain groupings of short hairpins located near the start codon, and 39 UTRs contain very little secondary structure compared to other regions. There is a large concentration of short hairpins just inside the boundaries of exons. The density of predicted intronic RNAs increases with the length of introns, and the density of predicted secondary structures within mRNA coding regions increases with the number of introns in a gene

    Characterisation of age and polarity at onset in bipolar disorder

    Get PDF
    Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
    corecore