250 research outputs found
Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial):A Multicentre, Randomised, Controlled Trial
RationaleMesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in COVID-19-related Acute Respiratory Distress Syndrome (ARDS).ObjectivesWe investigated safety and efficacy of ORBCEL-C (CD362-enriched, umbilical cord-derived MSCs) in COVID-related ARDS.MethodsThis multicentre, randomised, double-blind, allocation concealed, placebo-controlled trial (NCT03042143) randomised patients with moderate-to-severe COVID-related ARDS to receive ORBCEL-C (400million cells) or placebo (Plasma-Lyte148).MeasurementsThe primary safety and efficacy outcomes were incidence of serious adverse events and oxygenation index at day 7 respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2/FiO2 ratio and SOFA score. Clinical outcomes relating to duration of ventilation, length of intensive care unit and hospital stays, and mortality were collected. Long-term follow up included diagnosis of interstitial lung disease at 1 year, and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at day 0, 4 and 7.Main results60 participants were recruited (final analysis n=30 ORBCEL-C, n=29 placebo: 1 in placebo group withdrew consent). 6 serious adverse events occurred in the ORBCEL-C and 3 in the placebo group, RR 2.9(0.6-13.2)p=0.25. Day 7 mean[SD] oxygenation index did not differ (ORBCEL-C 98.357.2], placebo 96.667.3). There were no differences in secondary surrogate outcomes, nor mortality at day 28, day 90, 1 or 2 years. There was no difference in prevalence of interstitial lung disease at 1year nor significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome.ConclusionORBCEL-C MSCs were safe in moderate-to-severe COVID-related ARDS, but did not improve surrogates of pulmonary organ dysfunction. Clinical trial registration available at www.Clinicaltrialsgov, ID: NCT03042143. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/)
Serial cardiac biomarkers, pulmonary artery pressures and traditional parameters of fluid status in relation to prognosis in patients with chronic heart failure:Design and rationale of the BioMEMS study
AimsHeart failure (HF), a global pandemic affecting millions of individuals, calls for adequate predictive guidance for improved therapy. Congestion, a key factor in HF-related hospitalizations, further underscores the need for timely interventions. Proactive monitoring of intracardiac pressures, guided by pulmonary artery (PA) pressure, offers opportunities for efficient early-stage intervention, since haemodynamic congestion precedes clinical symptoms.MethodsThe BioMEMS study, a substudy of the MONITOR-HF trial, proposes a multifaceted approach integrating blood biobank data with traditional and novel HF parameters. Two additional blood samples from 340 active participants in the MONITOR-HF trial were collected at baseline, 3-, 6-, and 12-month visits and stored for the BioMEMS biobank. The main aims are to identify the relationship between temporal biomarker patterns and PA pressures derived from the CardioMEMS-HF system, and to identify the biomarker profile(s) associated with the risk of HF events and cardiovascular death.ConclusionSince the prognostic value of single baseline measurements of biomarkers like N-terminal pro-B-type natriuretic peptide is limited, with the BioMEMS study we advocate a dynamic, serial approach to better capture HF progression. We will substantiate this by relating repeated biomarker measurements to PA pressures. This design rationale presents a comprehensive review on cardiac biomarkers in HF, and aims to contribute valuable insights into personalized HF therapy and patient risk assessment, advancing our ability to address the evolving nature of HF effectively.Design and rationale of the BioMEMS study. QoL, quality of life. Graphical abstract is created with BioRender.com imag
Patterns and universals of mate poaching across 53 nations : the effects of sex, culture, and personality on romantically attracting another personâs partner
As part of the International Sexuality Description Project, 16,954 participants from 53 nations were administered an anonymous survey about experiences with romantic attraction. Mate poaching--romantically attracting someone who is already in a relationship--was most common in Southern Europe, South America, Western Europe, and Eastern Europe and was relatively infrequent in Africa, South/Southeast Asia, and East Asia. Evolutionary and social-role hypotheses received empirical support. Men were more likely than women to report having made and succumbed to short-term poaching across all regions, but differences between men and women were often smaller in more gender-egalitarian regions. People who try to steal another's mate possess similar personality traits across all regions, as do those who frequently receive and succumb to the poaching attempts by others. The authors conclude that human mate-poaching experiences are universally linked to sex, culture, and the robust influence of personal dispositions.peer-reviewe
Are men universally more dismissing than women? Gender differences in romantic attachment across 62 cultural regions
The authors thank Susan Sprecher (USA), Del
Paulhus (Canada), Glenn D. Wilson (England), Qazi
Rahman (England), Alois Angleitner (Germany),
Angelika Hofhansl (Austria), Tamio Imagawa
(Japan), Minoru Wada (Japan), Junichi Taniguchi
(Japan), and Yuji Kanemasa (Japan) for helping with
data collection and contributing significantly to the
samples used in this study.Gender differences in the dismissing form of adult romantic attachment were investigated as part of the International Sexuality Description Projectâa survey study of 17,804 people from 62 cultural regions. Contrary to research findings previously reported in Western cultures, we found that men were not significantly more dismissing than women across all cultural regions. Gender differences in dismissing romantic attachment were evident in most cultures, but were typically only small to moderate in magnitude. Looking across cultures, the degree of gender differentiation in dismissing romantic attachment was predictably associated with sociocultural indicators. Generally, these associations supported evolutionary theories of romantic attachment, with smaller gender differences evident in cultures with highâstress and highâfertility reproductive environments. Social role theories of human sexuality received less support in that more progressive sexârole ideologies and national gender equity indexes were not crossâculturally linked as expected to smaller gender differences in dismissing romantic attachment.peer-reviewe
An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.
RESULTS:
A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization.
CONCLUSIONS:
The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups
Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD
Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10â392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group
Recommended from our members
Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis
Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1Ă10-12) and x-linked CLDN2 (p < 1Ă10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men â male hemizygous frequency is 0.26, female homozygote is 0.07
Narcissism and the strategic pursuit of short-term mating : universal links across 11 world regions of the International Sexuality Description Project-2.
Previous studies have documented links between sub-clinical narcissism and the active pursuit of short-term mating strategies (e.g., unrestricted sociosexuality, marital infidelity, mate poaching). Nearly all of these investigations have relied solely on samples from Western cultures. In the current study, responses from a cross-cultural survey of 30,470 people across 53 nations spanning 11 world regions (North America, Central/South America, Northern Europe, Western Europe, Eastern Europe, Southern Europe, Middle East, Africa, Oceania, Southeast Asia, and East Asia) were used to evaluate whether narcissism (as measured by the Narcissistic Personality Inventory; NPI) was universally associated with short-term mating. Results revealed narcissism scores (including two broad factors and seven traditional facets as measured by the NPI) were functionally equivalent across cultures, reliably associating with key sexual outcomes (e.g., more active pursuit of short-term mating, intimate partner violence, and sexual aggression) and sex-related personality traits (e.g., higher extraversion and openness to experience). Whereas some features of personality (e.g., subjective well-being) were universally associated with socially adaptive facets of Narcissism (e.g., self-sufficiency), most indicators of short-term mating (e.g., unrestricted sociosexuality and marital infidelity) were universally associated with the socially maladaptive facets of narcissism (e.g., exploitativeness). Discussion addresses limitations of these cross-culturally universal findings and presents suggestions for future research into revealing the precise psychological features of narcissism that facilitate the strategic pursuit of short-term mating
Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks
Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis
- âŠ