800 research outputs found

    Impact of Systematic Errors in Sunyaev-Zel'dovich Surveys of Galaxy Clusters

    Full text link
    Future high-resolution microwave background measurements hold the promise of detecting galaxy clusters throughout our Hubble volume through their Sunyaev-Zel'dovich (SZ) signature, down to a given limiting flux. The number density of galaxy clusters is highly sensitive to cluster mass through fluctuations in the matter power spectrum, as well as redshift through the comoving volume and the growth factor. This sensitivity in principle allows tight constraints on such quantities as the equation of state of dark energy and the neutrino mass. We evaluate the ability of future cluster surveys to measure these quantities simultaneously when combined with PLANCK-like CMB data. Using a simple effective model for uncertainties in the cluster mass-SZ flux relation, we evaluate systematic shifts in cosmological constraints from cluster SZ surveys. We find that a systematic bias of 10% in cluster mass measurements can give rise to shifts in cosmological parameter estimates at levels larger than the 1σ1\sigma statistical errors. Systematic errors are unlikely to be detected from the mass and redshift dependence of cluster number counts alone; increasing survey size has only a marginal effect. Implications for upcoming experiments are discussed.Comment: 12 pages, 6 figures; accepted to JCAP; revised to match submitted versio

    What Can Cosmic Microwave Background Observations Already Say About Cosmological Parameters in Open and Critical-Density Cold Dark Matter Models?

    Full text link
    We use a combination of the most recent cosmic microwave background (CMB) flat -band power measurements to place constraints on Hubble's constant h and the total density of the Universe Omega_o in the context of inflation-based cold dark matter (CDM) models with no cosmological constant. We use chisquared minimization to explore the 4-dimensional parameter space having as free parameters, h, Omega_o, the power spectrum slope n and the power spectrum normalization at L=10. Conditioning on Omega_o=1 we obtain h=0.33 +/- 0.08. Allowing Omega_o to be a free parameter reduces the ability of the CMB data to constrain h and we obtain 0.26 < h < 0.97 with a best-fit value at h=0.40. We obtain Omega_o=0.85 and set a lower limit Omega_o > 0.53. A strong correlation between acceptable h and Omega_o values leads to a new constraint: Omega_o h^1/2=0.55 +/- 0.10. A favored open model with Omega_o=0.3 and h=0.70 is more than ~4 sigma from the CMB data best-fit model and is rejected at the 99% CL. High baryonic models (Omega_b h^2 ~0.026) yield the best CMB chi-squared fits and are more consistent with other cosmological constraints. The best-fit model has n=0.91^{+0.29}_{-0.09} and Q=18.0^+1.2_-1.5 uK. The amplitude and position of the dominant peak in the best-fit power spectrum are A_peak=76^+3_-7 uK and L_peak = 260^+30_-20. Unlike the Omega_o=1 case we considered previously, CMB h results are now consistent with the higher values favored by local measurements of h but only if 0.55 >~ Omega_o >~ 0.85. Using an approximate joint likelihood to combine our CMB constraint on Omegta_o h^{1/2} with other cosmological constraints we obtain h=0.58 +/- 0.11 and Omega_o=0.65^+0.16_-0.15.Comment: 18 pages with 7 figures, conforms to accepted version in press: Astrophysical Journal, 496, (April 1, 1998). Three of the figures have been modified, references updated, typos corrected. This version includes a table of current CMB measurement

    Produção integrada de manga no Estado do Piauí: documentos de referência.

    Get PDF
    Normas técnicas específicas (NTE PI-Manga); Grade de agroquímicos; Caderno de campo; Caderno de pós-colheita; Listas de verficação - Pomar e empacotadora; Lista de verficação - Pomar; Lista de verficação - Empacotadora; Comite Técnico para a produção integrada de manga no Estado do Piauí; Justificativa para a composição do comitê técnico; Relação de endereços; Relação das instituições colaboradoras.bitstream/item/37174/1/Doc106.pd

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV

    Get PDF
    Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decreas

    Precision measurement of CPCP violation in Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays

    Get PDF
    The time-dependent CPCP asymmetry in Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays is measured using pppp collision data, corresponding to an integrated luminosity of 3.03.0fb1^{-1}, collected with the LHCb detector at centre-of-mass energies of 77 and 88TeV. In a sample of 96 000 Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays, the CPCP-violating phase ϕs\phi_s is measured, as well as the decay widths ΓL\Gamma_{L} and ΓH\Gamma_{H} of the light and heavy mass eigenstates of the Bs0Bˉs0B_s^0-\bar{B}_s^0 system. The values obtained are ϕs=0.058±0.049±0.006\phi_s = -0.058 \pm 0.049 \pm 0.006 rad, Γs(ΓL+ΓH)/2=0.6603±0.0027±0.0015\Gamma_s \equiv (\Gamma_{L}+\Gamma_{H})/2 = 0.6603 \pm 0.0027 \pm 0.0015ps1^{-1}, andΔΓsΓLΓH=0.0805±0.0091±0.0032\Delta\Gamma_s \equiv \Gamma_{L} - \Gamma_{H} = 0.0805 \pm 0.0091 \pm 0.0032ps1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements of those quantities to date. A combined analysis with Bs0J/ψπ+πB_s^{0} \to J/\psi \pi^+\pi^- decays gives ϕs=0.010±0.039\phi_s = -0.010 \pm 0.039 rad. All measurements are in agreement with the Standard Model predictions. For the first time the phase ϕs\phi_s is measured independently for each polarisation state of the K+KK^+K^- system and shows no evidence for polarisation dependence.Comment: 6 figure
    corecore