154 research outputs found

    A high-density theta burst paradigm enhances the aftereffects of transcranial magnetic stimulation: Evidence from focal stimulation of rat motor cortex

    Get PDF
    Background: Theta burst stimulation (TBS) is an efficient noninvasive neuromodulation paradigm that has been widely adopted, clinically. However, the efficacy of TBS treatment remains similarly modest as conventional 10 Hz repetitive transcranial magnetic stimulation (rTMS). Objective/hypothesis: To develop a new TBS paradigm that enhances the effects of TMS administration while maintaining high time-efficiency. Methods: We describe here a new TMS paradigm, named High-Density Theta Burst Stimulation (hdTBS). This paradigm delivers up to 6 pulses per burst, as opposed to only 3 in conventional TBS, while maintaining the inter-burst interval of 200 ms (or 5 Hz) - a critical parameter in inducing long-term potentiation. This paradigm was implemented on a TMS stimulator developed in-house; its physiological effects were assessed in the motor cortex of awake rats using a rodent specific focal TMS coil. Microwire electrodes were implanted into each rat\u27s limb muscles to longitudinally record motor-evoked potential (MEP). Four different TBS paradigms (3, 4, 5 or 6 pulses per burst, 200 s per session) were tested; MEP signals were recorded immediately before (baseline) and up to 35 min post each TBS session. Results: We developed a stimulator based on a printed-circuit board strategy. The stimulator was able to deliver stable outputs of up to 6 pulses per burst. Animal experiments (n = 15) revealed significantly different aftereffects induced by the four TBS paradigms (Friedman test, p = 0.018). Post hoc analysis further revealed that, in comparison to conventional 3-pulse TBS, 5- and 6-pulse TBS enhanced the aftereffects of MEP signals by 56% and 92%, respectively, while maintaining identical time efficiency. Conclusion(s): A new stimulation paradigm is proposed, implemented and tested in the motor cortex of awake rats using a focal TMS coil developed in the lab.We observed enhanced aftereffects as assessed by MEP, with no obvious adverse effects, suggesting the translational potentials of this paradigm

    Dynamic design: manipulation of millisecond timescale motions on the energy landscape of cyclophilin A

    Get PDF
    Proteins need to interconvert between many conformations in order to function, many of which are formed transiently, and sparsely populated. Particularly when the lifetimes of these states approach the millisecond timescale, identifying the relevant structures and the mechanism by which they interconvert remains a tremendous challenge. Here we introduce a novel combination of accelerated MD (aMD) simulations and Markov state modelling (MSM) to explore these ‘excited’ conformational states. Applying this to the highly dynamic protein CypA, a protein involved in immune response and associated with HIV infection, we identify five principally populated conformational states and the atomistic mechanism by which they interconvert. A rational design strategy predicted that the mutant D66A should stabilise the minor conformations and substantially alter the dynamics, whereas the similar mutant H70A should leave the landscape broadly unchanged. These predictions are confirmed using CPMG and R1ρ solution state NMR measurements. By efficiently exploring functionally relevant, but sparsely populated conformations with millisecond lifetimes in silico, our aMD/MSM method has tremendous promise for the design of dynamic protein free energy landscapes for both protein engineering and drug discovery

    Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study

    Full text link
    Hemoglobin exhibits allosteric structural changes upon ligand binding due to the dynamic interactions between the ligand binding sites, the amino acids residues and some other solutes present under physiological conditions. In the present study, the dynamical and quaternary structural changes occurring in two unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures of adult human hemoglobin were investigated with molecular dynamics. It is shown that, in the sub-microsecond time scale, there is no marked difference in the global dynamics of the amino acids residues in both the oxy- and the deoxy- forms of the individual structures. In addition, the R, R2 are relatively stable and do not present quaternary conformational changes within the time scale of our simulations while the T structure is dynamically more flexible and exhibited the T\rightarrow R quaternary conformational transition, which is propagated by the relative rotation of the residues at the {\alpha}1{\beta}2 and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ

    Dynamic design:Manipulation of millisecond timescale motions on the energy landscape of cyclophilin A

    Get PDF
    Proteins need to interconvert between many conformations in order to function, many of which are formed transiently, and sparsely populated. Particularly when the lifetimes of these states approach the millisecond timescale, identifying the relevant structures and the mechanism by which they interconvert remains a tremendous challenge. Here we introduce a novel combination of accelerated MD (aMD) simulations and Markov state modelling (MSM) to explore these ‘excited’ conformational states. Applying this to the highly dynamic protein CypA, a protein involved in immune response and associated with HIV infection, we identify five principally populated conformational states and the atomistic mechanism by which they interconvert. A rational design strategy predicted that the mutant D66A should stabilise the minor conformations and substantially alter the dynamics, whereas the similar mutant H70A should leave the landscape broadly unchanged. These predictions are confirmed using CPMG and R1ρ solution state NMR measurements. By efficiently exploring functionally relevant, but sparsely populated conformations with millisecond lifetimes in silico, our aMD/MSM method has tremendous promise for the design of dynamic protein free energy landscapes for both protein engineering and drug discovery

    The Effect of Insecticide Synergists on the Response of Scabies Mites to Pyrethroid Acaricides

    Get PDF
    Synergists are commonly used in combination with pesticides to suppress metabolism-based resistance and increase the efficacy of the agents. They are also useful as tools for laboratory investigation of specific resistance mechanisms based on their ability to inhibit specific metabolic pathways. To determine the role of metabolic degradation as a mechanism for acaricide resistance in human scabies, PBO (piperonyl butoxide), DEF (S,S,S-tributyl phosphorotrithioate) and DEM (diethyl maleate) were used with permethrin as synergists in a bioassay of mite killing. A statistically significant difference in survival time of permethrin-resistant Sarcoptes scabiei variety canis was noted when any of the three synergists were used in combination with permethrin compared to survival time of mites exposed to permethrin alone (p<0.0001). These results indicate the potential utility of synergists in reversing tolerance to pyrethroid-based acaricides (i.e. the addition of synergists to permethrin-containing topical acaricide cream commonly used to treat scabies). To further verify specific metabolic pathways being inhibited by these synergists, enzyme assays were developed to measure esterase, glutathione S-transferase (GST) and cytochrome P450 monooxygenase activity in scabies mites. Results of in vitro enzyme inhibition experiments showed lower levels of esterase activity with DEF; lower levels of GST activity with DEM and lower levels of cytochrome monooxygenase activity with PBO. These findings indicate a metabolic mechanism as mediating pyrethroid resistance in scabies mites

    Recommendations for Implementing Lung Cancer Screening with Low-Dose Computed Tomography in Europe.

    Get PDF
    Lung cancer screening (LCS) with low-dose computed tomography (LDCT) was demonstrated in the National Lung Screening Trial (NLST) to reduce mortality from the disease. European mortality data has recently become available from the Nelson randomised controlled trial, which confirmed lung cancer mortality reductions by 26% in men and 39-61% in women. Recent studies in Europe and the USA also showed positive results in screening workers exposed to asbestos. All European experts attending the "Initiative for European Lung Screening (IELS)"-a large international group of physicians and other experts concerned with lung cancer-agreed that LDCT-LCS should be implemented in Europe. However, the economic impact of LDCT-LCS and guidelines for its effective and safe implementation still need to be formulated. To this purpose, the IELS was asked to prepare recommendations to implement LCS and examine outstanding issues. A subgroup carried out a comprehensive literature review on LDCT-LCS and presented findings at a meeting held in Milan in November 2018. The present recommendations reflect that consensus was reached

    Two naphthalene degrading bacteria belonging to the genera Paenibacillus and Pseudomonas isolated from a highly polluted lagoon perform different sensitivities to the organic and heavy metal contaminants

    Get PDF
    Two bacterial strains were isolated in the presence of naphthalene as the sole carbon and energy source from sediments of the Orbetello Lagoon, Italy, which is highly contaminated with both organic compounds and metals. 16S rRNA gene sequence analysis of the two isolates assigned the strains to the genera Paenibacillus and Pseudomonas. The effect of different contaminants on the growth behaviors of the two strains was investigated. Pseudomonas sp. ORNaP2 showed a higher tolerance to benzene, toluene, and ethylbenzene than Paenibacillus sp. ORNaP1. In addition, the toxicity of heavy metals potentially present as co-pollutants in the investigated site was tested. Here, strain Paenibacillus sp. ORNaP1 showed a higher tolerance towards arsenic, cadmium, and lead, whereas it was far more sensitive towards mercury than strain Pseudomonas sp. ORNaP2. These differences between the Gram-negative Pseudomonas and the Gram-positive Paenibacillus strain can be explained by different general adaptive response systems present in the two bacteria

    Recommendations for implementing lung cancer screening with low-dose computed tomography in Europe

    Get PDF
    Lung cancer screening (LCS) with low-dose computed tomography (LDCT) was demonstrated in the National Lung Screening Trial (NLST) to reduce mortality from the disease. European mortality data has recently become available from the Nelson randomised controlled trial, which confirmed lung cancer mortality reductions by 26% in men and 39–61% in women. Recent studies in Europe and the USA also showed positive results in screening workers exposed to asbestos. All European experts attending the “Initiative for European Lung Screening (IELS)”—a large international group of physicians and other experts concerned with lung cancer—agreed that LDCT-LCS should be implemented in Europe. However, the economic impact of LDCT-LCS and guidelines for its effective and safe implementation still need to be formulated. To this purpose, the IELS was asked to prepare recommendations to implement LCS and examine outstanding issues. A subgroup carried out a comprehensive literature review on LDCT-LCS and presented findings at a meeting held in Milan in November 2018. The present recommendations reflect that consensus was reached

    Probing the Hofmeister Effect with Ultrafast Core Hole Spectroscopy

    Get PDF
    In the current work, X-ray emission spectra of aqueous solutions of different inorganic salts within the Hofmeister series are presented. The results reflect the direct interaction of the ions with the water molecules and therefore, reveal general properties of the salt-water interactions. Within the experimental precision a significant effect of the ions on the water structure has been observed but no ordering according to the structure maker/structure breaker concept could be mirrored in the results indicating that the Hofmeister effect-if existent-may be caused by more complex interactions

    Chrysolina herbacea Modulates Terpenoid Biosynthesis of Mentha aquatica L.

    Get PDF
    Interactions between herbivorous insects and plants storing terpenoids are poorly understood. This study describes the ability of Chrysolina herbacea to use volatiles emitted by undamaged Mentha aquatica plants as attractants and the plant's response to herbivory, which involves the production of deterrent molecules. Emitted plant volatiles were analyzed by GC-MS. The insect's response to plant volatiles was tested by Y-tube olfactometer bioassays. Total RNA was extracted from control plants, mechanically damaged leaves, and leaves damaged by herbivores. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran, which acts as a deterrent to C. herbacea. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase
    corecore